
Nuno Alexandre Pinto da Silva

MULTI-DIMENSIONAL SERVICE-ORIENTED

ONTOLOGY MAPPING

Universidade de Trás-os-Montes e Alto Douro
Vila Real, 2004

Multi-Dimensional Service-Oriented

Ontology Mapping

a thesis submitted for the Degree of Doctor of Philosophy by

Nuno Alexandre Pinto da Silva

supervised by

Professor João Manuel Simões Rocha

Professor José Carlos Silva Cardoso

Universidade de Trás-os-Montes e Alto Douro

Vila Real, Portugal

September 2004

iii

ABSTRACT

Ontology mapping is the process whereby semantic relations are defined between two ontologies at

the conceptual level, which in turn are applied at data level transforming source ontology instances

into target ontology instances. Ontology mapping, as an information integration approach, faces

new challenges with the advent of new technological and socio-organizational paradigms such as

Semantic Web and Virtual Organizations, especially due to the unprecedented levels of distribution,

heterogeneity and evolution.

The first contribution of this thesis is MAFRA – MApping FRAmework, a systematized

interpretation of the ontology mapping process. MAFRA identifies, integrates and organizes the

ontology mapping process phases and complemented modules into a meaningful reference model.

Due to its wide coverage it further provides a classification artifact for works from distinct but

interrelated research fields. While MAFRA identifies several other phases of the process, the rest of

the research developed in the scope of this thesis specially focuses on the core phases of the

process: the specification and execution of semantic relations.

The Semantic Bridging Ontology (SBO) is the result of the research on analysis, characterization,

specification and representation of semantic relations. SBO describes the semantic relations domain

of knowledge, providing not only a reasoning mechanism but also a representation and exchange

mechanism of semantic relationships, when instantiated. SBO is a very simple and compact

ontology, but its extensional structure based on transformation services allows its adoption in very

Abstract

iv

distinct and complex scenarios. While most of the syntactical relations are provided by

transformation services, the structural relations are provided by the entities and their relationships

defined by SBO. Furthermore, because SBO clearly and univocally characterizes the different types

of semantic relations and their behaviors, it serves as a driving mechanism for the specification of

semantic relations. SBO is further complemented by a software application with a graphical user

interface that allows the definition and the automatic storage and verification of the semantic

relationships.

The semantic relationships resulting from previous phase are then applied in the execution phase.

The general-purpose transformation process proposed in this thesis conforms to and exploits the

SBO conceptualization, namely concerning the notion of transformation service. The proposed

transformation process distinguishes between the generic query and filtering of instances, and the

specific transformation provided by the transformation services associated with each semantic

relation. The query and filtering phases of the process require specific and extensive processing of

data according to the semantic relationships specification, which have been specified recurring to

the formal, well-known relational data model algebra, motivating a formal yet very explicit and

especially very compact description of the process. Adopting the query-filtering-transformation

method, the process exploits and promotes the notion of independent transformation service,

allowing the inclusion and modification of the transformation capabilities of the system with no

modification of other components of the system.

This independent transformation service approach is extrapolated into the notion of multi-

dimensional service in which services capabilities are no longer limited to the transformation of

instances but to other phases of the process, namely the semantic relation specification, verification,

evolution and negotiation. This new notion of service is further integrated in the multi-dimensional

service-oriented architecture, in which services represent and embody specific expertise on the

application of the service itself along the semantic relationships life-cycle, providing competencies

as requested to the core phases of the process.

The potential advantages of the multi-dimensional service-oriented architecture are tested and

exploited in the researched process for automatic definition of semantic relationships. In this case

test, services are expanded with competencies to judge the relevance of a set of similarities

measures in the definition and confirmation of a semantic relation with which the service is

associated.

The proposed ideas and processes have been implemented in the scope of this thesis into the

MAFRA Toolkit application, and tested with several ontology mapping scenarios. Additionally, The

MAFRA Toolkit has been applied and tested in the scope of several third-party EU-funded

projects.

v

RESUMO ALARGADO

Sendo ontologia uma descrição das características do conteúdo de repositórios de dados,

informação ou conhecimento, torna-se possível através da definição de equivalências semânticas

entre os elementos das ontologias, relacionar esses repositórios. Mapeamento de ontologias é um

processo que consiste na definição a nível ontológico dessas relações semânticas entre entidades de

uma ontologia de origem e de uma ontologia de destino. Essas relações são posteriormente

aplicadas na transformação das instâncias duma base de conhecimento conforme com a ontologia

de origem em instâncias duma base de conhecimento conforme com a ontologia de destino.

O trabalho realizado nesta tese é genericamente dividido em sete partes, que correspondem ao

longo da tese a outros tantos capítulos:

1. Motivações;

2. Ontologia;

3. MAFRA – MApping FRAmework;

4. Relacionamento semântico;

5. Execução das relações semânticas;

6. Arquitectura do sistema baseada em serviços multi-dimensionais;

7. Desenvolvimento e experiências.

As secções seguintes descrevem sumariamente o trabalho desenvolvido e os resultados mais

relevantes atingidos em cada uma delas, sendo a última secção reservada à apresentação duma

Resumo Alargado

vi

síntese do trabalho desenvolvido e apresentação de alguns indicadores da relevância e utilidade da

investigação realizada.

1. Motivações

Mapeamento de ontologias é considerada uma tecnologia fundamental em cenários em que a troca

e partilha de informação sejam essenciais. Interoperabilidade entre sistemas de informação, web

semântica, organizações virtuais e negócios electrónicos, migração de dados entre sistemas e

evolução dos modelos de dados subjacentes aos sistemas de informação, são alguns desses cenários.

Através da análise e sistematização das características e das necessidades de interoperabilidade

associados a estes cenários, definiram-se os seguintes requisitos dum sistema de mapeamento de

ontologias:

1. Identificação, especificação e representação de relações sintácticas, estruturais e semânticas entre

ontologias;

2. Transformação da informação transmitida entre intervenientes na comunicação, de acordo com

as relações anteriores;

3. Negociação das relações anteriores;

4. Manutenção das relações anteriores;

5. Integração (mas minimização) da participação do ser humano no processo de mapeamento de

ontologias, o que sugere a adopção dum sistema semi-automático de mapeamento de ontologias;

6. Adopção de tecnologia e soluções do contexto da web semântica.

Estes requisitos serão posteriormente comparados com a investigação realizada e com os resultados

atingidos, o que permite aferir da qualidade da investigação e dos resultados atingidos.

2. Ontologia

Não existe uma definição universalmente aceite de ontologia, mas a definição de Gruber -

“ontologia é uma especificação explícita duma conceptualização” – tende a ser genericamente aceite

no contexto dos sistemas de informação e conhecimento. No contexto desta tese porém, esta

definição é demasiado genérica, o que motiva a análise de características e comparação com outros

conceitos comumente relacionados, nomeadamente com o conceito de esquema de base de dados.

Da comparação efectuada conclui-se que ambos partilham vários pressupostos e características,

mas torna-se contudo evidente que, mesmo não sendo conceptualmente e formalmente universais,

as capacidades de descrição e caracterização semântica do domínio de conhecimento de ontologia

são superiores às do esquema de base de dados. Partindo desta observação conclui-se que ontologia

é, de ambos, o artefacto potencialmente mais capaz de fornecer elementos de raciocínio para a

definição de relações semânticas entre repositórios de dados, informação e/ou conhecimento.

Multi-Dimensional Service-Oriented Ontology Mapping

vii

Concluindo o tema sobre a caracterização do conceito de ontologias, introduz-se uma especificação

formal do modelo de ontologia que será usada no decorrer da tese. Os elementos básicos de

ontologia são:

• Conceito, que corresponde à noção de classe na modelação orientada por objectos;

• Propriedade, que corresponde à noção de membro de dados na modelação orientada por

objectos. Pode ser especializada em relações (entre conceitos) e atributos (quando o seu valor é

primitivo);

• Hierarquia (ou taxonomia) de conceitos, que corresponde à relação hierárquica entre classes na

modelação orientada por objectos;

• Axiomas, nomeadamente de caracterização das propriedades (ex. cardinalidade, simetria);

• Léxico, que pela sua associação com conceitos e propriedades do mundo real, aumenta os

elementos de raciocínio semânticos da ontologia.

Não sendo uma especificação universal, a formalização apresentada permite uma aceitação

suficintemente alargada e com as características suficientes para o desenrolar do trabalho de

investigação.

Uma vez definidos o contexto básico e os pressupostos do trabalho a desenvolver, inicia-se a

investigação propriamente dita.

3. MAFRA - MApping FRAmework

A primeira contribuição desta tese é o MAFRA – MApping FRAmework. MAFRA é o resultado da

análise e sistematização do processo de mapeamento de ontologias, não apenas sobre as suas duas

fases principais (a definição e execução das relações semânticas), mas sobre uma perspectiva mais

abrangente. Assim, foram identificados dois grupos distintos de tarefas ou componentes do

processo:

• Um conjunto de tarefas principais, (implícita ou explicitamente) comuns a qualquer cenário de

mapeamento de ontologias, sem as quais o processo não faz sentido:

• Normalização de léxicos;

• Avaliação de semelhanças entre ontologias;

• Definição das relações semânticas;

• Execução das relações semânticas;

• Avaliação dos resultados;

• Um conjunto de tarefas complementares ao processo, nomeadamente relacionadas com a

automatização das tarefas principais:

• Evolução das relações semânticas de acordo com as alterações das ontologias e dos

Resumo Alargado

viii

requisitos de aplicação;

• Negociação de relações semânticas novas e de aplicação de outras já existentes;

• Conhecimento e restrições subjacentes a domínios de conhecimento que potenciem os

resultados do processo;

• Interface com o utilizador para a manipulação da informação de mapeamento,

nomeadamente das relações semânticas.

Uma das ideias fundamentais subjacente ao MAFRA é a de que o conjunto de relações semânticas

existente entre duas ontologias (documento de mapeamento) têm um ciclo de vida como um

qualquer documento, sistema ou entidade, nomeadamente no que se refere ao processo iterativo de

melhoria baseado nos resultados do próprio sistema. Nesse sentido, o comum ciclo de vida de um

sistema é adaptado às fases específicas do processo de mapeamento de ontologias, em que:

• As tarefas principais formam um ciclo de melhoria iterativo (e interactivo com o utilizador

através da interface);

• As tarefas complementares interagem com todas as tarefas principais sempre que necessário e de

acordo com as suas capacidades.

Assim, MAFRA é um modelo de organização do processo de mapeamento de ontologias, mas que

devido à sua abrangência e generalidade é também um modelo de referência que permite e facilita a

classificação de trabalhos distintos mas de domínios de investigação relacionados.

Embora o MAFRA defina cinco fases principais como compondo o processo de mapeamento de

ontologias, o resto do trabalho desenvolvido foca-se nas suas duas fases fundamentais: a definição e

a execução de relações semânticas.

4. Relacionamento semântico

A investigação respeitante à definição de relações semânticas focou fundamentalmente dois

assuntos:

• A análise, caracterização e sistematização das relações semânticas que potencialmente ocorrem

entre ontologias;

• A especificação (conceptual), definição e representação das relações semânticas.

Do primeiro ponto o resultado mais relevante é a sistematização das várias dimensões das relações

semânticas:

• Tipos das entidades relacionadas semanticamente, sendo que qualquer combinação que envolva

os tipos de entidades previstas no modelo de ontologia são aceites (ex. Conceito-Propriedade,

ou Relação-Atributo);

Multi-Dimensional Service-Oriented Ontology Mapping

ix

• Transformação, que diz respeito à função necessária para que as instâncias da ontologia de

origem sejam transformadas em instâncias da ontologia de destino. Direcionalidade e plenitude

são duas sub-dimensões dependentes da função de transformação associada à relação semântica;

• Cardinalidade, que diz respeito ao número de entidades da ontologia de origem e de destino

relacionados semanticamente. Os valores desta dimensão variam entre 0:1 e m:n, sendo o

primeiro valor relacionado com o número de entidades da ontologia de origem e o segundo com

os da ontologia de destino;

• Restrições, que diz respeito às condições que se têm de verificar para que a relação semântica

seja executada. As condições são definidas através da combinação de três tipos de elementos: (i)

instâncias das entidades relacionadas semanticamente, (ii) instâncias de outras entidades ou (iii)

elementos não disponíveis nas ontologias;

• Estrutural, que diz respeito às relações entre relações semânticas, nomeadamente de ordem e

composição.

Desta sistematização deduz-se que a única dimensão não universalmente caracterizada é a dimensão

de transformação, o que significa que não é possível prever todas as necessidades de transformação.

Assim sendo, as capacidades dum sistema de mapeamento de ontologias é dependente da

capacidade de especificar, representar e posteriormente executar as transformações necessárias

entre entidades ontológicas. É necessário portanto e além disso, que os mecanismos de

especificação, representação e execução sejam dotados com capacidades de evolução e adaptação às

diferentes necessidades de transformação impostas por diferentes cenários de mapeamento de

ontologias.

Entra-se assim na especificação e representação de relações semânticas. A Semantic Bridging

Ontology (SBO) é o resultado mais visível da investigação desenvolvida nesta tese sobre este

assunto e um dos mais relevantes de toda a tese. A SBO descreve (especifica) o domínio de

conhecimento relacionado com as relações semânticas, fornecendo não só um mecanismo de

raciocínio mas também, quando instanciada para um determinado cenário, um mecanismo de

representação e partilha de relações semânticas. A SBO é uma ontologia simples e compacta, mas a

sua estrutura baseada em serviços permite a extensão das capacidades de transformação conforme

necessário e de uma forma conceptual, estando assim apta para aplicação em cenários de

complexidade distintas, tal como estipulado anteriormente.

Em particular a SBO adopta um modelo:

• Orientado a objectos, pois as relações semânticas entre conceitos das ontologies são modelados

numa hierarquia, beneficiando as sub-relações semânticas das propriedades definidas para as

super-relações semânticas, através do mecanismo de herança;

Resumo Alargado

x

• Centrado nas propriedades, pois as relações semânticas entre propriedades são definidas

independentemente das dos conceitos. Contudo, como as instâncias das propriedades ocorrem

no contexo das instâncias dos conceitos, é necessário que as relações semânticas de

propriedades sejam associadas com as de conceitos.

No entanto, foram definidos ainda outros mecanismos:

• Caminhos, que corresponde a um conjunto válido de relações entre conceitos (ex.

Pessoa/casado com/Pessoa/nome/String);

• Restrições sobre a relação semântica, usando operadores lógicos (ex. and, or) e de comparação

(ex. =, <, >);

• Alternativas mútuas, que permite que, de entre um conjunto de relações semânticas, no máximo

uma delas seja executada, em função das restrições de cada uma.

Enquanto alguma da heterogeneidade semântica entre ontologias é ultrapassada através da

manipulação sintáctica das instâncias das propriedades, e são portanto suportadas por serviços de

transformação específicos, as relações estruturais são suportadas directamente pelos conceitos e

interrelações da SBO.

Para além das capacidades de modelação e raciocínio, porque restringe as relações entre entidades

explicitamente e univocamente, a SBO serve como mecanismo de orientação no processo de

definição de relações semânticas, o que será explorado posteriormente num processo semi-

automático de definição de relações semânticas.

5. Execução das relações semânticas

As relações semânticas resultantes da fase anterior são, então, aplicadas na transformação das

instâncias.

O resultado mais importante da investigação relacionada com este assunto é o processo genérico de

execução de relações semânticas que conformem com a SBO. O processo proposto distingue três

fases:

• Fase de interrogação, que diz respeito ao processo de recolha de instâncias da base de

conhecimento de acordo com os parâmetros de cada relação semântica. Esta fase corresponde

ao maior esforço de investigação deste assunto uma vez que não existe disponível tecnologia de

interrogação de bases de conhecimento de ontologias que seja capaz de agregar a informação

segundo vários caminhos. Para isso foi desenvolvido um processo baseado na representação de

caminhos em árvore. Esta representação permite a combinação dos resultados das

interrogações, através da aplicação dos resultados de umas na execução de outras. O resultado

desta fase é uma tabela (relacional) em que as colunas representam todos os caminhos definidos

Multi-Dimensional Service-Oriented Ontology Mapping

xi

na relação semântica, e os valores são as instâncias acedidas por cada um desses caminhos ao

longo do processo de interrogação. O processo desenvolvido foi especificado recorrendo a

álgebra relacional, pois trata-se duma álgebra formal e extensivamente reconhecida. O resultado

é uma especificação formal, contudo clara, compacta e de fácil implementação;

• Fase de filtragem, diz respeito ao processo de verificação das condições da relação semântica. O

processo ocorre sobre a tabela calculada na fase anterior, e o resultado é uma tabela com as

mesmas colunas em que cada linha da tabela respeita as condições impostas. Uma vez que os

operadores de comparação são extensíveis, tal como os serviços de transformação, foi também

necessário desenvolver especificamente este processo;

• Fase de transformação diz respeito ao processo específico executado pelo serviço de

transformação associado a cada relação semântica. O processo de transformação é dependente

do serviço, mas os dados a serem processados são produzidos nas fases anteriores

independentemente do serviço, o que facilita a sua implementação.

Adoptando uma abordagem por fases (interrogação-filtragem-transformação), o processo explora a

noção de serviço de transformação, potenciando a inclusão e modificação das capacidades de

transformação do sistema, sem necessidade de alterar outros componentes do sistema. Esta

característica será posteriormente explorada aquando da especificação da arquitectura do sistema.

Nesta fase foi ainda desenvolvido um processo que permite ultrapassar determinadas

heterogeneidades semânticas impossíveis de ultrapassar com os mecanismos propostos até aqui.

Em geral, tais heterogeneidades advém da adopção de granularidade mais fina por parte da

ontologia de destino que a granularidade da ontologia de origem. Por exemplo, quando “endereço”

na ontologia de origem é definido como um atributo e na ontologia de destino é definido como um

conceito composto por vários atributos (ex. Rua, Código Postal, País). O processo desenvolvido

baseia-se na especificação extensional de entidades da ontologia de origem e, tal como o seu nome

indica, recorre à classificação das instâncias da base de conhecimento de origem segundo um

conjunto de condições baseadas nos seus valores. O processo desenvolvido é baseado no conceito

de modelação proposto pelo paradigma Description Logics. A adopção desta abordagem não

obriga a usar skolem terms, como noutras abordagens, o que por sua vez motivaria a necessidade de

ordenação das relações semânticas. Se assim fosse, a complexidade dos processos de definição e de

execução das relações semânticas seria necessariamente maior.

Por fim foi desenvolvida uma abordagem de verificação de condições das relações semânticas

verificáveis apenas após a fase de transformação, pelo que o processo foi expandido para cinco

fases (interrogação-filtragem-transformação-filtragem-instanciação). Como a cardinalidade das

entidades da ontologia de destino é uma dimensão da relação semântica paradigmática para este

problema, a análise e solução proposta focam esta dimensão em particular. Nesse sentido foram

Resumo Alargado

xii

definidos três novos operadores de comparação de cardinalidade para complementar os

anteriormente definidos para a verificação da cardinalidade da base de dados de origem (operadores

de comparação), de forma a que não surjam ambiguidades quer na definição quer na execução das

relações semânticas.

6. Arquitectura do sistema baseada em serviços multi-dimensionais

A arquitectura do sistema de mapeamento de ontologias proposto nesta tese é baseado na

extrapolação da noção de serviço de transformação independente, sugerido na SBO e

posteriormente adoptado na fase de execução. A extrapolação ocorre em três dimensões distintas:

• Expansão das competências dos serviços de transformação, para que estes contribuam para

outras fases do processo, na aplicação do serviço a relações semânticas. Porque os serviços são

agora dotados de competências em diversas fases do processo, são referidos por serviços multi-

dimensionais;

• Tornar os serviços entidades fornecedoras de competências (know-how), independentes de

qualquer módulo ou fase do processo. A relação entre as fases do processo e os serviços evolui

portanto para uma perspectiva de cooperação em que os serviços participam (de acordo com as

suas competências) na melhoria da sua própria aplicação nas relações semânticas;

• Tornar os serviços entidades dinâmicas e auto-descriptivas, capazes de promover a adaptação do

sistema a diferentes situações de mapeamento. Os serviços tornam-se assim entidades externas

ao sistema, mas com capacidade de se associarem (pluggable) ao sistema automaticamente e sem

necessidade de alteração de outros componentes do sistema.

A arquitectura do sistema desenvolvida nesta fase, denominada Multi-dimensional Service-oriented

Architecture, adopta e promove este novo conceito de serviço como entidade fundamental no

processo de mapeamento. Nesta arquitectura os serviços adquirem, representam e fornecem

competências até agora representadas e fornecidas por peritos/utilizadores. Devido à modularidade

dos serviços, o know-how dos peritos é modelado em múltiplos módulos, evoluindo e adaptando-se

às necessidades de novos cenários de mapeamento independentemente de outros serviços e de

outros componentes do sistema, o que parece ser benéfico na resposta às características de

distribuição e dinamismo intrínsecas à web semântica. Evolução, negociação e relacionamento

semântico (semi-)automático são apontados como fases do processo de mapeamento que mais

vantagens potencialmente retiram da arquitectura proposta. Com o intuito de analisar e testar os

benefícios e potencialidades da arquitectura proposta, decidiu-se aplicá-la na semi-automatização do

processo de relacionamento semântico.

Multi-Dimensional Service-Oriented Ontology Mapping

xiii

A investigação realizada no âmbito deste caso de teste está longe de se limitar à aplicação da

arquitectura, tendo a investigação obtido resultados importantes na forma como o problema da

automatização da definição das relações semânticas é analisado e abordado.

De uma forma genérica o processo desenvolvido usa entidades independentes (matchers) para a

avaliação de semelhanças entre entidades das duas ontologias (matches). Dependendo da decisão do

perito/utilizador (ou outra entidade responsável e competente nessa matéria), um conjunto de

matches poderá dar origem a uma relação semântica. Cada match caracteriza a semelhança entre duas

entidades das ontologias de acordo com uma determinada dimensão (ex. semelhança de nomes) o

que é claramente insuficiente para atingir resultados aceitáveis. Assim, em vez de utilizar apenas um

tipo de match como normalmente acontece noutras abordagens, o processo desenvolvido durante

esta tese sugere a adopção de múltiplos tipos de matchs (e portanto de matchers) e a combinação das

suas avaliações numa única, de acordo com as condições específicas definidas para/por cada

serviço. Assim, para além de se poder utilizar novas formas de avaliação de semelhanças (novos

matchers), é possível fazer depender do serviço a decisão de ser associado a determinada relação

semântica.

Em mais detalhe o processo desenvolvido é composto por três fases:

• Definição de relações semânticas provisórias (clusters) através da agregação de matches, de forma

que os tipos e cardinalidade das entidades dos matches respeitem a interface dos serviços

disponíveis no sistema. A cada cluster é associado o serviço cuja interface permite/sugere o cluster;

• Confirmação (ou anulação) de cada um dos clusters através das condições que os matches devem

verificar, e que são especificamente definidas pelo serviço associado ao cluster;

• Transformação dos clusters em relações semânticas e suas interrelações válidas e executáveis. De

referir que nesta fase é plenamente adoptado o modelo definido na SBO, pelo que todas as

interrelações entre relações semânticas previsto na SBO, mesmo as não fundamentais (ex. em

modelos orientados a objectos a adopção do conceito de hierarquia entre classes é aconselhável

mas não obrigatório), são definidas e os seus benefícios explorados. Por isso, são por vezes

inferidas novas relações semânticas, e que dão origem a novos clusters e matches respectivos, para

manter o processo consistente.

As condições auto-definidas pelo serviço podem evoluir ao longo do tempo e em função de muitos

factores, incluindo processos de aprendizagem por observação do comportamento do perito.

7. Desenvolvimento e experiências

Se bem que a parte teórica, descrita até agora, tenha sido a que requereu mais esforço e dedicação

temporal, a parte de implementação e experimentação foi também muito importante, tanto mais

que decorreu em paralelo com a parte teórica durante a maior parte do tempo de implementação.

Resumo Alargado

xiv

Esta relação tão próxima entre implementação e investigação teórica é considerada neste trabalho

benéfica para as duas componentes, em particular porque permitiu:

• Provar a viabilidade e utilidade dos resultados da investigação teórica;

• Fornecer opiniões sobre as competências e limitações das propostas da investigação teórica;

• Promover e divulgar as ideias a uma comunidade mais alargada;

• Fornecer uma ferramenta funcional que pudesse ser usada em projectos de terceiros, por forma

a receber mais e fundamentadas opiniões sobre as ideias propostas, baseadas em experiências

sobre cenários diferentes.

Foi portanto desenvolvida uma aplicação informática denominada MAFRA Toolkit, e que constitui

o mais relevante resultado desta fase. Se bem que a grande maioria das funcionalidades

implementadas no MAFRA Toolkit sejam o resultado da investigação teórica descrita, determinadas

funcionalidades foram implementadas segundo uma abordagem pragmática. Esta observação é

especialmente verdadeira no que se refere ao desenvolvimento da interface gráfica. Esta, tal como o

resto, é fortemente influenciada pela adopção do KAON Workbench como tecnologia para a

manipulação de ontologias e bases de conhecimento. Apesar de muitas competências relevantes o

KAON Workbench não tem suporte para linguagens de interrogação, mas, porque mesmo as

linguagens de interrogação não solucionariam o problema de interrogação encontrado, as

capacidades de manipulação disponíveis acabaram por ser suficientes. Contudo, estas limitações

acabaram por conduzir a um processo de implementação bastante moroso.

No entanto o MAFRA Toolkit e as ideias preconizadas nesta tese estão agora estáveis e funcionais,

tendo sido extensivamente e com sucesso aplicados em projectos terceiros, o que permitiu inferir

com algumas evidências sobre a viabilidade e relevância da investigação realizada.

8. Resultados atingidos

Embora conclusões formais não possam ser retiradas devido principalmente à incapacidade de

formular o problema completamente (a dimensão de transformação não pode ser completamente

definida), é possível, através da comparação dos requisitos estipulados no início da tese bem como

de indicadores usados pela comunidade científica, inferir que a qualidade da investigação e dos

resultados atingidos é satisfatória.

Em particular para os requisitos enunciados no final da análise das motivações, a investigação

realizada forneceu o seguinte suporte:

1. Identificação, especificação e representação de relações sintácticas, estruturais e semânticas entre

ontologias. Este requisito é extensivamente suportado pela investigação realizada:

• O MAFRA, em que identifica explicitamente a fase de relacionamento semântico;

Multi-Dimensional Service-Oriented Ontology Mapping

xv

• A SBO, que especifica e permite a definição e representação de relações sintácticas,

estruturais e semânticas. Embora seja conceptualmente impossível determinar o grau de

suporte fornecido, as experiências demonstram a sua competência num grande número de

aplicações e cenários;

• A identificação das relações é suportada pelo processo semi-automático de relacionamento

semântico desenvolvido como caso de teste de aplicação da arquitectura baseada em serviços

multi-dimensionais. Embora o processo tenha por objectivo sugerir um conjunto razoável e

válido de relações semânticas, é perceptível que a solução carece ainda de maior refinamento

das condições definidas pelos serviços e porventura do desenvolvimento e adopção de novos

matchers;

2. Transformação da informação transmitida entre intervenientes na comunicação, de acordo com

as relações anteriores. Este requisito é referido em duas fases da investigação:

• Na sistematização do processo de mapeamento de ontologias no MAFRA, em particular na

fase de execução das relações semânticas;

• Na investigação realizada sobre o processo de execução;

3. Negociação das relações anteriores é suportada pelo módulo de Negociação do MAFRA.

Apesar de esta ser referida como uma tarefa que poderá beneficiar com a adopção da

arquitectura baseada em serviços multi-dimensionais, nenhuma investigação sistemática foi

realizada sobre este tópico;

4. Manutenção das relações anteriores é suportada pela tarefa complementar do MAFRA

denominada Evolução, sendo que, tal como para a negociação, nenhuma investigação

sistemática foi realizada sobre este assunto;

5. Integração (mas minimização) da participação do ser humano no processo de mapeamento de

ontologias, o que sugere a adopção dum sistema semi-automático de mapeamento de ontologias.

Este requisito é parcialmente suportado através dos seguintes elementos:

• Pelo módulo de Conhecimento e restrições subjacentes a domínios de conhecimento do

MAFRA, que representa conceptualmente todas as fontes de conhecimento e know-how que

possam ser úteis para a automação do processo de mapeamento de ontologias;

• Os serviços multi-dimensionais e os matchers são algumas destas fontes de conhecimento

explicitamente usadas nas soluções propostas;

• O processo semi-automático de relacionamento semântico é contudo o mais relevante

suporte deste requisito, pois combina as fontes de informação (serviços e matchers) através

dum método e regras (heurísticas) de relacionamento semântico de entidades. Se o processo

reduz a participação do ser humano no processo, por outro lado permite e sugere o

aperfeiçoamento por parte do utilizador das relações semânticas definidas automaticamente;

Resumo Alargado

xvi

• A forma declarativa, simples e compacta da SBO tem por objectivo reduzir os esforços do

ser humano em definir e representar as relações semânticas;

• A interface gráfica do MAFRA Toolkit fornece um mecanismo de interacção entre o suporte

automático e o ser humano, permitindo-lhe ao mesmo tempo a sua participação e redução

do esforço de participação.

6. Adopção de tecnologia e soluções do contexto da web semântica. Este requisito é amplamente

referido e considerado durante a tese, nomeadamente:

• A SBO é representada em RDFS e DAML+OIL, duas das mais importantes linguagens de

representação de ontologias no contexto da web semântica;

• O conjunto de relações semânticas definidas entre duas ontologias é representado através de

RDF, o modelo de representação de base de todas as linguagens de representação na web

semântica;

• A arquitectura baseada em serviços multi-dimensionais, nomeadamente a noção de serviços

independentes, dinâmicos e auto-descritivos é adequada às características da web semântica.

É portanto perceptível que enquanto o nível de suporte fornecido é difícil de determinar, por outro

lado todos os requisitos foram alvo de investigação e suporte, e a grande maioria é, pelo menos

parcialmente, suportado pela aplicação desenvolvida.

Adicionalmente, outros indicadores científicos servem para confirmar a opinião defendida de que

um trabalho válido e útil foi desenvolvido:

• O grande número de conferências e jornais internacionais com revisão para as quais o trabalho

desenvolvido nesta tese foi aceite para publicação;

• O grande número de publicações científicas que citam o MAFRA, SBO, o processo de execução

e o MAFRA Toolkit em diferentes campos de investigação;

• As boas opiniões recebidas e do grande número de aplicações e experiências realizadas com a

SBO e o MAFRA Toolkit por/em projectos terceiros, incluindo projectos comerciais;

• As sugestões construtivas recebidas no sentido de continuar a investigação e a implementação

do MAFRA Toolkit.

Assim, embora seja difícil concluir formalmente acerca da validade das ideias propostas, é possível

concluir que os resultados atingidos são úteis e relevantes para a comunidade científica, e a breve

prazo para soluções comerciais.

xvii

TABLE OF CONTENTS

Abstract ___ iii

Resumo Alargado __ v

1. Motivações___ vi

2. Ontologia __ vi

3. MAFRA - MApping FRAmework ___ vii

4. Relacionamento semântico ___viii

5. Execução das relações semânticas___ x

6. Arquitectura do sistema baseada em serviços multi-dimensionais __________________ xii

7. Desenvolvimento e experiências___xiii

8. Resultados atingidos __xiv

Table Of Contents ___ xvii

Table Of Figures___ xxv

Table Of Examples__ xxvii

Table Of Contents

xviii

First Part ___ 1

Chapter 1 Introduction __ 3

1.1 Context __ 3

1.2 Thesis organization ___ 5

Chapter 2 Motivations __ 7

2.1 Schema integration ___ 8
2.1.1 Database integration___ 9
2.1.2 Data warehousing__ 12
2.1.3 Data warehousing Vs. Database integration ________________________________ 15

2.2 Semantic Web __ 15

2.3 Virtual Organizations and E-Business __ 18
2.3.1 Agent-based Systems ___ 19
2.3.2 Web services ___ 20
2.3.3 Virtual organization and E-Business requirements ___________________________ 21

2.4 Knowledge management __ 22

2.5 Outlook___ 23
2.5.1 Mapping specification phase__ 24
2.5.2 Mapping transformation phase __ 24
2.5.3 Human intervention __ 25
2.5.4 Common consensus building ___ 25
2.5.5 Evolution __ 25
2.5.6 Semantic Web importance ___ 25
2.5.7 Summary of requirements__ 26

Chapter 3 Ontology__ 27

3.1 Characterization of ontologies __ 28
3.1.1 Generality__ 28
3.1.2 Granularity ___ 29
3.1.3 Formality __ 30
3.1.4 Roles ___ 31
3.1.5 Miscellaneous characteristics ___ 32

3.2 Ontology Vs. Database schema ___ 32
3.2.1 Overview of informal characteristics _____________________________________ 34

Multi-Dimensional Service-Oriented Ontology Mapping

xix

3.3 Formal Definition of Ontology ___ 35
3.3.1 Schematic layer__ 36
3.3.2 Lexical layer __ 37
3.3.3 Axiomatic layer__ 38
3.3.4 Formal definition of Knowledge Base ____________________________________ 39
3.3.5 Example 3.4 - Simple ontology and knowledge base__________________________ 40

3.4 Summary __ 41

Second Part __ 43

Chapter 4 Ontology Mapping Framework _______________________________________ 45

4.1 Quality vectors ___ 46

4.2 MAFRA Overview __ 46

4.3 Horizontal Dimension of MAFRA __ 49
4.3.1 Lift & Normalization ___ 49

4.3.1.1 Lift ___ 49
4.3.1.2 Normalization ___ 50

4.3.2 Similarity Measuring __ 52
4.3.3 Semantic Bridging ___ 56

4.3.3.1 Automation___ 56
4.3.3.2 Specification methods ___ 57
4.3.3.3 Representation language ___ 58
4.3.3.4 Outlook of Semantic Bridging_______________________________________ 59

4.3.4 Execution__ 59
4.3.4.1 Classification process ___ 59
4.3.4.2 Transformation process__ 61
4.3.4.3 Entity-driving execution ___ 61
4.3.4.4 Operation mode ___ 62
4.3.4.5 Outlook of Execution ___ 63

4.3.5 Post-processing ___ 63

4.4 Vertical Dimension of MAFRA___ 65
4.4.1 Evolution __ 65
4.4.2 Cooperative Consensus Building __ 65
4.4.3 Domain Constraints and Background Knowledge ___________________________ 66
4.4.4 Graphical User Interface __ 67

4.5 Ontology mapping process flow __ 68

Table Of Contents

xx

4.6 Summary __ 68

Chapter 5 Semantic Bridging__ 69

5.1 Ontology mapping: two-phases process_______________________________________ 70
5.1.1 Informal definition ___ 70
5.1.2 Formal definition __ 71

5.2 Semantic heterogeneity ___ 71
5.2.1 Entity type dimension __ 73
5.2.2 Transformation dimension ___ 74

5.2.2.1 Function ___ 74
5.2.2.2 Directionality__ 75
5.2.2.3 Completeness ___ 76

5.2.3 Cardinality dimension___ 76
5.2.4 Constraint dimension ___ 77
5.2.5 Structural dimension__ 78
5.2.6 Summary of characterization ___ 78

5.3 State of the art __ 80
5.3.1 Protégé__ 81
5.3.2 Stuckenschmidt and colleagues__ 82
5.3.3 RDFT __ 85
5.3.4 OntoMerge___ 86
5.3.5 Summary __ 88

5.4 Semantic Bridging Ontology ___ 91
5.4.1 SBO Overview __ 92
5.4.2 Service __ 93
5.4.3 Semantic Bridge ___ 94

5.4.3.1 Concept Bridge __ 96
5.4.3.2 Property Bridge__ 96

5.4.4 Path __ 97
5.4.4.1 Step___ 98
5.4.4.2 Path___ 98
5.4.4.3 Directionality___ 100
5.4.4.4 Alternative notation__ 101
5.4.4.5 Outlook of Path __ 101

5.4.5 Condition Expression__ 101
5.4.6 Array __ 103

Multi-Dimensional Service-Oriented Ontology Mapping

xxi

5.4.7 Ontology Mapping Document ___ 104
5.4.7.1 Alternative Bridges of ConceptBridges _______________________________ 105
5.4.7.2 Alternative Bridges of PropertyBridges _______________________________ 106
5.4.7.3 Relation between ConceptBridges and PropertyBridges___________________ 106
5.4.7.4 Hierarchy of ConceptBridges ______________________________________ 108

5.5 Example 5.21 – Semantic bridging annotated example___________________________ 110
5.5.1 Ontology Mapping Document ___ 111
5.5.2 ConceptBridges __ 111
5.5.3 ConditionExpressions ___ 111
5.5.4 Disjoint bridges __ 112
5.5.5 Property Bridges__ 112
5.5.6 Object-Oriented modeling __ 114

5.6 Conclusions___ 115

Chapter 6 Execution process ___ 117

6.1 Execution process overview __ 118
6.1.1 ConceptBridge execution ___ 119
6.1.2 PropertyBridge execution ___ 121

6.2 Internal process __ 124
6.2.1 Querying the source knowledge base ____________________________________ 124

6.2.1.1 Tree-based representation of Paths __________________________________ 131
6.2.1.2 Tree-based query__ 133

6.2.2 Filter the knowledge base query __ 136
6.2.3 Create the target knowledge base instances________________________________ 136
6.2.4 Example 6.17 – Execution process annotated example_______________________ 138

6.2.4.1 ConceptBridge ___ 139
6.2.4.2 PropertyBridge ___ 140
6.2.4.3 Inter-relation of instances ___ 144

6.3 Extensional Specification___ 146
6.3.1 Example 6.18 - ConceptBridges with 1:n cardinality _________________________ 147
6.3.2 Analysis of the problem __ 149
6.3.3 Developed approach __ 152

6.3.3.1 ConceptBridge and PropertyBridge __________________________________ 154
6.3.3.2 Semantics of the Extensional Specification arguments____________________ 155
6.3.3.3 Extensional Specification and Description logics________________________ 158

Table Of Contents

xxii

6.3.4 Example 6.24 - Extensional specification annotated example __________________ 158

6.4 Constraints upon target instances __ 163
6.4.1 Analysis of the problem __ 163
6.4.2 Developed solution ___ 165
6.4.3 Example 6.27 - Cardinality annotated example _____________________________ 167

6.5 Conclusions___ 169

Chapter 7 Multi-Dimensional Service-Oriented Architecture_______________________ 173

7.1 Observations __ 174
7.1.1 The gap between similarity measuring and semantic bridging __________________ 174
7.1.2 Cooperative consensus building __ 175
7.1.3 Evolution ___ 176
7.1.4 Synthesis ___ 177

7.2 Proposal ___ 177

7.3 Automatic Semantic Bridging ___ 179
7.3.1 Observations __ 179
7.3.2 Hypothesis __ 179
7.3.3 Specification___ 180

7.3.3.1 Matchers and Matches__ 180
7.3.3.2 Cluster and Clustering __ 182

7.3.4 Reducing combinatorial space by Service-based clustering ____________________ 184
7.3.4.1 Example 7.10 – Service-based clustering annotated example _______________ 187

7.3.4.1.1 CopyInstance__ 189
7.3.4.1.2 CopyRelation__ 189
7.3.4.1.3 CopyAttribute ___ 189
7.3.4.1.4 CountProperties ___ 190
7.3.4.1.5 Split ___ 190
7.3.4.1.6 Concatenation ___ 191
7.3.4.1.7 Example overview __ 191

7.3.4.2 Service interface conforming vs. non-conforming matches ________________ 191
7.3.4.3 CopyInstance specificity __ 192
7.3.4.4 Outlook of the method ___ 193

7.3.5 Improving Services judgment capabilities _________________________________ 194
7.3.5.1 Proposed approach __ 194
7.3.5.2 Outlook of the proposed approach __________________________________ 196

Multi-Dimensional Service-Oriented Ontology Mapping

xxiii

7.3.6 Automatic definition of the ontology mapping document_____________________ 197
7.3.6.1 Definition of ConceptBridges ______________________________________ 197
7.3.6.2 Definition of ≺ -relationships ______________________________________ 198
7.3.6.3 Definition of PropertyBridges ______________________________________ 198
7.3.6.4 Definition of ◊ -relationships ______________________________________ 200
7.3.6.5 Definition of AlternativeBridges ____________________________________ 202
7.3.6.6 Outlook of the automatic definition of the ontology mapping document _____ 202

7.3.7 Outlook of the automatic bridging process________________________________ 203

7.4 Summary ___ 204

Chapter 8 Development and Experiences_______________________________________ 207

8.1 Development__ 207
8.1.1 Ontology and Knowledge Base manipulation ______________________________ 208
8.1.2 Semantic bridging___ 210
8.1.3 Execution engine ___ 211

8.1.3.1 Tree-based query__ 212
8.1.3.2 Filtering___ 212
8.1.3.3 Transformation engine ___ 214
8.1.3.4 Services ___ 217

8.1.4 Graphical User Interface ___ 219
8.1.4.1 Tree-based user interface__ 219
8.1.4.2 Net-based user interface __ 222

8.1.5 Outlook __ 226

8.2 Application experiences__ 226
8.2.1 Harmonise and Harmo-TEN __ 227
8.2.2 Artemis and Satine __ 229
8.2.3 BRIDGE-IT __ 230
8.2.4 Outlook __ 231

8.3 Performance and comparison experiences ____________________________________ 231

8.4 Conclusion ___ 234

Third Part __ 235

Chapter 9 Conclusion ___ 237

9.1 Outlook of the thesis__ 238
9.1.1 Contextualization and motivations ______________________________________ 238

Table Of Contents

xxiv

9.1.2 Theoretical research ___ 239
9.1.3 Development and experiences ___ 241

9.2 Summary of research achievements ___ 242

9.3 Final remarks__ 245

Chapter 10 Ongoing and Future Research ______________________________________ 247

10.1 Combination of Services __ 248

10.2 Abstraction of the extensional specification elements __________________________ 249

10.3 Automatic semantic bridging process_______________________________________ 251

10.4 Graphical user interface___ 251

10.5 Evolution ___ 252

10.6 Common Consensus Building __ 253

10.7 Integration with/in other systems ___ 253

10.8 Development and code re-engineering______________________________________ 254

10.9 Standardization ___ 255

10.10 Experiences and case tests __ 255

10.11 Outlook__ 256

Fourth Part ___ 257

Annex 1 Relational Data Model___ 259
A 1.1 Building blocks __ 260
A 1.2 Relational data model Vs. Ontology data model ___________________________ 262
A 1.3 Translating ontology and knowledge base into relational model _______________ 263

A 1.3.1 Translation of ontology entities into relation schema ____________________ 263
A 1.3.2 Normalizing concept instances _____________________________________ 263
A 1.3.3 Representation of forward and backward Paths in the relation schema_______ 264

A 1.4 Relational algebra __ 264
A 1.5 Complementary operations ___ 268
A 1.6 Outlook ___ 270

Bibliography __ 271

xxv

TABLE OF FIGURES

Figure 2.1 - Five-level multi-database integration architecture ___________________________ 10
Figure 2.2 – Data warehousing five-level architecture _________________________________ 13
Figure 3.1 – UML representation of the previous ontology and knowledge base _____________ 41
Figure 4.1 – MAFRA – MApping FRAmework______________________________________ 48
Figure 4.2 - Figurative representation of the input and output of the Lift sub-process _________ 50
Figure 4.3 – Graph-based similarity measuring scenario________________________________ 53
Figure 4.4 – Similar scenario but providing meaningful entities labels _____________________ 53
Figure 4.5 – Taxonomy of schema matching approaches_______________________________ 55
Figure 5.1 – Informal representation of ontology mapping _____________________________ 70
Figure 5.2 - UML representation of two ontologies ___________________________________ 84
Figure 5.3 - UML representation of SemanticBridge and Service conceptual relation__________ 92
Figure 5.4 – UML representation of the SemanticBridge and Service conceptual relation ______ 93
Figure 5.5 – UML representation of the SBO taxonomy of semantic bridges________________ 95
Figure 5.6 – Path between two structurally different ontologies __________________________ 99
Figure 5.7 – Ontology mapping scenario dealing with inverse properties __________________ 100
Figure 5.8 – UML representation of the SBO relations between SemanticBridges ___________ 105
Figure 5.9 – Hierarchical relations between ConceptBridges ___________________________ 109
Figure 5.10 - Excerpt of Gedcom and Gentology ontologies, represented in UML notation ___ 110

Table Of Figures

xxvi

Figure 6.1 –Simple representation of the execution process____________________________ 118
Figure 6.2 – UML-like representation of ontology mapping scenario_____________________ 120
Figure 6.3 – PropertyBridges representation in UML_________________________________ 122
Figure 6.4 – Schematic representation of the left-join attributes in a forward Step ___________ 126
Figure 6.5 – Schematic representation of left-join attributes in a backward Step ____________ 127
Figure 6.6 – UML representation of ontology ______________________________________ 131
Figure 6.7 – Querying KB through Paths with and without common sub-Paths ____________ 135
Figure 6.8 – ConceptBridges between excerpts of TourinFrance and SIGRT ontologies ______ 139
Figure 6.9 – Several SemanticBridges between TourinFrance and SIGRT ontologies_________ 141
Figure 6.10 – Some instances of the TourinFrance ontology ___________________________ 142

Figure 6.11 – Correlating source and target concept instances through FQ and 2TI ________ 146

Figure 6.12 – Excerpts of SemanticBridges between SIGRT and TourinFrance ontologies ____ 147
Figure 6.13 – Ambiguous correlation process ______________________________________ 149
Figure 6.14 – 1:n Property to Concept semantic relations _____________________________ 150
Figure 6.15 – Excerpt of the SIGRT-TIF mapping scenario ___________________________ 158
Figure 6.16 – Univocal correlation through extensional specification_____________________ 162
Figure 7.1 – Multi-Dimensional Service-Oriented Architecture _________________________ 178
Figure 7.2 – Simple ontology mapping scenario using UML notation ____________________ 181
Figure 7.3 – Service-based clustering for reduce combinatorial space_____________________ 185
Figure 7.4 – Abstract scenario representing an inferred match__________________________ 199
Figure 7.5 – Automatic semantic bridging without exploiting the properties inheritance ______ 201
Figure 7.6 – Automatic semantic bridging when exploiting the properties inheritance ________ 202
Figure 7.7 – MAFRA emphasis on Domain Knowledge & Constraints module relations______ 204
Figure 8.1 – Semantic Web technological layers according to Berners-Lee_________________ 208
Figure 8.2 – UML representation of core classes and interfaces of MAFRA Toolkit _________ 218
Figure 8.3 – Screenshot of the KAON SOEP tree-based interface ______________________ 220
Figure 8.4 – MAFRA Toolkit UI: first tree-based implemented interface__________________ 220
Figure 8.5 – MAFRA Toolkit UI: distinct panels for SemanticBridges and their parameters ___ 221
Figure 8.6 – MAFRA Toolkit UI: net-based representation of entities ____________________ 222
Figure 8.7 – MAFRA Toolkit UI: simultaneous representation of all types of entities ________ 224
Figure 10.1 – Execution order between SemanticBridges______________________________ 248

xxvii

TABLE OF EXAMPLES

Example 2.1 – Web technology without semantic awareness ____________________________ 16
Example 2.2 – KQML performatives: same content but different meaning _________________ 22
Example 3.1 – Hierarchical relation in an ontology ___________________________________ 36
Example 3.2 – Ontology axioms in the form of modeling constructs______________________ 38
Example 3.3 - Concept inference based on axioms ___________________________________ 39
Example 3.4 - Simple ontology and knowledge base __________________________________ 40
Example 4.1 – Normalization without semantic commitment ___________________________ 50
Example 4.2 – Normalization with semantic commitment______________________________ 51
Example 4.3 – Graph-based similarity measuring scenario______________________________ 52
Example 4.4 – Meaning senses of “person” according to Merriam-Webster dictionary ________ 54
Example 4.5 – Inconsistencies between semantic bridges and the target ontology ____________ 64
Example 5.1 – Several transformation functions _____________________________________ 74
Example 5.2 –Inverse functions: concatenation vs. split _______________________________ 75
Example 5.3 – Transformation completeness: loss of information________________________ 76
Example 5.4 – Stuckenschmidt and colleagues semantic relations ________________________ 84
Example 5.5 – OntoMerge Concept to Concept semantic relations _______________________ 86
Example 5.6 – OntoMerge conditional Concept to Concept semantic relations______________ 87
Example 5.7 – OntoMerge Property to Property semantic relations ______________________ 88
Example 5.8 – Definition (instantiation) of a Service __________________________________ 94

Table Of Examples

xxviii

Example 5.9 – Multiple ranges of properties __ 97
Example 5.10 – Path is required between two structurally different ontologies ______________ 98
Example 5.11 – Path representation __ 99
Example 5.12 – Ontology mapping scenario requiring inverse Path______________________ 100
Example 5.13 – Definition of a backward Step _____________________________________ 101
Example 5.14 – Definition of a backward Path _____________________________________ 101
Example 5.15 – Definition of Paths using the simplified notation _______________________ 101
Example 5.16 – Definition of a ConditionExpression ________________________________ 102
Example 5.17 – Generalization of Services parameters _______________________________ 103
Example 5.18 – Definition of Service using Arrays __________________________________ 103
Example 5.19 – AlternativeBridges of ConceptBridges _______________________________ 106
Example 5.20 – Hierarchy of ConceptBridges ______________________________________ 109
Example 5.21 – Semantic bridging annotated example________________________________ 110
Example 5.22 – Characterization of Service according to its inverse Service _______________ 116
Example 6.1 – Execution process of ConceptBridges ________________________________ 120
Example 6.2 – Execution process of PropertyBridges ________________________________ 122
Example 6.3 – Querying a single-Step Path __ 125
Example 6.4 – Left-join operation of a forward Step _________________________________ 126
Example 6.5 – Left-joint operation of a backward Step _______________________________ 127
Example 6.6 – Querying through a multi-Step backward Path __________________________ 129
Example 6.7 – Querying multiple Paths without addressing referential constraint ___________ 129
Example 6.8 – Paths with common sub-Paths ______________________________________ 131
Example 6.9 – Tree-based representation of Paths __________________________________ 132
Example 6.10 – Array-like access to tree-based represented Paths _______________________ 132
Example 6.11 – Multi-dimension array-like access to tree-based represented Paths __________ 133
Example 6.12 – Retrieving distinct Branches of tree-based represented Paths ______________ 133
Example 6.13 - Retrieving the common Path of a tree-based represented Path _____________ 133
Example 6.14 – Querying KB through multiple tree-based represented Paths ______________ 135
Example 6.15 – Useless query generated columns ___________________________________ 135
Example 6.16 – Filtering queries __ 136
Example 6.17 – Execution process annotated example _______________________________ 138
Example 6.18 - ConceptBridges with 1:n cardinality _________________________________ 147
Example 6.19 – Property to Concept semantic relations ______________________________ 149
Example 6.20 – Constrained Property to Concept semantic relations ____________________ 150
Example 6.21 – Fine vs. Coarse grained ontology ___________________________________ 151
Example 6.22 – Different perspective of the same concept instance _____________________ 153
Example 6.23 – Structural interpretation of ConditionExpressions ______________________ 157
Example 6.24 - Extensional specification annotated example___________________________ 158

Multi-Dimensional Service-Oriented Ontology Mapping

xxix

Example 6.25 – Service-dependent cardinality ______________________________________ 163
Example 6.26 – Or-based ambiguous cardinality constraints ___________________________ 166
Example 6.27 - Cardinality annotated example _____________________________________ 167
Example 7.1 - Schematic evolution of ontologies demand SemanticBridges evolution________ 176
Example 7.2 - Semantic evolution of ontologies demand SemanticBridges evolution_________ 176
Example 7.3 – Matchers and the different dimensions of ontologies _____________________ 180
Example 7.4 – Similarity measuring scenario _______________________________________ 181
Example 7.5 – Matches forming a cluster ___ 182
Example 7.6 – MOMIS generated cluster ___ 183
Example 7.7 – Service-Cluster association ___ 184
Example 7.8 – Clustering constrained by the Service cardinality ________________________ 184
Example 7.9 – Clustering constrained by the type of arguments of Service ________________ 184
Example 7.10 – Service-based clustering annotated example ___________________________ 187
Example 7.11 – Improving Services judgment capabilities _____________________________ 195
Example 7.12 – Confirming a cluster according to the Service requirements _______________ 195
Example 7.13 – Dismissing a cluster according to the Service requirements _______________ 196
Example 7.14 – Refining Service requirements _____________________________________ 196
Example 7.15 – Inferring matches between concepts based on PropertyBridges ____________ 199

Example 7.16 – Definition of ◊ -relationships ______________________________________ 200
Example 7.17 – Services commonly used alternatively ________________________________ 202

Example 8.1 – Verification process when ◊ -relating two SemanticBridges ________________ 211
Example 8.2 – RDF definitions of the Equal and Less Operators _______________________ 213
Example 8.3 – Ambiguous appearance of graphical buttons ___________________________ 225
Example A 1.1 - Generic transformation of a knowledge base into relations _______________ 260
Example A 1.2 – Normalization of concept instances ________________________________ 263
Example A 1.3 – Table-based representation of concept instances ______________________ 264
Example A 1.4 – Selection operation___ 265
Example A 1.5 – Projection operation__ 265
Example A 1.6 – Cartesian Product operation ______________________________________ 266
Example A 1.7 – Union operation ___ 266
Example A 1.8 – Difference operation ___ 267
Example A 1.10 – Intersection operation ___ 268
Example A 1.11 – Theta Join operation___ 268
Example A 1.12 – Natural Join operation ___ 269
Example A 1.13 – Left Join operation __ 269

FIRST PART

3

Chapter 1

INTRODUCTION

This chapter describes the technological and socio-organizational contexts in which the work

described in this thesis has started.

1.1 Context

Globalization, social and environmental pressures and technological complexity are some of the

most important evolutionary challenges that socio-organizational systems (e.g. banking, commerce,

manufacturing, education, recreation) and their technological supporting systems, especially the

information and communication systems, are currently facing.

Systems are recommended to combine flexibility and adaptability with agility, information with

knowledge, autonomy with cooperation, reaction with partnership [Silva, 1998]. Knowledge-based

interoperability assumes a central role in the evolution of the systems as it promotes internal agility

and supports faster, better and cheaper implementation of partnerships [Neches et al., 1991].

Accordingly, information-based organizations should evolve to encompass semantics and

Introduction

4

pragmatics into its information models, converting them selves into knowledge-based

organizations.

The first fact motivating the work described in this thesis occurred by the end of 1998 when

developing a specific agent-based system for scheduling assistance to manufacturing. It has been

noticed the incapacity of that system to deal with agents arriving from different information

communities. In fact, the exchange of messages occurring in the system assumed that the content

of messages was always conforming to the specific information model of the information

community. Despite agents prevented misunderstandings in the system by rejecting unknown

information contents, the described situation emphasized the need to overcome information

heterogeneity in an automatic and reliable form. Considering the envisaged features of knowledge

in promoting understanding between autonomous entities, the application and exploitation of

knowledge-based exchange of messages has been suggested thereafter.

In the early stages of this thesis, the main goal has been set to develop and apply knowledge-

oriented reconciliation mechanisms to semi-automatically unify (also referred as merging [Pinto et

al., 1999]) the content of the agent-based system messages [Silva & Rocha, 2002]. While the

development of reconciliation mechanisms remained a valid goal, three important facts motivated

the reassessment of research strategy:

• Unification is not always possible. In fact, unification is possible only in very special

circumstances, namely when the knowledge of an entity completely overlaps the knowledge of

the other entity, and vice-versa. In other circumstances, unification leads to poor integration;

• The technological maturity of reconciliation mechanisms was insufficient to satisfactorily apply

it semi-automatically to very demanding scenarios as manufacturing agent-based systems;

• Reconciliation mechanisms are orthogonal technology for many different research fields and

applications. Database integration, E-business and Semantic Web for example, are

simultaneously relevant application domains and important source of valuable research in the

field.

As consequence, the research evolved from the agent-based systems interoperability scenario to a

more generic scope, in which the research and development of reconciliation mechanisms capable

to cope with information heterogeneity in a larger set of scenarios became the main goal.

Ontology, as an artifact to represent and share characterization of information, is envisaged

[Benjamins et al., 1998; Decker et al., 1999; Fensel, 2001; Fensel et al., 2003; Gruber, 1993a; Klusch,

2001; Studer et al., 1998; Uschold et al., 1998] as the foundation element for this endeavor. Ontology

combines a set of important characteristics that makes it particularly supportive to different

knowledge manipulation tasks such as acquisition, reuse, maintenance, reasoning and exchange.

Multi-Dimensional Service-Oriented Ontology Mapping

5

Ontologies, indeed, arose in recent years as a core mechanism in many different computer science

domains, especially in those where knowledge manipulation and exchange are fundamental

requirements (further details on Ontology can be found in Chapter 3).

The basic idea behind this work suggests that any entity commits its messages content to one or

more non-contradictory ontologies that are shared and interrelated by the interoperability partners

or by an especially dedicated entity. The output of the interrelation process is a set of equivalence

relations between the ontologies of the entities. These equivalences relations are then applied in

transforming the content of the messages from one entity into the content of the messages

understood by another entity. The process of identification, specification and application of

equivalence relations between two ontologies is referred to as Ontology Mapping.

The goal of this thesis is therefore especially focused on researching a semi-automatic ontology

mapping process that would facilitate the knowledge base interoperability between heterogeneous

entities. A set of tools implementing the researched ideas will be developed in order to evaluate

their feasibility and usefulness, especially in the scope of the Semantic Web.

1.2 Thesis organization

This thesis is composed by ten chapters, one annex and the bibliography, grouped into four general

parts:

1. The first part includes Chapter 1 through Chapter 3:

• Chapter 1 describes the context of research and first motivations.

• Chapter 2 extensively presents motivations scenarios in which the ontology mapping

technology is advisable and beneficial. According to the analysis of motivating scenarios, a

systematization of requirements is drawn, serving as reference for the rest of the research.

• Chapter 3 firstly analyzes and characterizes the concept of ontology. Later, a comparison

between ontology and the concept of database schema is presented. Due to the ambiguous

understanding of ontology, a formal model of ontology and respective knowledge base are

presented, which are adopted as the definitive specifications in the scope of this thesis.

2. The second part is concerned with the description of the research work developed during this

thesis, and includes Chapter 4 through Chapter 8:

• Chapter 4 describes the MAFRA - MApping FRAmework, a systematic interpretation of the

overall ontology mapping process, considered the foundational starting point for the rest of

the research and development work in this thesis, and one of the novelties proposed in this

thesis.

• Chapter 5 concerns with the characterization, systematization, specification, definition and

representation of the semantic relations. SBO – Semantic Bridging Ontology is the major

Introduction

6

outcome of this research subject and one of the most important outcomes of this thesis.

SBO is not only the specification of the conceptualization of the semantic bridging domain

of knowledge, but also the representation and exchange mechanism of semantic relations.

• Chapter 6 presents the execution process researched in the scope of this thesis, which

conforms to the SBO. The general-purpose execution process is formally specified based on

several primitive operations from the relational data model, resulting in a very explicit and

very compact description of the process.

• Chapter 7 proposes and presents a specific architecture of the ontology mapping system,

named Multi-dimensional Service-oriented Architecture. In order to test the feasibility and

usefulness of the proposed architecture, a semi-automatic semantic bridging process has

been researched and described in Chapter 7.

• Chapter 8 describes the development efforts concerning the implementation of the MAFRA

Toolkit, a fully functional software application that embodies the theoretical research

proposed in previous chapters. The applications and experiences performed with the

MAFRA Toolkit by third-party projects are described in this chapter.

3. The third part concludes the research and development description:

• Chapter 9 reviews the performed research and achieved results.

• Chapter 10 describes the ongoing research efforts, together with the envisaged future

research.

4. The fourth part includes:

• Annex 1 generically describes the concepts of the relational data model and especially the

relational algebra. This annex may be useful for those reading Chapter 6 that are not familiar

with this model.

• Bibliography presents the bibliography used and referred to in this thesis.

7

Chapter 2

MOTIVATIONS

Managers have perceived the central role the knowledge plays in the capacity of organizations to

compete in current socio-economical context [Benjamins et al., 1998]. Knowledge management

approaches [Wiig, 2000] aiming to promote responsibilities, expertise, innovation, ideas,

participative behavior and social well-being within organizations, are being increasingly adopted.

While these practices are nowadays common in consolidated corporations, a considerable gap still

exists in adopting similar approaches in inter-organizations scenarios. Organizations must extend

the syntax-based information practice, proceeding to the semantics and pragmatics era [Benjamins

et al., 1998], boosting quantity and (especially) quality of the interactions between intervenients.

Ultimately, organizations must adhere and implement knowledge-based interoperability

mechanisms/solutions.

Motivations

8

The “knowledge-based interoperability” expression associates two fundamental characteristics of

interactions:

1. Interoperability, seen as the interaction activity performed by two independent entities to

achieve a certain goal or state;

2. Knowledge, the “justified belief that increases an entity capacity for effective action” [Nonaka &

Takeuchi, 1995].

While information-based interoperability is widespread, knowledge-based interoperability is less

common. The main difference between both approaches resides in the fact that unlike information-

based interoperability, in which only information is exchanged, in knowledge-based interoperability

both the information and its semantics are exchanged between partners. Intervenient entities have

therefore access to the others entities representation of their “understanding” of the information

being exchanged. As such, entities not originally included in certain information community, are

able to reason on the semantics and process the information accordingly. However, because

knowledge is also composed by information, it is natural that knowledge-based interoperability has

something to profit from and provide to the information-interoperability scenarios.

Therefore, the goal of this chapter is to identify scenarios where information and knowledge

integration is a fundamental element in the overall system operation. Four conceptual scenarios

have been identified, from which some patterns are derived concerning the use of ontologies in

knowledge-based interoperability:

• Schema integration;

• Semantic Web;

• Virtual Organizations and E-Commerce;

• Knowledge Management.

Next sections address each of these subjects.

2.1 Schema integration

Schema integration, also referred to as data integration, is the process whereby data is stored in

multiple heterogeneous databases and further provided to consumers through a uniform global

schema [Beneventano et al., 2001; Halevy, 2001; Sheth & Larson, 1990]. Two distinct but

paradigmatic scenarios illustrate the schema integration requirement: database integration and data

warehousing. While sharing a few similar characteristics, a few others contribute to a different

integration process.

Multi-Dimensional Service-Oriented Ontology Mapping

9

2.1.1 Database integration

Database integration is required once multiple database systems (DBS) are required to provide

common uniform view(s) over their data to a user or group of users. Three main dimensions

contribute for the characterisation of the database integration problem [Sheth & Larson, 1990]:

• Distribution, concerning the existence of several location for the different database system

participating in the integration process;

• Heterogeneity, which concerns the differences between database system components.

Differences can be summarized in the data model1, query language, semantics, and database

specific constraints;

• Autonomy, corresponding to the capacity each DBS component has to control its participation

in the integrated system.

Variations on the degree of these dimensions in the database integration process lead to distinct

database configurations. Furthermore, some dimensions induce other dimensions. For example, the

autonomy occurring at design time strongly induces schemas and semantics heterogeneity.

The interface between each DBS component and the rest of the system is supported by several

levels of intermediate schemas that progressively abstract the inner details of each DBS component,

providing increased syntactic, model and semantic uniformity according to each information

community requirements. In distributed, heterogeneous and autonomous DBS, a five-level schema

architecture is suggested2:

• Local schema, corresponding to the conceptual schema of each DBS component;

• Component schema is the representation of the local schema in a common data model (CDM)3;

• External schema represents specific perspectives upon the information community schema,

considering permissions, constraints and application precise needs of a user or group of users;

• Information community schema represents the overall, accepted schema for/by all DBS

components;

• Export schema represents the part of the local schema that is accessible from other DBS.

1 Data model is the set of grammar and vocabulary defined by a data-modeling paradigm, used to represent

the conceptual (i.e. logical) entities and characteristics of the information to be represented in the

database. Examples of data models are the relational data model and object-oriented data model. An

instantiation of a data model is normally referred to as a database schema.
2 While the described perspective concerns the database domain, [Stumme & Maedche, 2001] suggest a

similar architecture for the Semantic Web (see 2.2), where ontologies play the role of schemas.
3 CDM is the expression used to denote the role a data model plays in a modeling process, and not the

name of a specific data model.

Motivations

10

Figure 2.1(based on [Sheth & Larson, 1990]) illustrates this architecture using the UML notation

[UML].

«schema»
Local

«schema»
Component

«schema»
Export

«schema»
External

«schema»
Information
community

«schema»
Export

«schema»
Export

«schema»
Information
community

«schema»
External

«schema»
External

filtering

mappingmapping

filteringfiltering

translation

filtering

mapping

«schema»
Local

«schema»
Component

translation

filtering

mapping

filtering

...

...

...

...

filtering

Figure 2.1 - Five-level multi-database integration architecture

Between each implemented pair of schemas, some kind of processing of data is needed. The labels

in the lines connecting each schema pair (Figure 2.1) correspond to the most typical processes

(operations) on schemas:

• Translation operation employ a source schema (e.g. local schema) specified in a specific data

model in the creation of an equivalent target schema (e.g. component schema) specified

according to another data model. For example, translating an entity-relation schema into a

relational schema;

Multi-Dimensional Service-Oriented Ontology Mapping

11

• Filtering is the operation that creates a target schema (e.g. export schema) from a sub-set of

elements from the source schema (e.g. component schema);

• Mapping is the process that specifies functions between elements from a source schema (e.g.

external schema) and elements of the target schema (e.g. information community schema)

capable to transform data conforming to the source schema into data conforming to the target

schema. Mapping is also the name given to the set of functions resulting from the mapping

process.

While previous processes occur over schemas, complementary processes occur upon data instances,

transforming instances from one schema into instances of another schema. In this sense, the

schema-based processes are classified as meta-processes.

Comment 2.1
Because in certain systems the lower schema of the pair fulfils the requirements endorsed
to the upper schema of the pair, some of the identified layers are not present. In that
case, the lower schema plays both the lower and upper schema roles but no processing is
required.

Additionally, in some systems, databases are also responsible for the uniform storage of
data arriving from multiple entities. In such cases, the processing occurs in both
directions, which implies the specification of inverse equivalence functions when
possible.

Despite the three types of processes described in the previous analysis, this work is particularly

concerned with the mapping process. The translation and filtering processes are addressed during

the rest of the thesis, considering the interdependencies between each and the mapping process.

Accordingly, the rest of the analyses focus on the mapping of external schemas into the

information schema, i.e. the integration of the information community schema.

Usually, every information community schema relates to multiple external schemas and every

external schema may respect to multiple information community schemas. As so, the schemas of

the information communities do not exist a priori, but result from the combination of several

factors and tasks:

• The identification and definition of the elements of the schema required by the community.

Thus, unless new external schema of the DBS component is expected, it is useless to define

elements that do not exists in the external schemas of the DBS component;

• The identification of the elements of each external schema of the DBS component to integrate

in each information community schema in respect to the schema elements of the information

community. Thus, it is useless to mention external elements that are not related in the schema of

the information community;

Motivations

12

• The integration process involves negotiations between the information community and the DBS

component administrators about the semantics of related elements. Sometimes it occurs that the

export schemas of the DBS component are updated to meet the integration needs;

• The specification of equivalence relations between every element of the schema of the

information community and elements of the external schemas of the DBS component.

While the other schema processes can be automated with great success, the schema mapping

process is inherently subjective and strongly depends on the information community administrator

capabilities to develop and promote a common, uniform schema to the community.

Comment 2.2
Schema integration lacks flexibility to deal with very heterogeneous and autonomous
multi-database scenarios [Wache et al., 2001], where information communities are often
restricted to one user or application. In such situations, schema integration is very
expensive, time-consuming and error-prone.

In such situations, virtual view integration is suggested [Halevy, 2001]. Virtual view
integration corresponds to the specification of individual virtual schemas instead of the
information community schemas. Views do not respect a common, negotiated viewpoint
of the information, but a single dynamic way to access information. Two distinct
approaches are possible: over the mediated schema in the local-as-view approach, or over
the sources schemas in the global-as-view approach. However, because of its loosely
coupled nature, view integration is not suited for databases update but to read-only
accesses [Sheth & Larson, 1990].

The evolution and maintenance of the information community schema is a difficult,
restricted and time-consuming process. Accordingly, schema integration is not well suited
for scenarios where the requirements of the information communities change frequently.
Conversely, it better fits the integration of corporate databases than virtual schema
integration, because it provides higher levels of coherency and agreement upon the well-
established semantics of data and of business process.

Though schema integration is not an all-purpose integration solution, it is well
complemented by the view-integration approach. Because the view integration is
technologically very similar to the schema integration process, no substantial changes are
required in the database integration architecture suggested in 2.1.1. However, it is clear
that the responsibilities and administration function are modified, implying changes in the
administration paradigm.

2.1.2 Data warehousing

Data warehousing aims to provide a unique, unified repository of data collected from multiple and

heterogeneous sources, and to create a materialized uniform view of the data to consumers. Figure

2.2 illustrates the architecture of data warehousing systems according to the architecture presented

for database integration in Figure 2.1.

Both approaches share similar data and schema processing tasks, as illustrated by the comparison of

Figure 2.1 and Figure 2.2. However, an important difference is noticed. Unlike database integration

architecture, where multiple information community schemas are envisaged, in data warehousing

Multi-Dimensional Service-Oriented Ontology Mapping

13

architecture, a unique information community schema exists (named data warehouse schema). As

consequence of this particularity, some others characteristics arise and further contribute to the

individuality of data warehousing:

«schema»
Local

«schema»
Component

«schema»
Export

«schema»
External

«schema»
data

warehouse

«schema»
Export

«schema»
Export

«schema»
External

filtering

mapping

filteringfiltering

translation

«schema»
Local

«schema»
Component

translation

filtering

...

...

...

...

filtering

mapping

«schema»
Local

«schema»
Component

«schema»
External

filtering

translation

mapping

Figure 2.2 – Data warehousing five-level architecture

• Centralization of the data from multiple sources. Unlike database integration whose data is

independently distributed over distinct DBS components, data warehousing data is merged in

one single repository. Thus, a duplication of data is made into a repository whose schema is

(most likely) distinct from the information sources schemas. Centralization provides a unique

point of access of all data, even if some of the information sources are unreachable or

overloaded at certain moment. Therefore, data in data warehousing is not necessarily accurate in

respect to information sources;

Motivations

14

• Specialization of the information stored in the repository in comparison to each individual

source. Schemas are modeled to better meet the consumers specific requirements, minimizing

quantity and consequently, minimizing processing time;

• Extended information. Some processing on data can be materialized into information that did

not existed in individual information sources.

• High-performance of the data processing. Three factors contribute to the performance

improvement: (i) specialization of data and schemas minimizing processing time, (ii) extended

information, which corresponds to the anticipation of consumers requests and (iii) due to

centralization of data in one single site, communication delays are minimized.

As observed, the data warehouse integration specific tasks are substantially extended from those

described for database integration. In fact, in addition to the mapping processing, six new

integration tasks are observed in most data warehouse systems:

• Data merging, corresponding to the duplication of data from data sources in the warehouse

repository according to the specific schema;

• Data cleansing, corresponding to the detection of duplicate objects and inconsistencies

(different values for the same concept/attribute). Some commercial tools (e.g. Trillium4) suggest

syntactic, model and semantic transformation as a data cleansing tasks, which correspond to an

aggregation of distinct tasks from the mapping and translation processes;

• Computation of extended information, namely aggregation of data into summaries and creation

of (extra) indexes;

• Data maintenance, corresponding to reload and process (new or updated) data from

information sources. Typically, this process occurs periodically (e.g. per day/week) or is event-

driven (e.g. administration request, special query/analysis);

• Detection and removal of expired data;

• Feedback to information sources respecting errors detected during previous processes (e.g.

inconsistencies, duplicate objects).

Comment 2.3
As for database integration, view-based integration is possible in data warehousing, but
update operations are semantically very sensitive and error-prone. Because data
warehouse is a copy of some data from the information sources, queries and updates
(when allowed) are executed over the data warehouse repository only. If update
operations on information sources are allowed, the system becomes an integrated
database system in which the information community schema is unique.

In fact, the data warehousing approach is not well suited for scenarios where update
operations are required. Yet, some research has been done on data warehousing,

4 http://www.trillium.com/

Multi-Dimensional Service-Oriented Ontology Mapping

15

respecting very evolving information sources. In such case, information sources are
described according to ontologies and not schemas providing extended descriptions of
source repositories [Critchlow et al., 1998].

2.1.3 Data warehousing Vs. Database integration

Data warehousing and distributed database are substantially different. While the first grounds on

the notion of centralization, the second grounds on the notion of distribution and autonomy. Both

have advantages and disadvantages, especially inherent to this dichotomy.

Data warehousing is a specific implementation of database integration by merging of data, specially

developed with data mining and data analysis in mind. However, database integration may profit

from data merging too, especially when the merging of the data corresponds to an equivalent

business merging. In fact, the solution is very common nowadays as consequence of the

increasingly merging events of business corporations.

Database integration architecture typically relies in the use of mediators and wrappers [Wiederhold

& Genesereth, 1995] between information sources and information communities. On the other

hand, data warehousing traditionally make use of its own very specific (executive oriented)

interfaces. Although, as semantic descriptions of information sources are expanded and improved,

increased use of automatic mediators is possible and probable [Critchlow et al., 1998].

In common, both approaches require extensive mapping capabilities between schemas.

2.2 Semantic Web

Besides its huge dimension, WWW is a repository of information oriented to human consumption.

As it enlarges it becomes increasingly difficult to use and exploit it.

The usefulness of the WWW is mainly a function of three factors:

• The capacity of document classification. Traditionally, “search-engines” classify documents

based on their content and metadata. Metadata categories currently employed to characterize

documents are implicit to the document type. For example, a HTML document metadata is

stated through the METADATA tag, while the Portable Document Format (PDF) provides

Subject and Keywords fields. These metadata elements are clearly insufficient, leading to the

necessity to mine documents content for complementary information that could support its

classification. Increasingly competent tools, using multiple complementary techniques like

natural language processing, indexing mechanisms and exploitation of complementary

knowledge bases, perform such task. Besides their enormous success, such techniques have

important drawbacks when dealing with multimedia documents such as video, pictures and

sound. However, independently of extraction mechanisms used, the classification will always

Motivations

16

lack the semantic point-of-view of the information author. Therefore, a considerable amount of

semantic mismatches, or at least ambiguity, is introduced in the classification;

• The capability to match the user query with the classified documents. Because the query process

mainly uses keywords and natural language text, the “search-engine” has to redefine the user

query to meet the “search-engine” requirements. Introducing this redefinition, a new

(subjective) interpretation occurs in the process, promoting further semantic mismatches or

ambiguities;

• The capabilities of the user to process the information. The most common information search

methodology exploit web browsers, which support the query phase and the presentation of

answers in the computer-device GUI. Further information processing is concerned to the user,

which will apply other computer or human-based applications and methods to accomplish

his/her own goals.

In 1999, Berners-Lee [Berners-Lee & Fischetti, 1999] suggested the evolution of WWW, shifting

from a presentation-oriented paradigm to a computer-aided processing paradigm. The basic idea

respects the annotation of the web information with machine-processable description of the

information, enabling software entities to mediate between users needs and the information sources

[Fensel, 2001]. To model, represent and convey the machine-processable description of the

information between information communities ontologies are suggested. Ontologies are made

publicly accessible and sharable, allowing information communities to characterize their documents

according to the ontologies that best fits the intended semantics of the document content.

Conversely, consumers can easily and better match their request against available information.

Further detailed description of the ontology concept is presented in Chapter 3.

Once Semantic Web is composed by a large number of very autonomous, (mostly) read-only

information providers (databases), Semantic Web can be categorised as a loosely coupled database

system [Mitra & Wiederhold, 2001; Popa et al., 2002]. However, current technology is missing the

semantic dimension of the information, thus slowing down its adoption by a larger community.

Example 2.1 – Web technology without semantic awareness
UDDI5 repositories are used to advertise and discover services in the web but they are
not Semantic Web aware. Their use by other services depends on human-coded
procedures to determine interoperability components such as services interfaces.

Different research communities such as database [Mitra & Wiederhold, 2001; Popa et al., 2002],

artificial intelligence [Decker et al., 1999; Doan et al., 2002; Horrocks, 1998; Sintek & Decker, 2002],

knowledge management [Fensel, 2001], E-Business [Fensel, 2001; Sheth & Larson, 1990], agent-

5 Universal Description, Discovery and Integration (www.uddi.org) repositories are used to state the

functionalities and interface of an entity, so other entities can find it.

Multi-Dimensional Service-Oriented Ontology Mapping

17

based systems [Beneventano et al., 2003; Hefflin et al., 2001; Klusch, 2001] and web services [Ding et

al., 2002; Hagel, 2002] are combining efforts and strongly engaged in the Semantic Web vision. In

fact, towards Semantic Web environment and technologies, vast research fields are finding new and

exciting applications, turning Semantic Web into a fusion of visions.

Considering the limitations identified in the context of current WWW, several developments are

therefore necessary in order to promote knowledge interoperability in Semantic Web:

1. Languages and models to represent ontologies, supporting the modelling, representation and

sharing of the semantics of the information in different levels of requirements [Critchlow et al.,

1998; Gruber, 1993b; Pan & Horrocks, 2003] (see, [Silva, 2002b] for an overview on

representation languages for ontologies);

1. Tools to support and promote the annotation of documents according to ontologies [Decker et

al., 1999; Handschuh et al., 2002];

2. Reasoning and inference mechanisms to exploit the knowledge sharing in specific contexts

[Horrocks, 1998; Motik et al., 2003; Ontobroker];

3. Tools to support and promote the derivation, representation, sharing and maintenance of

syntactic and semantic relations between different ontologies [Crubézy & Musen, 2003; Dou et

al., 2003; Dou et al., 2002; Maedche et al., 2002b; Omelayenko, 2002b; Park et al., 1998; Silva &

Rocha, 2003d; Stuckenschmidt & Wache, 2000];

4. Dissemination of both ontologies and reconciliation relations between them;

5. Development and implementation of Semantic Web aware infrastructures (current

implementations lack the semantic dimension).

While some of these requirements are very different from those identified for schema integration,

the fourth requirement is indeed much related to the mapping problem described above.

Accordingly, the process described to the integration of the information community schema in

section 2.1.1 is much valid in this context. However, an important distinction holds between the

schema integration and the Semantic Web ontology based integration. In Semantic Web context,

the mapping process emergently occurs, especially due to the dynamic, open nature of the

environment. Conversely, in the schema integration scenario, users or applications taking part in

the process are typically more stable and inter-related. Therefore, the Semantic Web mapping

process requires even more machine reasoning and decision support.

Notice that, even if this section has focused on the manipulation of information, Semantic Web

goes far beyond this, especially supporting and promoting the subjects of the two following

sections.

Motivations

18

2.3 Virtual Organizations and E-Business

Virtual organization is a management paradigm aiming to promote cooperation and synergies

between autonomous organizations, adopting a cybernetic structure and infrastructure. According

to [Silva, 1998]:

“A Virtual Organization is a temporary web of autonomous, cooperative entities,
collectively responsible for business activities and through which convey goods
and related information.”

Virtual organizations adopt different organizational and technological approaches resulting in

different categorization and degrees. Automation and setup time of the formation, duration of the

partnership, autonomy, level of integration and type of coordination structure are some of these

dimensions. Expressions such extended enterprise, virtual enterprise and supply chain, denotes

these variations [Silva, 1998].

The E-Business paradigm aims to promote electronic business interchanges through the Internet in

an automatically emergent fashion. E-Business expression normally encompasses both the

Business-to-Business (B2B) and Business-To-Customer (B2C) variations. As the denoted by name,

B2B [Fensel, 2001] suggests inter-enterprise businesses, while B2C respects the business interaction

between business organizations and final customers. B2B and B2C services implementations can be

complementarily classified as E-Commerce and E-Business services. E-commerce expression

applies to any selling or buying service over the Internet, such as e-auctions and e-travel services. E-

business expression respects to other type of services such as e-banking, e-learning, health

information; though in some stage most of these services include an E-Commerce operation.

While Virtual Organization and B2B/B2C are related concepts, an important distinction arises

respecting the goal. The Virtual Organization paradigm focuses on the characteristics of the process

to achieve certain goal, which would normally imply the cooperation between multiple autonomous

entities. Conversely, typical B2B and B2C implementations aim to reach a business transaction

between two partners, even if in some stage of the process third party entities are added to the

process to facilitate or accomplish the business process. In common, both have the fact that

multiple, heterogeneous autonomous entities participate in goal-oriented conversations through the

Internet or other electronic communication meaning.

Multi-Dimensional Service-Oriented Ontology Mapping

19

2.3.1 Agent-based Systems

Despite Virtual Organizations (or business interactions) exploit very distinct approaches, one of the

most adopted implementation technology is probably the agent-based paradigm. According to

[Silva & Ramos, 1999]

“An Agent is considered an entity capable to interact with others and its
environment, sensing and changing it, and according to its own and acquired
knowledge, not only react to contextual stimulus but also build and execute action
plans to reach its goals”

Hence, agents are characterized according to multiple dimensions like: autonomy, heterogeneity,

pro-activity, rationality, sociability and knowledge manipulation capabilities. Agents are therefore

well suited to embody the characteristics of Virtual Organization entities.

Notice that agent-based systems and Virtual Organizations are completely different concepts.

However, due to their complementarity and characterization interdependency, next considerations

are based on the premise that agent-based paradigm will be used to implement Virtual

Organizations, and agents stand for and embody the Virtual Organization entities.

Comment 2.4

Agent-based systems are not always knowledge able. Some of them [Bayardo et al., 1997;
Klusch, 2001; Silva, 1998] are only information able, which means the semantic
component of the knowledge is not explicitly stated but is implicitly encoded in the
agents reasoning mechanisms. In such circumstances information is exchanged among
agents, while its meaning is (or it is not) implicitly understood by intervenients.

Knowledge able agents are supposed to cope with the difficulties associated with the knowledge, by

(1) providing a pro-active information resource discovery, (2) resolving information impedance

between consumers and providers, and (3) offering value-added information services and products

[Klusch, 2001; Sycara et al., 1998].

Knowledge manipulation technology in agent-based systems results from the combination of

characteristics of the agent-based concept. Concerning the knowledge interoperability problem, the

following cause-effect considerations arise:

• Because agents are goal-oriented, tasks are distributed among different agents;

• Because agents are autonomous and pro-active entities, the system knowledge is typically

distributed among the agents that more directly influence and/or use it;

• Because agents are autonomous, heterogeneous and rational entities, different

conceptualizations may be adopted in the system;

Motivations

20

• Because agents are socially able, knowledge exchange technology capable to promote and

support high-level conversations is needed [Cohen & Levesque, 1995];

• Because agents are potentially heterogeneous, different knowledge representation and exchange

technology can be also used.

While this systematization does not intend to be complete or universal, it is sufficiently broader but

respects the current problem requirements.

2.3.2 Web services

Web services technology is a very promising technology to support Virtual Organizations and E-

Business integration. According to [Hagel, 2002]:

“Web services are business and consumer applications, delivered over the Internet
that users can select and combine through almost any device from personal
computers to mobile phones.”

Web services are one of the web newest trends, sharing a close and mutual relation with Semantic

Web. On the one hand, Semantic Web requires web services to become a reality, and on the other

hand, these services make use of the Semantic Web infrastructure and related technology to its

implementation [Ding et al., 2002]. Semantic web representation languages (see [Silva, 2002a]) are

used not only to represent ontologies but also for the representation of protocols for access web

services (e.g. SOAP6), description of web services (e.g. WSDL7).

Web services are closely related to Virtual Organizations and E-Business in respecting their

implementation [Global Exchange Services, 2003]. Web services are in deed envisaged as on of the

most promising technology to support inter-organizations interoperability, exploiting the Semantic

Web infrastructure and technology, leading E-Business to unprecedented levels. The above-

mentioned technologies for description of protocols, characteristics and repositories, provide the

basics to automate conversations between disparate service-based computers. Typically, four

dimensions contribute for the characterization of web services:

• Service complexity, respecting to the required message and products transactions, protocols,

type and number of involved entities. Normally, Virtual Organization and B2B services are

much more complex then B2C services;

6 Simple Object Access Protocol, http://www.w3.org/TR/SOAP/
7 Web Service Description Language, http://www.w3.org/TR/wsdl

Multi-Dimensional Service-Oriented Ontology Mapping

21

• Security, respecting the messages, values and products transactions. Typically, in order to

promote security, mediation entities are involved in transactions, which increase the complexity

of the service;

• Negotiation between business entities. Unlike business to customer relations, business to

business interactions normally includes discussion and negotiation of very different conditions;

• Information integration between business entities. B2C services do not require integration

between business and customer systems, due to both the nature of the interoperability (normally

one time or seldom interoperability) and because final customers systems are not typically

prepared or with processing and decision capabilities. Instead, B2B services, and especially

Virtual Organization, require extensive integration automation to support reliability, accuracy

and speed of the process.

2.3.3 Virtual organization and E-Business requirements

Accordingly, in the context of the agent-based systems, and consequently in the adoption of agent-

based systems and/in Virtual Organizations, the following knowledge manipulation technologies

are deemed necessary:

1. Technology to acquire, represent and exchange semantics of;

1.1 The organizations (web services or agents) information;

1.2 The messages exchanged between organizations;

2. Technology to support heterogeneous syntactic-level interactions, namely translating between

different notations;

3. Technology to support heterogeneous paradigm-level interactions, namely translating between

different data models;

4. Technology to support heterogeneous semantic-level interactions, namely:

4.1 Supporting and promoting common consensus about knowledge between entities/agents;

4.2 Mapping messages and their content between different knowledge specifications;

5. Workflow approaches capable to automate the formation of cooperative entities network

through the exploitation of the semantic description of entities. While workflow approaches are

a long-time studied problem, the application of the semantic descriptions of the web services

imposes new challenges.0.

These requirements are clearly similar to those identified for Semantic Web and schema integration

scenarios. However, the semantics of the messages are an original element in this scenario.

Messages exchanged between interoperability partners are core elements in the conversation

protocols, since they carry the meaning and the intended action or attitude upon their contents

[Cohen & Levesque, 1995], i.e. the agent (or web service) processing of the information is

Motivations

22

dependent on the protocol (the set and the allowed order of the messages), the message (the

intended action or attitude) and its content (the information about which the message express an

action or attitude).

Example 2.2 – KQML performatives: same content but different meaning
In the following two KQML8 messages (performatives), the same information content is
differently processed and understood:
(stream-all

:sender agent1
:receiver agent2
:language Prolog
:ontology Travel
:content "Hotel(”Pousada”,”4*”,”Gerês-Portugal”)")

(tell
:sender agent1
:receiver agent2
:in-reply-to id1
:language Prolog
:ontology Travel
:content "Hotel(”Pousada”,”4*”,”Gerês-Portugal”)")

Through the first message, agent1 asks agent2 for all Hotels with the specified
characteristics. The second message is used by agent1 to inform agent2 that a Hotel with
the specified characteristics exists.

An eventual semantic clash occurs when certain message is strange in an agent protocol,
but a mapping is possible between both agents protocol. For instance, consider that the
first message is unknown to agent2. Thus, a mapping between conversations
performatives would eventually map between the stream-all message and the ask-all
message. Despite the performatives indicate different actions, in some circumstances they
can be used interchangeably.

Accordingly, a mapping processing is necessary upon messages, similar to that occurring upon

agents (web service) knowledge.

2.4 Knowledge management

Knowledge management (KM) is an interdisciplinary9 business model aiming to exploit knowledge

towards competitive advantages in business [Wiig, 2000], by sharing expertise, experiences, ideas

and responsibilities, by promoting innovation, participative behavior and social well-being within

organizations. Knowledge, as understood in the scope of KM is available in all kind of enterprise

documents, interactions and activities (e.g. textbooks, multimedia documents, heuristics, skills) even

if it is not physically represented.

The technological facet of knowledge management aims to provide methods and technology for:

8 Knowledge Query Manipulation Language is used to exchange information messages in agents-based

systems.
9 http://www.krii.com/downloads/Four_KM_Facets.pdf

Multi-Dimensional Service-Oriented Ontology Mapping

23

• Acquiring, mining and collecting knowledge from all the imaginable sources of information

[Benjamins et al., 1998; Fensel, 2001];

• Structuring, organizing and indexing knowledge in order to use it efficiently [Benjamins et al.,

1998];

• Maintaining knowledge source [Benjamins et al., 1998; Fensel, 2001];

• Distributing and querying knowledge sources [Benjamins et al., 1998; Fensel, 2001].

One of the most important goals of knowledge management technology is indeed the integration of

different sources into a meaningful and useful knowledge base (KB).

Two fundamental observations further arise from the analysis of this scenario:

• KBs are accessed and updated by diverse intelligent entities in the organization. Such entities

work on different departments, have different interests, and process the same information in

different ways. Hence, different conceptualizations are present in the enterprise. Nowadays,

ontologies are one of the most common ways to express conceptualizations;

• WWW, both intranet and internet, is the biggest source of information in the world. However, it

is composed by unstructured, incoherent, ambiguous and fuzzy classified documents (see 2.2).

From previous observations, the combination of WWW and ontologies naturally arises, denoting

the relevance of Semantic Web initiative to the KM scenario. In fact, Semantic Web and knowledge

management initiatives are currently very close and interrelated [Fensel, 2001; Fensel et al., 2003].

On one hand, Semantic Web provides the technology and support for knowledge representation

and sharing, and on the other, knowledge management provides proof-based approaches and

techniques for acquisition, mining, organization, indexing, querying and distribution of information.

Conversely, knowledge management is a great application scenario for the Semantic Web ideas and

technology.

Therefore, requirements identified for Semantic Web are in general, also pertinent and valid for

KM. Moreover, notice that even respecting the need for fast and accurate information, both

approaches are very similar. In fact, even if some Semantic Web applications such as information

retrieval require short response time, there are other (e.g. E-Business) in which the accuracy is

instead very important, thus, neglecting the response time.

2.5 Outlook

This chapter described four distinct scenarios where ontology mapping is envisaged. The main

conclusion arising from this chapter concerns the importance of mapping between data sources for

many different problems regarding information integration. In particular, mapping manipulation

technology requires the specification of syntax, schematic and semantic relations between distinct

Motivations

24

knowledge specifications and their further application in the transformation of data between data

repositories. Therefore, it is possible to distinguish and systematize between two fundamental

distinct phases in the mapping process: the specification and the transformation phases.

2.5.1 Mapping specification phase

In the mapping specification phase, syntactic schematic and semantic relations are specified

between the information models. Two distinct types of operations are necessary:

• Off-line specification. This type of operation occurs when an (eventually) long integration phase

is plausible, and a high level of accuracy of the output is necessary. Conversely, the automation

and duration of the process are disregard. Integration and merging of organizations and

integration of health-care information are specific application scenarios where off-line

specification is required;

• On-line specification. This type of mapping specification occurs when two mutually unknown

entities require a rather fast interoperability context. Instead, accuracy of the output is

disregarded. The ability to (semi-) automatically map between different information models,

discovery and alignment of (web) services are of primordial importance to the success of truly

dynamic and autonomous cybernetic business. Information retrieval is a typical application

scenario where the speed of the interoperability is preponderant over the accuracy.

Certain application scenarios will use both the on-line and off-line operations modes depending on

the specific situation. That is the case of Virtual Organization, E-Business and E-Commerce.

2.5.2 Mapping transformation phase

In the mapping transformation phase, data from repositories is transformed according to the

mapping specification. Two distinct types of operations are necessary:

• Pull transformation, or batch transformation, occurs when an (eventually) large repository is to

be periodically transformed. Data migration, data merging, data warehouse clean & transform

and data model evolution are specific technologies where this approach is necessary;

• Push transformation occurs when a small, limited set of data is to be transformed upon

(random) requests. E-business, E-Commerce and information retrieval are envisaged application

scenarios for push transformation approach.

The mapping transformation phase is often combined with a translation process, which translates

data between different representations languages and data models.

Multi-Dimensional Service-Oriented Ontology Mapping

25

2.5.3 Human intervention

Semantic heterogeneity is the main problem arising in this context, which is above all a

consequence of human-based modeling decisions [Sheth & Larson, 1990; Studer et al., 1998].

Ontologies and specially schemas do not carry enough semantics to provide sufficient, correct and

impartial reasoning (see 3.2 for a comparison between ontology and schema). Despite incremental

extended semantics provided, interpretation of schemas and ontologies is yet an inherently

subjective process [Guarino, 1994; Madhavan et al., 2001], constraining application and usefulness

of completely automatic mapping processes [Sheth & Larson, 1990]. As consequence, humans play

a fundamental role in the process, by detecting, correcting or disambiguating semantic

heterogeneities. Instead of neglecting or even reject human being from the process, his presence is

considered fundamental.

2.5.4 Common consensus building

However, the participation of human being in the process is not a sufficient condition to avoid

semantic clashes between intervenients. In fact, as happens in humans’ societies, interoperability

often requires a more or less long setup stage (e.g. to determine the language of conversation or

accomplish a memorandum of understanding).

In fact, a common characteristic to all scenarios is the need to build consensus between the

intervenient entities respecting the mapping specification. The resulting mapping will connect two

autonomous entities, which will share knowledge according to such mapping. The existence of a

consensus upon knowledge mapping is not a sufficient condition, but at least a necessary condition

to the success of interoperability.

2.5.5 Evolution

Repositories and their descriptions tend to evolve in order to meet new requirements, solve

problems, and increase performance. As information sources evolve, interoperability process needs

to evolve too. Adapting the semantic relations according to the information sources evolution is

like the initial specification, a human-oriented task too, and eventually even more time consuming

and error-prone.

2.5.6 Semantic Web importance

Semantic web is emerging as a fundamental environment and infrastructure for many different

applications. Nowadays, traditional IT domains (e.g. database domain), are converging their

technological solutions to those suggested in context of the Semantic Web. Accordingly, it is

Motivations

26

recommended that the ideas, proposals and technology arising from this work be aware of

Semantic Web research and proposed technology.

2.5.7 Summary of requirements

Based on the systematization of this section, it is now possible to clearly enumerate the

technological requirements of mentioned scenarios:

1. Identification, specification and representation of syntactic, schematic and semantic relations

between distinct information;

2. Transformation of information exchanged among intervenients according to the specified

syntactic, schematic and semantic relations;

3. Negotiation capabilities to reach consensus;

4. Maintenance of the syntactic, schematic and semantic relations;

5. Integration but minimization of the human-being intervention in the mapping process, which

suggests the adoption of a semi-automatic, human-supervised ontology mapping system;

6. Semantic web awareness.

27

Chapter 3

ONTOLOGY

To automate the knowledge-based interoperability, entities are requested to characterize and share

their perception of the domain of discourse. Ontologies are envisaged as a convenient concept to

support acquisition, representation and exchange of knowledge characterization. Despite no

universally accepted definition of the term Ontology exists, two main point-of-views are clearly

distinct: ontology as the philosophical discipline and ontology as the knowledge engineering artifact.

As philosophical discipline defined by Aristotle, Ontology analyzes the nature and organization of

reality, “all the species of being qua being and the attributes which belong to it qua being” (Aristotle,

Metaphysics, IV, 1). This perspective is not significant for this work and therefore it is no longer

analyzed.

Instead, the understanding upon ontology in the context of knowledge engineering is very

important for this work. The most cited definition of ontology has been suggested by Gruber in

1993 [Gruber, 1993a] as “an explicit specification of a conceptualization”. Later in 1998, Studer and

colleagues [Studer et al., 1998] extended this definition to “Ontology is a formal, explicit

Ontology

28

specification of a shared conceptualization”. “Formal” refers to the fact that the ontology should be

machine-readable, excluding therefore the natural language based ontologies. ‘Shared’ reflects the

notion that ontology captures consensual knowledge, which means that it is not private to some

individual, but accepted by a group, referred as information community. “Specification” assumes an

embodied existence using a specific construction artifact like an ontology representation language

or natural language. It is said “explicit” because ontology entities are clearly distinguished and

interrelated. It refers to a “conceptualization” in the sense that it refers to an abstract, cognitive

model of some domain, which identifies the domain concepts and their characteristics.

However, according to Guarino and Giaretta [Guarino & Giaretta, 1995], ontology is a “logical

theory which gives an explicit, partial account of a conceptualization”. This interpretation relies on

the notion of ontological theory, referred as “a set of formulas intended to be always true according

to a certain conceptualization”. This perspective additionally states that:

1. Ontologies are special kinds of knowledge bases;

2. Any ontology has its underlying conceptualization;

3. The same conceptualization may underlie different ontologies;

4. Two different knowledge bases may commit to the same ontology.

Combining previous three convincing perspectives, the following definition has been drawn:

“Ontology is a formal, partial and explicit specification of a shared
conceptualization.”

However, besides the fact that previous ontology definition include multiple features required in

this context, the definition is extremely vague, allowing multiple interpretations and

implementations. Thus, a deeper analysis of ontology is necessary, addressing both conceptual and

implementation-dependent characteristics.

3.1 Characterization of ontologies

Since no common definition of ontology exists, it is natural that no consensus exists concerning the

characterization of ontology too. However, analysis and synthesis of literature allows the

identification of some characterization patterns that provide a basic framework for their

characterization.

3.1.1 Generality

Generality is the quality or state of being general. The more generic the ontology is the more

entities might understand the characterization of the elements of the universe it describes.

Specificity is the inverse dimension: the more specific the ontology is, less entities accept or commit

Multi-Dimensional Service-Oriented Ontology Mapping

29

to that characterization. This dimension is particularly related to the reusability feature of the

ontology.

Guarino [Guarino, 1997a] identifies four types of ontologies according to generality:

1. Top ontologies, which describe extremely generic concepts such space, time [Santos & Staab,

2003], events and roles, independent of domain or application. CYC10, Pangloss11 and

Mikrokosmos12; are some examples of top ontologies;

2. Domain ontologies describe specific elements of specific domain of discourse like health,

electronics and planning [Planserve, 2003]. This type of ontologies specializes or make use of

concepts defined in top ontologies;

3. Task ontologies describe conceptual elements related to generic tasks or actions, such as quality

control, maintenance, planning and scheduling. These ontologies specialize or make use of

elements defined in top ontologies;

4. Application ontologies recur to the combination of both domain and task ontologies to describe

specific elements and tasks of a domain. Elements in top ontologies can also be used in case the

application ontologies extend application and task ontologies.

Towards the characterization of Problem Solving Methods (PSM), Studer and colleagues [Studer et

al., 1998] suggest the categorization of ontologies as:

• Generic ontologies, corresponding to the top categorization of ontologies;

• Domain ontologies, corresponding to the aggregation of domain and task categories of Guarino.

The Enterprise Ontology [Uschold et al., 1998] and TOVE [Fox & Gruninger, 1997] in the

domain of the enterprise modeling are two examples of this development approach;

• Application ontologies, corresponding to the application category of Guarino

• Representation ontologies, which correspond to models upon which the other categories can be

modeled and represented (in [Silva, 2002a] a characterization of different ontology

representation models is provided).

3.1.2 Granularity

Granularity dimension respects the capacity of conceptualization at different levels of abstraction

[Uschold & Jasper, 1999; Studer et al., 1998], or the level of detail or precision [Uschold & Jasper,

10 Lenat, D. B., Guha, R. V.; “Building Large Knowledge-Based Systems: Representation and Inference in

the Cyc Project”; Addison- Wesley Publishing Company, Inc.; CA, EUA; 1990.
11 Knight, K. and Luk, S.; “Building a Large Knowledge Base for Machine Translation”; in Proceedings of

American Association of Artificial Intelligence Conference (AAAI-94); Seattle, WA, EUA; 1994.
12 Mahesh, K.; “Ontology Development for Machine Translation: Ideology and Methodology”; New

Mexico State University, Computing Research Laboratory MCCS-96-292; 1996.

Ontology

30

1999] in which the universe of discourse is modeled. Granularity is classified as thin (fine) or coarse.

The coarse grain ontologies are less detailed (and more abstract) than fine grain ontologies, and

vice-versa. Coarse grain ontologies are normally developed with the specialization approach in

mind: coarse (abstract) grain elements are further specialized into finer grain (detailed) elements.

Granularity is particularly aware of the type of the application. Guarino [Guarino, 1997b] identifies

two distinct opposite types:

• On-line ontology is a coarse grain ontology applicable in scenarios in which accuracy of the

systems is disregarded instead of the responsiveness and usability of the system;

• Off-line ontology is fine grain ontology, applicable in scenarios where high-level accuracy is

required. Fine grain ontologies typically require more computational efforts than coarse grain

ontologies.

3.1.3 Formality

Formality is the ontology characteristic that measures the conformity to conventional rules,

preventing interpretation ambiguities. Accordingly, formal ontologies are particularly suited in high-

level accuracy and machine-based scenarios. This dimension is partially inherited from the ontology

representation language. In fact, the formality of the ontology is constrained by the representation

technology but the modeling and development phases may induce ambiguities too.

Though many formality-based classification exist [Studer et al., 1998; Uschold & Jasper, 1999;

Stuckenschmidt et al., 2000], according to Uschold and Jasper [Uschold & Jasper, 1999] four types

are clearly distinct:

• Informal ontologies are typically represented through natural language texts and glossaries. This

type of ontology is very useful in knowledge acquisition and negotiation phases, providing the

means so domain experts, and other users, lacking ontological engineering capabilities,

participate and share their viewpoints during the knowledge-based system development process.

Texts and glossaries are very expressive but very ambiguous;

• Structurally informal ontologies are both human and machine readable, but their interpretation

is still very ambiguous. This type of ontologies is very useful in the early stages of the

knowledge-based system modeling. In these phases, it is important to systematize knowledge

and achieve consensus between different perspectives. Structurally informal ontologies such as

taxonomies, provide limited but useful machine-based validation of knowledge in these phases;

• Semi-formal ontologies are the most common type of on-line ontologies since human and

machine processing is possible and the typical computational effort required are limited.

Description logics and frame-based languages are the most common languages used to represent

Multi-Dimensional Service-Oriented Ontology Mapping

31

this type of ontologies. Semi-formal ontologies are fast becoming the most common type of

ontologies, especially because they are very popular in the semantic web;

• Formal ontologies are very powerful representations, providing their formal verification and

univocal utilization. However, the computational effort and time needed to process them are

typically not deterministic. First order logic based languages are commonly used to represent

these ontologies.

Notice that, in many cases, ontologies serve to describe the knowledge-based system knowledge.

Consequently, it is common that less formal ontologies are used towards the specification of more

formal ones.

The previously proposed definition of ontology includes neither the informal nor the structurally

informal ontologies types. This is not a limitation of the definition though, but a mandatory

requirement for the rest of the work: only formal and semi-formal ontologies are considered in the

ontology mapping process.

3.1.4 Roles

This section tries to describe some of the roles ontologies play in knowledge engineering13. This is

not a characteristic of the ontology in itself, but depends foremost on its application. According to

literature [Stuckenschmidt et al., 2000; Studer et al., 1998; Uschold & Jasper, 1999; Gruninger &

Fox, 1995; Uschold et al., 1998] ontology roles can be systematized and synthesized into:

• System modeling artifact. Ontologies provides relevant mechanisms for acquisition, building

consensus, representation and exchange of characteristics of the domain between different

intervenients in the process and supporting, since early stages, the formal specification and

validation of perspectives;

• Interoperability artifact, between persons, enterprises and systems. Through ontologies,

heterogeneous entities are able to share their characterization of their universe, providing the

basic support to the correct and univocal interpretation of exchanged contents.

Depending on the roles ontologies play in the system, different characteristics are observed. Yet,

ontologies are often used in multiple roles. In fact, it is common that (formal) ontologies applied in

representation of knowledge characteristics within systems are used in the interoperability between

systems too.

13 Knowledge engineering is the process of building Knowledge-Based Systems, which in turn are systems

that apply and exploit knowledge about some domain to solve a problem from that domain.

Ontology

32

3.1.5 Miscellaneous characteristics

Several characteristics are less referred in literature but acquire special relevance in the scope of this

work:

• Modularity concerns the separation of the ontological description upon distinct ontologies.

Modular ontologies would provide an interface that is kept unchanged for long time, supporting

dependency relations with other ontologies;

• Dependency concerns the relations between ontologies. Specialization (related to the generality

dimension), extension (expanding the characterized domain of discourse) and referencing (refer

to some element or part of other ontology) are three types of dependency relations. Notice that

normally the dependency relation is unilateral (i.e. only one of the related ontologies is aware of

the dependency). Problems arise when the non-aware ontology is modified in ways that affect

the other ontology. Maintenance and evolution mechanisms are necessary;

• Size of the ontology depends on the modularity and dependencies. On one side, ontology size

must be kept as small as possible, through modularity and dependency relations. On the other

side, dependency problems arise easily in distributed and uncontrolled environments such as

semantic web. A trade-off between size, modularity and dependencies should be carefully

considered.

These are some of the most important characteristics of ontologies. Others, like autonomy,

paradigm/model used and evolution are also very important characteristics, but because they have

been referred during prior descriptions, no further description is considered necessary.

3.2 Ontology Vs. Database schema

One of the greatest controversies arising upon the definition of ontology is related to its distinction

with database schema. Though no extensive debate is intended, a short comparison would be useful

to determine the pertinence of both concepts in scope of mapping processing requirements.

In database context, schema is a “formal architecture for a database”14 or “the organization or

structure for a database”15. In the XML user community, “schema is a model for describing the

structure of information”16.

Accordingly, schemas are concerned with the organization and structure of data, while ontologies

are concerned with the identification and specification of the meaning of the data. Schema objects

14 http://mediagods.com/glossary/What_is_a_schema.html
15 http://iroi.seu.edu.cn/books/ee_dic/whatis/schema.htm
16 http://www.xml.com/pub/a/1999/07/schemas/whatis.html

Multi-Dimensional Service-Oriented Ontology Mapping

33

are the logical structures that directly refer to the database data, such as tables, views, hierarchy of

concepts, sequences, stored procedures, synonyms, indexes, clusters, and database links17. Instead,

ontologies elements capture the meaning of the data in a way that multiple heterogeneous entities

can reason and simultaneously understand the subjacent data and its relations with the world

entities.

Several other characteristics contribute to distinguish between both concepts, but most of them are

not conceptual characteristics but implementation dependent.

A typical, pragmatic manner to relate both concepts is to understand ontology as an extension of a

schema, in the sense that both organize and structure data, but ontologies (and their representation

languages) are envisaged as more powerful in representing semantics than database schemas.

Semantics specification suggests the use of axioms capable to constrain and describe knowledge

(e.g. inverse, equivalent, transitive properties, quantifiers, Description Logic-based constraints).

However, schemas definition languages (SDL) rarely support semantic axioms. Still, two

observations arise:

• On one hand, an increasingly number of (schema) data models provides semantic axioms;

• On the other hand, semantic axioms normally found on (implemented) ontologies are not very

expressive and can be found in schemas too.

A very powerful mechanism available in some of the most recent ontology representation languages

is the capability to modularize and define dependencies between ontologies. Behind this mechanism

is a very simple idea: a web of semantic descriptions of the world(s) that can be increasingly

extended, refined and interrelated (see 3.1.5). This web of ontologies would increasingly form a

foundation for automatic interrelation and reasoning upon knowledge.

This modeling approach can be found in most of the semantic web oriented ontology

representation languages, such as OWL, DAML, OIL, DAML+OIL and RDFS18. Instead, this

modeling approach is not very common in SDL’s and even less commonly used in schema

implementations.

Moreover, most of the ontology representation languages in the context of semantic web adopt an

object-oriented modeling approach, promoting the notion of taxonomy (hierarchy) of concepts.

While the hierarchical model has been extensively used in modeling databases two decades ago, the

object-oriented database management systems are becoming increasingly popular and reliable.

17 http://members.tripod.com/mdameryk/OrclOverview.htm
18 See [Silva, 2002a] for a brief characterization and comparison between these and other representation

languages.

Ontology

34

A lexical layer is also commonly referred as a distinctive characteristic. Normally a lexical

characterization of ontology elements (synonyms, different languages, antonyms, homonyms,

holonyms, etc.) is suggested. However, this layer is not mandatory, and evidences show that its

presence on ontologies heavily depends on the intended roles and implementation. Further, most

of the database development paradigms and DBMS promote this layer through artifacts such as

data dictionaries and association of metadata.

3.2.1 Overview of informal characteristics

Two conclusions arise from previous debate:

• Conceptual perspective shows that ontology and schema are completely different concepts:

schema is concerned with structure and organization of data, while ontology is concerned with

the description and meaning of the data;

• Implementation reality shows that ontologies and (database) schemas are often very similar, and

differences arise mostly as a question of degree.

According to the last perspective, Table 3.1 presents a tabled comparison between ontology and

schema. The first part of the table synthesizes the differences just presented, while the second part

distinguishes both terms according to the dimensions identified in 3.1. Complementarily, some

facts are also included, such as data models and representation and manipulation languages.

Table 3.1 – Comparison between Ontology and Schema

Characteristics Ontology Schema
Data types Not mandatory Mandatory
Structure Present Present
Lexical layer Suggested Not mandatory
Semantic axioms Suggested Uncommon

Axioms expressivity Extended logic based constraints Poor [Sheth & Larson,
1990]: Cardinality

Model OO, Property-centric, Frame-based,
Description Logics

Relational, OO, ER,
Hierarchical

Representation languages OWL, DAML+OIL, RDFS, XOL SQL, XML Schema, DTD
Query languages RDF Query, RQL, KIF SQL, CODASYL, XQuery
Generality Depends on implementation Depends on implementation
Granularity Depends on implementation Depends on implementation
Formality Formal or semi-formal Formal or semi-formal
Role Modeling and interoperability Modeling
Modularity Very common Common
Dependency Very common Uncommon

Multi-Dimensional Service-Oriented Ontology Mapping

35

Due to the implementation-based evaluation, previous comparison has limited usefulness. In order

to achieve the goals of this comparison, some assumptions are necessary respecting the ontology

and schema characteristics.

Rather than absolutely quantify envisaged characteristics, a relative qualification is suggested

respecting the requirements identified in 2.5.7. For each requirement, both the conceptual and most

common characteristics of implemented artifacts are considered, thus resulting in a subjective

qualification. Table 3.2 synthesizes the qualification.

Table 3.2 – Ontology and schema abilities to support the requirements

Requirements Ontology Schema
1. Identification, specification, representation and maintenance of

relations between distinct information sources

1.1 Syntactic relations + +
1.2 Schematic relations + +
1.3 Semantic relations + -

2. Features supporting the negotiation to reach consensus + -
3. Transformation of information exchanged among intervenients

according to the specified relations

3.1 Syntactic relations + +
3.2 Schematic relations + +
3.3 Semantic relations + -

4. Maintenance of the relations
4.1 Syntactic relations + +
4.2 Schematic relations + +
4.3 Semantic relations + -

5. Integration but minimization of the human intervention in the
mapping process + -

6. Semantic Web-awareness + +

As a conclusion, even if both concepts convey similar elements, it is perceived that ontologies

better fulfill and support the identified requirements (2.5.7). In particular, the automation of the

process will strongly benefice from the extensive availability of semantically rich ontologies.

Finally, even if ontology and database schema may share some characteristics, they are conceptually

different and therefore require distinct development models.

3.3 Formal Definition of Ontology

According to previous description, it is now possible and advisable to introduce a formal, definition

of ontology, or in other words, define an ontology model.

Ontology

36

In context of this thesis, ontology comprehends three distinct layers:

• The schematic (or structural) layer, which specifies domain and/or application entities, their

inter-relations (e.g. subclass of) and properties;

• The lexical layer that characterizes entities and their properties with natural language lexicons,

giving them a real-word meaning (e.g. XPTO entity corresponds to real world entity Person or

Individual);

• The axiomatic layer, which constrains the interpretation and application of entities through

axioms or rules (e.g. parents of an instance of Person are instances of Person).

From these observations, an adaptation of the Motik and colleagues formal definition of ontology

[Motik et al., 2003] is adopted.

3.3.1 Schematic layer

Schematically, ontology is a tuple in the form of:

(): , _ , ,is a σ=O C P

where:

• C is the set whose elements are called concepts (or classes) defined by the domain expert;

• _is a is the partial order on C representing the hierarchical relation between concepts, which is

commonly referred as “subclass of” relation:

_is a ⊆ ×C C

_is a is a reflexive, transitive and anti-symmetric relation, which is normally represented

extensionally, either as:

• A binary relation in the form of 2 1_Concept is a Concept ;

• A set of ordered pairs in the form of ()2 1,Concept Concept ;

• A binary predicate (truth-valued function) in the form of ()2 1_ ,is a Concept Concept .

Example 3.1 – Hierarchical relation in an ontology
The hierarchical relation “Student is subclass of Person” over the set of concepts
{ }, ,Student Person Car , are defined either as (i) (){ }1_ ,is a Student Person= , (ii)

Student is a Person or (iii) () ,is a Student Person

Two complementary functions are available, providing access to the relative roles of concept in

the relation:

• subConceptOf : 2→ CC gives the set of concepts the concept is sub-concept of;

• superConceptOf : 2→ CC gives the set of concepts the concept is super-concept of.

Multi-Dimensional Service-Oriented Ontology Mapping

37

• P is the set whose elements are called properties;

• σ is a function which assigns to every property their domain and range concepts:

{ }() { }() { }(): 2 \ 2 \Literalσ ∪→ ∅ × ∅CCP  19

This function is normally represented extensionally, as referred for the _is a relation. Two

complementary functions are available:

• { }domain : 2 \→ ∅CP gives the set of domain concepts of the property;

• { }{ }range : 2 \Literal∪→ ∅CP gives the set of range concepts of the property.

Furthermore, properties are further characterized according to their range:

• The property is said to be an Attribute, when ()rangep Literal p∀ ∈ ∈P ;

• The property is said to be a Relation, when (), rangep c c p∀ ∈ ∃ ∈ ∈P C . The set of all

relations of an ontology is referred by R .

Despite it is not explicitly referred in the ontology definition, ontology entities are the elements of

the domain of discourse, and are therefore the union of Concepts, Properties and Literal:

{ }: Literal= ∪ ∪EC P

Accordingly, it is very easy to make a parallelism between the structural elements of ontology model

and the relational data model (see Annex 1). In particular, the σ function structures elements such

as the relations data model relations (tables), in which the domain concept is the name of the table

and the range is the name of the attribute of the table.

3.3.2 Lexical layer

Usually, ontology entities names are meaningful, i.e. their name corresponds, in some natural

language, to the represented concept or property. However, it also occurs that either by decision or

by necessity, names are meaningless (also referred as opaque). A middle term occurs though, i.e. the

names are meaningful but not enough to be used either by human-being or machines. In such

cases, it is possible to associate lexical elements to the ontology entities, promoting the

comprehension to humans and machines. Such lexical entities are typically real-world lexicons, and

are associated with ontologies entities through the lexical layer of the ontology.

19 Literal is the specific ontology representation language concept, responsible for encoding instances of

primitive types, such as strings and numbers. Instances of type Literal are also referred as constants.

Ontology

38

The lexical layer of an ontology is formally defined by a tuple in the form of:

{ }: , , ,α α= C P C PL L L

where:

• CL and PL are sets of entities named lexical entries, that correspond to real-word terms for the

concept and properties respectively;

• α C and αP are the relations that associate lexical entries with concept and properties

respectively.

While these relations are generically equivalent to the linguistic synonym relation, other relations

might be defined, such as localization relations, capable to associate lexicons of different languages

(e.g. Portuguese, English, and German). However, during this thesis such requirement will not be

used and therefore is no longer described.

Accordingly, the formal definition of ontology becomes:

(): , _ , , ,is a σ=O C P L

3.3.3 Axiomatic layer

Conceptually, the axiomatic layer is a set of ontology axioms expressed in an appropriated logical

language (e.g. first order logic). Alternatively though, the ontology representation language may

define specific modeling constructs to substitute the typically wide expressivity of logical languages.

Due to their well-established nomenclature and semantics, these modeling constructs are widely

understandable and accepted, motivating its application instead of general-purpose logical

statements. Property constraints like transitivity, inversion and cardinality are some of the most

commonly provided constraints.

Example 3.2 – Ontology axioms in the form of modeling constructs

Consider the following relations as examples of axiom modeling constructs:

• MaxCardinality, which determines the maximum number of instances of a property. It
is represented as a relations in the form of:

:MaxCardinality +→P `

• InverseRelation, which defines that two relations are mutually inverse. For instance,
the “is parent of” relation is inverse of “is son of” relation. The InverseRelation axiom
might be defined as the relation:

:InverseRelation →R R

Multi-Dimensional Service-Oriented Ontology Mapping

39

Besides these, in the context of semantic web, DAML, DAML+OIL and OWL ontology

representation languages adopted other types of axioms derived from the Description Logic (DL)

approach of modeling, serving as inference rules20.

Example 3.3 - Concept inference based on axioms
Consider the following very simple ontology:

()
{ }

{ }
{ }

{ }{ }

1 1 1 1 1

1

1

1

1

, _ , ,

_

_

_ ,

is a

Person

is a

has gender

has gender Person Literal

σ

σ

=

=

=

=

=

O C P

C

P

One can additionally specify the class Woman according to the Person class:

()_ , . "feminine"is a Woman Person Person gender⇔ ==

The following inference rule is automatically derived from previous definition by the
logical reasoner:

() ()instanceOf . "feminine" instanceOf Womanx Person x gender x∀ ∈ == ⇒ ∈

Therefore, it is possible to infer that any instance of Person whose gender is “feminine”,
might also be (or is better) categorized as Woman.

Ontology definition becomes therefore a tuple in the form of:

(): , _ , , , ,is a σ=O C P L A

In nowadays ontologies, the axiomatic layer is often absent. This is often due to the ontology

representation language but also to modeling decisions.

3.3.4 Formal definition of Knowledge Base

In scope of this work, Knowledge Base (KB) is an instantiated ontology, also known as populated

ontology [Kalfoglou & Schorlemmer, 2003]. Knowledge base is formally defined as the tuple:

(): , , ,inst inst=KB O I C P

where:

• O is an ontology;

• I is a set of elements called instances (or objects), corresponding to the instantiation

of { }Literal∪C ;

20 Inference rules are applied to both (i) describe ontological entities based on previously defined ontological

entities and (ii) determine what additional facts can be implied if other facts are known.

Ontology

40

• instC is the function that associates ontology concepts with the set of respective instances:

: 2inst → IC C

()inst C I=C is equivalent to ()C I .

• instP is the relation that associates pairs of instances through ontology properties (referred as

property instance), corresponding to a relationship between the two concept instances:

: 2 2inst → ×I IP P

() ()1 2,inst P I I=P is equivalent to ()1 2,P I I .

Accordingly, an ontology instance is any data element represented according to (and coherent with)

the domain ontology.

3.3.5 Example 3.4 - Simple ontology and knowledge base

The following definition corresponds to the specification of an ontology and knowledge base:

()
()
{ }
{ }
{ }

() ()
()

1 1 1 1 1

1 1 1 1 1 1 1

1

1

1

1

, , ,

, _ , , , ,

,

_

, ,

, , , ,

, ,

inst inst

is a

Researcher Institution

is a

hasName researchesIn inCity

hasName Researcher Literal hasName Institution Literal

researchesIn Researcher Institution

in

σ

σ

=

=

=

=

=

=

KB O I C P

O C P L A

C

P

()

() () () ()

1 2 3 4
1

1 2 3 4

1

,

, , , ,"Nuno Silva","João Rocha","GECAD-ISEP",
"WIM-FZI","Porto","Karlsruhe"

, , , ,

"Nuno Silv

City Institution Literal

i i i i

Researcher i Researcher i Institution i Institution i

Literal
inst

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

=

I

C
() ()
() ()
() ()
() ()
()

1 2

3 4
1

a" , "João Rocha" ,

"FZI-WIM" , "GECAD-ISEP" ,

"Porto" , "Karlsruhe" ,

,"João Rocha" , ,"Nuno Silva" ,

,"GECAD-ISEP" , ,"WIM-F

Literal

Literal Literal

Literal Literal

hasName i hasName i

hasName i hasName i
inst

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

=P
()

() () ()
() ()

1 3 2 3 2 4

3 4

ZI" ,

, , , , , ,

,"Porto" , ,"Karlsruhe"

researchesIn i i researchesIn i i researchesIn i i

inCity i inCity i

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

Multi-Dimensional Service-Oriented Ontology Mapping

41

Using the UML notation, the previous knowledge base is represented according to Figure 3.1:

-hasName
O1:Researcher

-hasName
-inCity

O1:Institution

1 1..*

researchesIn

hasName = "João Rocha"
i1 : O1:Researcher

hasName = "Nuno Silva"
i2 : O1:Researcher

hasName = "GECAD-ISEP"
inCity = "Porto"

i3 : O1:Institution

hasName = "WIM-FZI"
inCity = "Karlsruhe"

i4 : O1:Institution

researchesIn

researchesIn

researchesIn

Figure 3.1 – UML representation of the previous ontology and knowledge base

Concerning the lexical layer of the ontology, one might defined it as:

{ }
{ }
{ }
() (){ }
() (){ }

1 1 1 1 1

1

1

1

1

, , ,

" "," "

" "," "

" ", , " ",

" ", , " ",

member research group

name memberOf

member Researcher research group Institution

name hasName memberOf researchesIn

α α

α

α

=

=

=

=

=

C P C P

C

P

C

P

L L L

L

L

Concerning the axiomatic layer definition, in case { }1 1 employs= ∪P P and

(){ }1 1 ,employs Institution Researcherσ σ= ∪ , one might define the following ontology axioms:

() (){ }1 ,1 , ,MaxCardinality hasName InverseRelation researchesIn employs=A

According to the last axiom it is possible to infer the following properties instances, which were not

present in the previous knowledge base:

() () (){ }3 1 3 2 4 2, , , , ,inferredinst employs i i employs i i employs i i=P

3.4 Summary

This chapter presented, described and analyzed the concept of ontology. Although the provided

characterization focuses on the use of ontology in the knowledge engineering field, no universal

definition exists. Yet, considering the pragmatic use of ontologies envisaged in the scope of this

thesis, a particular definition is presented.

However, even if the introduced specific definition is too generic to be used in context of this

thesis, it motivated the comparison of ontology with the concept of database schema. Later, as last

step through the univocal interpretation of ontology artifact, an ontology model has been defined.

SECOND PART

45

Chapter 4

ONTOLOGY MAPPING FRAMEWORK

This chapter describes the MAFRA – MApping FRAmework. MAFRA has been specified in the

scope of this thesis, and first introduced in [Maedche et al., 2002b], and further characterized and

proposed to other communities in [Maedche et al., 2002a; Silva & Rocha, 2003a].

MAFRA has been developed with three goals in mind:

• The analysis and systematization of the ontology mapping process according to the motivational

scenarios and the requirements derived in Chapter 2;

• Create a framework for the classification of projects, approaches and technology related with

the ontology mapping process. In early stages of the study, several problems have been faced to

determine the scope and pertinence of distinct research works to this thesis, specially due to the

multiple, ambiguous and incoherent terminology used in the domain;

• Develop a state-of-the-art description of the ontology mapping research field, as a foundation

for further efforts.

Ontology Mapping Framework

46

MAFRA is the first attempt ever made to describe the overall ontology mapping process. No

literature has found concerning any of the goals just enumerated.

4.1 Quality vectors

Before any attempt to described and analyze the ontology mapping process, it is important to

define some quality vectors. Combining previously mentioned requirements (2.5.7) with the

empirical and common sense knowledge assets, seven quality vectors have been derived [Silva &

Rocha, 2003a]:

1. Applicability, which concerns with the type of mapping relations that are supported by the

system;

2. Semantic Expressivity, which concerns with the capacity of the system to explicitly express the

semantic relations;

3. Automation, which concerns with the support the ontology mapping system is able to provide

to the human being;

4. Modularization, which concerns with the system characteristic to be build upon the combination

of small, simple modules into a more complex whole;

5. Reutilization of components, which concerns with the exploitation and application of

knowledge created from previous ontology mapping experiences and its recycling when

obsolete;

6. Declarativity, which concerns with the capabilities of the system to supply conditions so the

domain expert focuses on the semantics (what to) instead of the syntax (how-to). Maximizing

declarativity, will improve quality and productivity, while minimizing software development and

customization mistakes and therefore costs;

7. Semantic web awareness, in special respecting its distributed, ever-evolving and incomplete

nature (of both ontologies and instances), together with the application and exploitation of

proposed ideas and technology.

While not corresponding to “research goals”, the expression “quality vectors” captures and reflects

the endeavor towards better ontology mapping solutions. Therefore, these vectors should be

maximized during this research work.

4.2 MAFRA Overview

The distributed nature of Semantic Web entails significant degrees of information redundancy,

incoherence and constant evolution, thus changing the nature of the ontology mapping problem.

MAFRA provides an approach and conceptual framework that provides a generic view of the

overall distributed mapping process. It organizes the requirements resulted from Chapter 2 into a

Multi-Dimensional Service-Oriented Ontology Mapping

47

coherent, useful representation of the ontology mapping process. Those requirements can be

divided into two categories:

• Operation requirements:

• Identification, specification and representation of syntactic, schematic and semantic relations

between distinct ontologies;

• Transformation of information exchanged among intervenients according to the specified

syntactic, schematic and semantic relations;

• Complementary operation requirements:

• Tools to support the negotiation capabilities to reach consensus;

• Tools to support the maintenance of the syntactic, schematic and semantic relations;

• Tools that integrate (but minimize) the human-being intervention in the mapping process;

Semantic web awareness, the sixth requirement identified in 2.5.7, is not understood as a

foundational requirement, but as an implementation-level issue.

The previous categorization is centered in the objects being manipulated, while a process is

conceptually concerned with the types of manipulations upon the objects. Therefore, prior

categorization is more useful in this context if refined into:

• Operation requirements:

• Identification of

• Specification of

• Representation of

• Transformation of data according to

syntactic, schematic and semantic relations between

distinct ontologies;

• Complementary operation requirements:

• Negotiation capabilities to reach consensus;

• Maintenance of the syntactic, model and semantic relations;

• Integration

• Minimization
of the human-being intervention in the mapping process.

In addition to prior requirements, two more operational requirements have been identified and

included in MAFRA:

• Translation of ontologies (or schemas) and respective data to a common model and

nomenclature is necessary because it makes semantics differences between the source and the

target ontology more evident [Bernstein & Rahm, 2001; Sheth & Larson, 1990]. This

requirement has been identified in section 2.1 as a complete distinct process in the five-level

integration architecture. Yet, the MAFRA suggested ontology mapping process does not

contradict that perspective, but proposes their close interrelation. In fact, according to [Sheth &

Ontology Mapping Framework

48

Larson, 1990], the translation process may require not only an automated, rule-driven data

model translation, but also subjective, semantic-driven translation;

• Analysis of the resulting transformation instances aims to detect errors or inconsistencies

between the target repositories and the resulting transformation instances. In particular, two

situations are necessary to address:

• Detection of invalid target instances, namely those not respecting constraints defined in the

target ontology (e.g. “Person must have a positive age”);

• Detection of duplicate instances, which occurs when a target instance seems to be an already

existent target instance. Two situations may then occur: (i) the duplication really exists and

(ii) the duplication do not exists.

According to all previous requirements, the ontology mapping process has been systematized and

concentrated into the MAFRA diagram presented in Figure 4.1.

Lift & Normalization

Similarity Measurement

E
vo

lu
tio

n

Semantic Bridging

Execution

Post-processing

C
oo

pe
ra

tiv
e

C
on

se
ns

us
 B

ui
ld

in
g

D
om

ai
n

K
no

w
le

dg
e

&
 C

on
st

ra
in

ts

G
ra

ph
ic

al
 U

se
r I

nt
er

fa
ce

Figure 4.1 – MAFRA – MApping FRAmework

The framework follows the categorization previously made, clearly separating the operation

requirements from the complementary operation requirements.

Multi-Dimensional Service-Oriented Ontology Mapping

49

MAFRA diagram is therefore organized according to two dimensions:

• The horizontal dimension, is concerned with the operation requirements, representing the

ontology mapping process;

• The vertical dimension, is concerned with the complementary operation requirements,

representing and providing crucial functionalities along the entire ontology mapping process,

even if do not belonging to the core process.

The two next sections describe respectively the horizontal and vertical dimensions. Each section

describes the conceptual goals and participation in the ontology mapping process of each module21,

along with the respective state-of-the-art. The third next section describes the interrelation between

modules and the flow of the ontology mapping process.

4.3 Horizontal Dimension of MAFRA

The horizontal dimension of MAFRA respects the process core operations.

4.3.1 Lift & Normalization

This module corresponds to the translation requirement identified previously. Besides the

translation process goals, addressed by the Lift part of this module, the Normalization part aims to

homogenize ontologies contents in respect to their lexical layers.

4.3.1.1 Lift

The Lift sub-process is responsible for the unification of data model and representation language of

the ontologies. Even if some important knowledge is neglected from original representations, this

step allows the process to focus on ontologies contents rather than the form [Bernstein & Rahm,

2001; Omelayenko & Fensel, 2001; Stuckenschmidt & Wache, 2000]. This unification respects three

types of translation operations (Figure 4.2):

• The translation of the ontologies schema, defined according to a specific data model, into an

ontology whose schema respects the common data model;

• The translation of the ontologies instances represented according to the original ontology

schema into the new ontology schema;

• The translation of the ontologies and respective instances from the original representation

syntax (language) into the common representation language (CRL). The fact an ontology

respects the CDM does not mean it is represented in the CRL (e.g. RDFS, OIL, DAML and

21 The components of a framework are referred as modules. Moreover, because the framework also

represents the ontology mapping process (the process), modules are also referred as sub-processes.

Ontology Mapping Framework

50

OWL ground to the same data model but they use different syntaxes), and therefore this

translation must be considered in the process.

Source
instancesCDM/CRL

Source Ontology
CDM/CRL

Target Ontology

Source
Schema/
Ontology

Target
Schema/
Ontology

Target
instances

Source
Instances

Target
Instances

Lift

rest of the process

DBDB
according to according to

according to according to

Figure 4.2 - Figurative representation of the input and output of the Lift sub-process

Notice that the resulting target instances are initially represented according to the CDM and CRL

target ontology, thus the translation occurs in the opposite direction.

Schema translation is a well studied problem both in the database [Atzeni & Torlone, 1995; Sheth

& Larson, 1990] and ontology [Chalupsky, 2000; Fodor et al., 2002; Omelayenko, 2002b; XSLT]

research communities.

One of the most common technical approach to operationalize this process in distributed

environments is the use of wrappers (responsible for the syntax translation), and mediators

(responsible for data model translation) [Wiederhold & Genesereth, 1995].

4.3.1.2 Normalization

The Normalization sub-process is responsible for the lexical normalization of ontologies contents.

It aims to get both ontologies the most lexically similar as possible, providing that no semantic

commitment occurs.

Example 4.1 – Normalization without semantic commitment
Ontology O1 defines concept “id” and ontology O2 defines concept “identification”.
Apparently, no semantic commitment is performed if ontologies are unified to either “id”
or “identification”.

Multi-Dimensional Service-Oriented Ontology Mapping

51

Example 4.2 – Normalization with semantic commitment
Ontology O1 defines concept “name” and “identification”. Even both concepts meaning
partially overlap, some semantic commitment is necessary to unify them. Thus, no
translation should be done in this phase.

This operation is particularly important for the automatic identification of similarities between

ontologies entities. The more lexically harmonized ontologies are less noise is introduced into the

similarity measuring sub-process.

The most typical normalization operations include, but are not limited to:

• Expansion (or contraction) of:

• Acronyms (e.g. PC Personal Computer, H2O water, e.g. example);

• Abbreviations (e.g. id identification, ex example);

• Tokenization (e.g. PersonalComputer Personal Computer; personal_computer Personal

Computer);

• Letters (de-) capitalization (e.g. PERSON person, person Person).

However, the most important factor of lexical heterogeneity is due to the development of

ontologies in different natural languages (e.g. Portuguese, English). Despite the fact that some

ontology representation languages support multi-language terminology (e.g. RDFS lexical layer

extensions provided by KAON [Motik et al., 2003]), it is not common practice developers associate

multi-language terminology with ontological entities. In such cases, it is necessary to translate the

original terminology into a “common natural language”, which provides the minimal support for

automatic similarity measurement.

However, natural language translation comprises many semantic commitments, which further

improves ambiguity to the next phases of the ontology mapping process. Similar problems may

surge from the other normalization operations too, even if the risk is smaller. As consequence,

normalization sub-process must be carefully analyzed and developed much semantically

independent as possible, even if this implies its smaller role in the mapping process.

Each of these normalization operations is a complex, independent and orthogonal problem to

many domains and research communities [Guarino, 1997a; Kahn & Hovy, 1997; Resnik, 1999; Silva

& Rocha, 2002]. These communities deal with these problems for long (e.g. Natural Language

Processing), and many methods and tools have been developed, which may be useful to the

normalization sub-process. Additionally, specific knowledge bases (e.g. glossaries) upon the

ontologies domain of discourse are helpful in supporting the sub-process. These knowledge bases

and operational generic tools are found in the “domain-knowledge & constraints” module.

Ontology Mapping Framework

52

4.3.2 Similarity Measuring

The Similarity Measurement phase aims to discover and measure similarities between source

ontology entities and target ontology entities. The task associated with this sub-process is also

known as matching [Bernstein & Rahm, 2001; Doan et al., 2002; Madhavan et al., 2001; Milo &

Zohar, 1998; Noy & Musen, 2001; Rahm & Bernstein, 2001].

The similarities measures derived in this sub-process will be applied on the Semantic Bridging sub-

process by explicitly grouping entities and stating the relation holding them. Similarities are stated

by domain expert or automatically discovered by computer-based systems. However, it is

commonly accepted that this task is intrinsically and inherently subjective [Guarino, 1994;

Madhavan et al., 2001; Noy & Musen, 2000; Sheth & Larson, 1990] and therefore no complete

solution can be expected from a completely automatic process.

In the databases scope, yet valid in the context of ontologies, Sheth and Larson [Sheth & Larson,

1990] claim that “one reason why a completely automatic schema integration process (particularly

for discovering attribute relationships) is not possible is because it would require that all of the

semantics of the schema be completely specified. This is not possible because, among other

reasons, (1) the current semantic (or other) data models are unable to capture a real-world state

completely, (2) it will be necessary to capture much more information than is typically captured in a

schema, and (3) there can be multiple views and interpretations of a real-world state; and the

interpretations change with time. Convent [1986] formally argues that integrating relational schemas

is undecidable.”

This sub-process aims to measure similarities between ontological entities the more semantically

accurate as possible.

Data model elements such as _is a (subclass of) and σ (interrelation between classes) are primarily

used to derive similarity, specially recurring to graph-based analysis. The _is a and the σ relations

form graphs that can be analyzed to derive similarity. However, these elements provide insufficient

semantics [Bergamaschi et al., 1999; Madhavan et al., 2001], since similar graphs can exist with no or

small semantics in common.

Example 4.3 – Graph-based similarity measuring scenario
Consider the scenario of Figure 4.3 where the schemas of two simple ontologies are
represented in UML. Because both ontologies are very similar in their graph
representation and interpretation, the graph-based similarity would reach 100%.

Multi-Dimensional Service-Oriented Ontology Mapping

53

O1:Class6

O1:Class5

O1:Class1

O2:Class8

O2:Class2

O2:Class7

O1:Class4 O2:Class3

Association2
Association3

Association1

Association4

Figure 4.3 – Graph-based similarity measuring scenario

However, it often occurs that terms associated with the ontological entities are very similar, very

different or make no sense, allowing critical similarity conclusions. If the previous ontologies

scenario is refined in order to include entities meaningful labels, other conclusion would naturally

arise (Figure 4.4).

O1:Man

O1:Person

O1:Female

O2:Engine

O2:Car_parts

O2:Tires

O1:Marriage O2:Car

O1:spouseIn
O1:spouseIn

O2:partIn

O2:partIn

Figure 4.4 – Similar scenario but providing meaningful entities labels

Besides its pertinence, graph-based similarity is indeed insufficient to derive accurate similarities

between two ontologies entities.

When available, the lexical layer of ontologies supports extended similarity measuring potentialities.

Lexical terminology has the ability to relate ontology entities with real-world object, through

independent knowledge bases, such as natural language dictionaries, thesaurus and other lexical

structures like WordNet [Miller et al., 1990]. These knowledge bases capture the meaning senses

Ontology Mapping Framework

54

associated with lexical terms in common real-world contexts and, in some of them, extra relations

connect the terms, providing extra semantics to reason upon (e.g. hyponyms, meronyms).

However, the identified knowledge bases capture the semantics in very generic and multiple

domains of discourse, constraining the accuracy of the similarity.

Example 4.4 – Meaning senses of “person” according to Merriam-Webster
dictionary

When querying Merriam-Webster Online dictionary [Webster] for the English lexical
term “person”, seven distinct possibilities are returned:

1. HUMAN, INDIVIDUAL -- sometimes used in combination especially by those who
prefer to avoid man in compounds applicable to both sexes <chairperson>
<spokesperson>;

2. a character or part in or as if in a play: GUISE;

3. (a): one of the three modes of being in the Trinitarian Godhead as understood by
Christians; (b): the unitary personality of Christ that unites the divine and human
natures;

4. archaic: bodily appearance; (b): the body of a human being; also: the body and
clothing <unlawful search of the person>;

5. the personality of a human being: SELF;

6. one (as a human being, a partnership, or a corporation) that is recognized by law as
the subject of rights and duties;

7. reference of a segment of discourse to the speaker, to one spoken to, or to one
spoken of as indicated by means of certain pronouns or in many languages by verb
inflection.

This kind of answer is ambiguous. On one side, the increased number of possibilities increases the

matching chances. One the other side, as consequence of the previous, even poorly semantically

related ontologies entities turn out to be some how related.

Word Sense Disambiguation (WSD) is a very active research area aiming to determining the correct

sense of the lexical term in a specific context [Dionísio et al., 2001; Resnik, 1999], which can be of

great help in this process. However, most of the WSD approaches deal with word-sense, hand

made, classified corpora22, which in turn suggests its subjective and limited nature, in both extension

and coverage, constraining the quality of the similarity measures [Mitra & Wiederhold, 2001].

Other approaches, such as analysis of attribute types and cardinalities of concepts properties are

also used. In [Rahm & Bernstein, 2001] authors suggest a taxonomy for the classification of schema

matching approaches, i.e., the approaches applied in deriving matches between schema entities. The

22 “A collection or body of knowledge or evidence; especially: a collection of recorded utterances used as a

basis for the descriptive analysis of a language” in [Webster].

Multi-Dimensional Service-Oriented Ontology Mapping

55

taxonomy presented in Figure 4.5 is the adaptation of their taxonomy to the ontology entities

similarity measuring.

Similarity Measuring Approaches

Individual matchers

Schema-basedInstance/contents-
based

Combining matchers

HybridComposite

Structure-
levelElement-level Automatic

composition
Element-

levelElement-level

Axiom-
based

Constraint-
based

Constraint-
based

Constraint-
basedLinguistic

- Name
- Synonyms, etc.
- Description
- Namespaces

- Type
- Key

properties

- Graph
matching

- IR techniques
- word freq.
- key terms

Lexical-
based

- Relation’s
constraints

- Inference
rules

Figure 4.5 – Taxonomy of schema matching approaches

The presented taxonomy differs from the original [Rahm & Bernstein, 2001] in two ways:

• Lexical-based approaches have been clearly distinguished from the schema-based approaches.

This is due to the fact that, typically, additional and more complex lexical terminology is

available in ontologies than in schemas. Therefore, new lexically-based similarity evaluation

approaches should be considered;

• Axiomatic-based approaches are introduced, in order to explicitly exploit the axiomatic layer of

ontologies (refer to 3.3.3).

Some recent research work focused in exploiting elements typically absent from schemas but

typically present in ontologies, such extra lexical descriptions (especially used in information

retrieval) and axioms (which is insipient due to the lack of axiomatic layers in ontologies). However,

partially arising from the Semantic Web initiatives, most of the efforts have also focused on the

analysis of instances as source of knowledge. Probabilistic [Doan et al., 2002], statistical [Kang &

Naughton, 2003], machine learning [Doan et al., 2001] and clustering [Beneventano et al., 2001] are

some of the most relevant strategies used to evaluate similarity between ontology instances.

Ontology Mapping Framework

56

However, no individual approach, nor a combination of any of the individual approaches, is

sufficiently good for every situation. In particular, two limitations are noticed:

• Only some are capable to determine n:1 matches [Madhavan et al., 2001; Mitra et al., 1999] and

none is capable to determine 1:n matches;

• None is capable to determine or suggest the transformation to occur between the entities.

4.3.3 Semantic Bridging

The Semantic Bridging phase establishes expressions correlating a set of source ontology entities

with a set of target ontology entities through a transformation function. These expressions are

named “Semantic Bridges”, as they permit to overcome semantic heterogeneity between

information repositories. The set of semantic bridges between two ontologies is named Ontology

Mapping Document.

This sub-process has three types of inputs:

• The set of similarities calculated in the similarity measurement sub-process, which help

determine which source ontology entities are semantically related to which target ontology

entities;

• The transformation functions available in the system, which constrain the semantic bridges to

establish between ontologies entities;

• Execution and post-processing sub-processes error reports:

• Execution will report (i) the duplicate transformation of the same instance, and (ii) the

insufficiency of instances to transform;

• Post-processing will report the existence of multiple (different, complementary and/or

overlapping) instances for the same real-world object in the target repository.

The semantic bridging sub-process is characterized according to three dimensions: (i) Automation,

(ii) Specification methods and (iii) Representation language.

4.3.3.1 Automation

The automation dimension concerns the ability of the system to propose semantic bridges between

ontologies entities according to the previous inputs. As mentioned during the early chapters of this

thesis, no complete automation of the process is possible and therefore human intervention upon

the proposals is envisaged.

If a manual approach is considered, the similarity-measuring phase is not mandatory, once the

domain expert implicitly establishes the matches when specifying the semantic bridges. Yet, if

automatic support is applied, the domain expert can exploit the similarity measures that

Multi-Dimensional Service-Oriented Ontology Mapping

57

automatically arise, limiting the search space. In an automatic process, the similarities measures

resulting from prior phase are essential, especially to:

• Determining which source ontology entities are to be grouped together and bridged to which

target ontology entities. It can happen that the similarities resulting from previous phase already

group entities into semantically related entities, but this is not mandatory and even not suggested

in some situations. In fact, the grouping tasks is conceptually associated with the semantic

bridging phase and not with the similarity measurement phase;

• Determining the transformation function to apply between the set of source and target ontology

entities in each group of related entities;

• Associating each ontology entity to the correct parameter of the transformation function.

Several projects based on manual approaches have been proposed in recent years [Dou et al., 2002;

Madhavan et al., 2002; Park et al., 1998; Stuckenschmidt & Wache, 2000], but no automatic

approaches are currently available, except the one developed in the scope of this thesis and

presented in 7.3. In case of manual operation, the problem of semantic bridging is limited to the

specification method and representation language.

4.3.3.2 Specification methods

This dimension concerns with the characteristics of the methods used to specify the semantic

bridges. According to Park and colleagues [Park et al., 1998], there are three type of mappings:

• Implicit mappings are those, which for (at least) one of the intervenient systems is adapted to

meet the other(s) intervenient systems information requirements. This type of mapping requires

systems to change their perspective (or at least their representation) of the domain of

knowledge, which is not always possible or beneficial. In some aspects, implicit ontology

mapping and ontology merging process are very similar, particularly because in both cases

systems are mutually changed to meet the other system characteristics;

• Procedural mappings, which are defined using transformation code encompassing the logic

necessary to transform instances between repositories. This type of mapping focus on the

operation necessary to transform the instances (how-to);

• Declarative mappings are those that are specified through declarative statements that require

interpretation during the Execution sub-process. Declarative mapping focus on the description

of what-to instead of how-to.

In the scope of this thesis only declarative mappings are considered, especially because:

1. Repositories should be kept separated and independent, maintaining their own semantics. This

requirement directly collides with the premises of implicit mappings;

Ontology Mapping Framework

58

2. Procedural mappings are very dependent on the implementation language, which can be a

problem when applied in multiple distinct scenarios, as described in Chapter 2. Instead,

declarative mappings are independent of both the language and the systems platform, since they

rely on an independent interpreter to be executed;

3. Declarative mappings are more explicit and direct, allowing even non-experts to maintain the

mapping document. Maintainability of the ontology mapping document is a fundamental

requirement identified in 2.5.7;

4. Declarative mappings naturally orient human-being participation to semantic decisions instead

of syntactic specifications, which contribute to raise the profile of the human-being

contribution, while minimizing his/her participation in low-profile tasks, has requested in 2.5.7;

5. Conversely to the traditional coding interfaces, graphical user interfaces (GUI) ennoble the

human-being participation. Because GUIs are intrinsically declaratives approaches, the relation

between the (declarative) method and its operationalization through GUI is facilitated. Further

descriptions about the GUI subject are found in 4.4.4.

4.3.3.3 Representation language

The languages to represent the ontology mapping document are directly influenced by the

representation method chosen. Because only declarative methods are considered, language must

conform to this constraint.

As ontology mapping is a very specific problem, generic declarative languages (e.g. Lisp, Prolog)

will require new primitives to meet the ontology mapping requirements, especially respecting the

meta-specification. This has been the solution adopted in [Dou et al., 2002], where a Lisp-like

language named Web-PDDL, a strong typed first-order logic language for web application. Yet,

when conveyed through the web, the ontology mapping document (including the bridging axioms)

is translated into DAML. In [Stuckenschmidt & Wache, 2000], authors suggest the use of a Prolog-

like logic language to specify semantic relations, while in [Stuckenschmidt & Visser, 2000], authors

apply OIL axioms (Ontology Inference Layer) [Fensel et al., 2000] into the FaCT reasoner

[Horrocks, 1998] [Silva, 2002b].

Another alternative is to define an ontology of semantic bridges, which will serve as an ontology

mapping document when instantiated. This is the approach first adopted in Park and colleagues

work [Park et al., 1998], to map between knowledge-bases and problem-solving methods (PSMs)23.

RDFT (RDF Transformations) [Omelayenko, 2002b] and SBO (Semantic Bridging Ontology)

23 Recently, Crubézy and colleagues [87] further adopted the Park and colleagues work to map between

knowledge-bases and PSMs described according to the UPML (Unified Problem-solving Method

development Language) [Fensel et al., 1999].

Multi-Dimensional Service-Oriented Ontology Mapping

59

[Maedche et al., 2002b; Silva & Rocha, 2003a; Silva & Rocha, 2003d], have been recently proposed

in the scope of the Semantic Web.

Furthermore, the language must respond to the ontology mapping system requirements, namely

concerning their capabilities to overcome different types of semantic heterogeneities (refer to 5.2).

Finally, as required in 2.5.7, the representation language must be sensitive to the Semantic Web

environment.

Further details and comparison between SBO, RDFT and other approaches are provided in 5.3.

4.3.3.4 Outlook of Semantic Bridging

The Semantic Bridging sub-process represents one of the most demanding tasks in the overall

process, in which the human-being is highly required and not substitutable. Multiple human-

oriented approaches currently exist, but no automatic approach provides more than simple

equivalence relations between pair of entities derived from the similarities resulted from previous

phase.

By instantiating an ontology of semantic bridges, RDFT, SBO and the approach by Park and

colleagues propose a new semantic bridging approach, in which the semantic bridging ontology

serves both as reasoning mechanism and as ontology mapping representation language.

4.3.4 Execution

The Execution phase24 transforms instances from the source ontology into target ontology

instances by evaluating the ontology mapping document defined in the semantic bridging phase.

The ontology mapping system makes sense only if this phase is completely automatic. Four distinct

dimensions characterize this sub-process: (i) classification process, (ii) transformation process (iii)

entity-driving execution and (iv) operation mode. These dimensions are further analyzed in next

sections.

4.3.4.1 Classification process

This dimension refers to the method applied in categorizing instances from the source ontology

into the target ontology.

In many aspects and scenarios, the representation language of semantic bridges and the execution

process are directly and closely dependent.

24 It is also referred as Transformation phase.

Ontology Mapping Framework

60

Traditional declarative languages are normally associated with existent logical reasoners (theorem

provers), such as FaCT (in case of OIL), OntoEngine (in case of WebPDDL) and Protégé (in case

of KIF) or TRIPLE [Sintek & Decker, 2002].

Comment 4.1
Logical reasoners are normally used to check ontologies for consistency and for
computing subclass relations not explicitly contained in the ontology [Horrocks, 1998].
Subclasses are specified according to constraints defined upon subclasses25, which are in
turn explicitly or implicitly defined in the ontology26.

Instances of implicit subclasses (axiom-defined subclasses) may be explicitly stated as
instances of implicit classes, or inferred from their values (intentional view). Refer to
Example 3.3.

This approach has the advantage of allowing both data-driven and query-driven transformation,

which represents an immediate solution to the source and target instance-oriented transformation

(described in next section).

While the use of general logical reasoners is an immediate and practical solution in systems already

familiar with the technology, it has normally performance limitations. Depending on the ontology

and knowledge-bases representation languages, equivalent solutions are available through query

languages27 such as SQL (relational databases), OQL (object-oriented databases) [Cattel et al., 2000],

XQuery (for XML documents) [XQuery], or RQL (its implementation in Sesame [Broekstra et al.,

2002; Karvounarakis et al., 2002]) (for RDFS schemas). Because of the Semantic Web awareness,

SQL and OQL are not directly relevant in this context. Besides related to the WWW, XQuery is

also inappropriate in the scope of this work because it does not abstract enough from the tree-

structure of the XML document in order to address the ontology model [Broekstra et al., 2002].

As functional languages, previous RDFS query languages provide the result of a query over an RDF

document as an RDF document again, which can be further and incrementally queried. Unlike

logical reasoners, query languages perform satisfactorily and scale well. Currently, no ontology

mapping projects using ontology query languages are known.

25 This type of constraint has been referred in 4.3.2 as inference rules.
26 The specification cycle ends when the entity (e.g. class) is defined upon an explicitly defined entity (e.g.

class).
27 Query languages rely on query engines which in turn are implemented either by logical or imperative

languages.

Multi-Dimensional Service-Oriented Ontology Mapping

61

4.3.4.2 Transformation process

The transformation process is related with the operation executed upon source ontology instances

so they become target ontology instances. Concatenation, split, copy and arithmetic functions are

examples of transformation functions.

In the context of the Semantic Web, the XSL Transformation (XSLT) [XSLT] arises naturally as

strong hypothesis to apply in the process. XSLT is a declarative language used to transform a

source XML document into other XML document, which is a very similar task to that at hand.

However, as been referred for the XML Query language, the XSLT does not abstract enough from

the tree-structure of the document. During early phases of this thesis, doubts remained about the

XSLT applicability to the ontology mapping process, but it is now clear that the abstraction

provided by the ontology is of fundamental importance in minimizing the human intervention and

in semantically enriching the ontology mapping document and process. As consequence, XSLT or

schema-oriented transformation language should not be conceptually used.

Through their associated language (e.g. Prolog, Lisp, TRIPLE), logical reasoners also provide some

mechanisms to transform properties instances. Whereas logic reasoners provide extensive and

extensible transformation mechanisms, they are not fully suited for functional transformation.

Similar assumptions are valid for query languages too.

One important observation from the scenarios described in Chapter 2 it is the unpredictable

number and types of transformations required. In fact, heterogeneity between source and target

ontologies is so diverse that it is always possible to find a mapping situation not covered for a

certain set of functions. The same observation is valid for the semantic bridging phase, where the

transformation function is one of the elements to be defined into semantic bridges (see 5.2).

4.3.4.3 Entity-driving execution

This dimension characterizes the execution according to the type of the entity driving the process.

It analyzes the transformation process according to the type and number of entities involved in the

execution process.

Five types of entities driving the execution process are envisaged:

1. Semantic bridge. Because every semantic bridge relates a source ontology concept to a target

ontology concept, each instance of the source ontology concept is transformed according to the

semantic bridge into the target ontology concept instance;

2. Source ontology concept. Because each source ontology concept can be semantically bridged to

multiple target ontology concepts, each source instance can give rise to multiple target instances;

Ontology Mapping Framework

62

3. Target ontology concepts. Because each target ontology concept can be semantically bridged

from multiple source ontology concepts, multiple semantic bridges will be executed over

multiple source ontology concepts, giving rise to multiple target instances;

4. Source ontology instance. Because a source instance belongs to (at least28) one source concept,

and because one source concept might be bridged to multiple target concept, each source

instance can give rise to multiple target instances;

5. Target ontology instances. This type of execution is also referred as a query because some of the

required characteristics of the target instance are specified. When all characteristics of the target

instance are specified, the process aims to determine if exists a source instance that satisfies the

specified requirements. Because a target instance belongs to (at least) one target concept, and

because one target concept might be bridged from multiple source concepts, each query might

take multiple source instances and give rise to multiple target instances.

Table 4.1 resumes previous analysis:

Table 4.1 – Type and number of entity involved in the execution process

Involved entities →

↓ Driving entity
Semantic
Bridges

Source
Concepts

Target
Concept

Source
Instance

Target
Instance

Semantic Bridge 1 1 1 Many Many
Source Concept Many 1 Many Many Many
Target Concept Many Many 1 Many Many
Source Instance Many 1(Many) Many 1 Many
Target Instance (Query) Many Many 1(Many) Many 1

The OntoMerge project supports both source and target instance-oriented execution [Dou et al.,

2003] through the logical inference system OntoEngine. In fact, all logical inference-based systems,

as referred in 4.3.4.1, inherently support these two types of transformations.

4.3.4.4 Operation mode

This dimension corresponds to the moment the mapping execution is performed. Two distinct

modes of operation are envisaged:

• Offline (or static) method corresponds to the execution of the mapping upon a source

repository before the need for the transformed instances. Typically, this method is further

characterized by:

• Scheduled or seldom executions;

• High computational-load concentrated on time.

28 By axiomatic inference, a specific concept instance can be instance of another (implicit) concept.

Multi-Dimensional Service-Oriented Ontology Mapping

63

As consequence of these characteristics, repositories are often unsynchronized. Because

synchronization is not a fundamental issue in data warehousing, it is often applied in such

application scenarios;

• Online (or dynamic) method corresponds to the execution of the mapping as the target

intervenient requires the instances from the source intervenient. This method is further

characterized by:

• Continuous execution;

• Short-time executions;

This is the proper method when synchronization between repositories is required or when

momentary, unscheduled executions are necessary. Federated databases, E-Business and

information retrieval are typical application scenarios for this method.

The other scenarios analyzed in Chapter 2 have different requirements depending on the specific

application.

While the off-line method poses no problem to the system, the on-line approach requires better

communication and synchronization mechanisms, which are not intrinsically supported by logical

inference systems. In [Park et al., 1998] authors claim the pertinence of both offline and online

methods, but no further implementation details are referred, even in consequent descriptions

[Crubézy & Musen, 2003].

4.3.4.5 Outlook of Execution

While the semantic bridging phase is intrinsically subjective, the execution phase is intrinsically

objective and automatic. Most of the research projects in this area are based on logical inference

systems. This execution approach has several advantages, such as the intrinsically ability to execute

both instance and query-oriented transformations. However, this approach has some drawbacks

too, especially concerning with performance and computational loads. Besides, no approaches

based on query languages are currently available, preventing further analysis about the feasibility of

the approach.

4.3.5 Post-processing

Post-processing phase aims to check and increase the quality of the target instances resulting from

the execution phase. Verification is done according to three elements:

• The target ontology, especially because the semantic bridges specification might not completely

respect the target ontology.

Ontology Mapping Framework

64

Example 4.5 – Inconsistencies between semantic bridges and the target ontology
Consider a scenario where the cardinality of O1:Individual.name is not stated, while
O2:Person.has_name is constrained to 1. Imagine that a semantic bridge is stated in a way
that the values of O1:Individual.name are copied to O2:Person.has_name, which specifies
no constrain about the cardinality of the transformation. Thus, a KB such as:

1: (), (,"Nuno"), (,"Silva")1 1 1O Individual i name i name i

will be transformed into:

2: (), _ (,"Nuno"), _ (,"Silva")1 1 1O Person i has name i has name i

which is clearly an ontological mistake.

In fact, semantic bridges might be under-specified or inconsistent with the target
ontology, leading to invalid ontology instances;

• The target knowledge base. One of the most common errors occurring at instance-level respects

object-identity. Object-identity concerns the recognition that in the target knowledge-base:

• Two (or more) distinct instances represent the same (real-world) object. This situation occurs

because of either:

• The same instance exists in both the source and target knowledge base;

• The semantic bridges are under-specified, allowing the creation of false distinct objects;

• Two (or more) similar entities represent two different (real-world) objects. This situation

occurs because:

• These two (or more) false similar instances already existed in the source knowledge base;

• The semantic bridges are under-specified, allowing the creation of false similar objects;

• The semantic bridges. It can happen that semantic bridges precede errors that are detected but

not solved during the execution phase. These errors might not evidence ontological or object-

identity mistakes but conversely some instances might not be transformed as required.

No references are currently known about ontology mapping systems with support for this process.

However, independent research exists in this field. The conceptual work of Guarino and Welty

[Guarino & Welty, 2000] on metamodeling, in which identity, unity, rigidity, and dependence

metamodeling primitives are studied, provide a good conceptual background for this problem.

Complementary, extensive work on Verification and Validation (V&V) of knowledge and database

systems [Coenen et al., 1999] is a good starting point for a pragmatic solution to these problems.

Yet, some of the problems previously identified are much dependent on the semantic bridging and

execution phases. Therefore, significant research has to be done both in addressing these problems

and in combining previous research into the ontology mapping process.

Multi-Dimensional Service-Oriented Ontology Mapping

65

4.4 Vertical Dimension of MAFRA

Four complementary modules have been identified in the vertical dimension of MAFRA, which are

described in the following sections.

4.4.1 Evolution

The evolution module aims to manage the ontology mapping document according to external

factors. At least three types of external factors affect the ontology mapping document:

• Changes in the source and target ontologies;

• Changes in the domain or application requirements;

• Changes in the mapping mechanism, namely update in the transformation capabilities.

This module will focus in providing supporting mechanisms to the core process phases, in two

distinct tasks:

• Maintenance of the ontology mapping document, according to external requirements;

• Versioning of the ontology mapping document, according to changes in the external

requirements.

While research on evolution of ontology mapping is missing, extensive research exist concerning

evolution [Stojanovic et al., 2002a] and versioning [Klein et al., 2002] of ontologies in the context of

the Semantic Web. In particular, Stojanovic and colleagues suggest the concept of an evolution

strategy capable to drive the user-requirements in the process, while allowing the customization and

control of the strategy. Klein and colleagues focus on the management of ontology versioning in

the Semantic Web, especially respecting the conceptual and transformation relations maintained

between different ontology versions.

While these research works are a valuable starting point for this module, considerable research is

still expected. Ontology mapping evolution is very different from ontology evolution, suggesting

that the ontology evolution strategy proposed will not fit the ontology mapping specificities. A

similar assumption is possible respecting versioning.

4.4.2 Cooperative Consensus Building

This module aims to support and promote consensus between two (or more) interoperability

intervenients, in two important tasks related to the ontology mapping process:

• The specification and maintenance of the ontology mapping document;

• The version of the ontology mapping document to use in certain interoperation.

Ontology Mapping Framework

66

An interesting interpretation of this module, which is in fact an envisaged application of consensus

building tasks, is the improvement of the quality of the mapping specification. Exploiting and

capturing the know-how of distinct, eventually more competent, third-party entities into the

mapping specification, the quality of the mapping specification will potentially increase. Under this

perspective, cooperative consensus building is not an end per se but a mean to achieve better

ontology mapping.

Research in the area of meaning negotiation is much related with this subject, but it status suggests

the need for intensive research in this area. In [Bailin & Truszkowski, 2001] authors propose a

simple framework providing support for three fundamental tasks: interpretation, clarification of

terms and evolution of ontology. While the framework is extensible it is considered clearly

insufficient or even not suited to the ontology mapping problem. In fact, the envisaged ontology

mapping problems are much more complex than those addressed by Bailin and Truszkowski.

Similar comments should be done concerning the Sarini and Simone works [Sarini & Simone,

2002]. Conversely, a more conceptual approach is proposed by van Elst and Abecker [van Elst &

Abecker, 2002], which better reflects the ontology mapping process. Anchor-Prompt, suggested by

Noy and Musen [Noy & Musen, 2001] is a human-driven supporting tool for ontology matching,

which might be a starting point towards the automation of the process.

Yet, the final opinion about the state-of-the-art in this subject is that most of work corresponds to

very simple approaches, sometimes even naïve, requiring further intensive research efforts.

4.4.3 Domain Constraints and Background Knowledge

The quality of similarity measurement and the automatic semantic bridging may be dramatically

improved by introducing two complementary elements in the process:

• Background knowledge, respecting common sense descriptions of the world, including:

• Dictionaries of lexical terms, which textually describe multiple senses of the lexical entity;

• Dictionaries of translations between different idioms;

• Thesaurus, which provides synonyms of a lexical entity;

• Glossaries of acronyms and abbreviations;

• Other lexical tools such as WordNet [Miller et al., 1990], which has the ability to correlate

lexical entities through a large variety of relations (e.g. synonymy/antonymy,

hyponymy/hypernymy29, meronymy/holonymy30);

29 Hyponym/hypernym relation corresponds to the ontological is_a relation. For example, Woman is a

hyponym of Person because Woman is_a Person. Conversely, Person is an hypernym of Woman. These

relations are transitive.

Multi-Dimensional Service-Oriented Ontology Mapping

67

• Domain constraints, respecting specific perspectives of the ontology domain (e.g. Genomic,

Sports, Medicine, Electronics). Domain constraints include but are not limited to:

• Glossaries of domain acronyms and abbreviations;

• Domain thesauri;

• Domain glossaries31;

• Standards specifications, which provide relations between components of products or

services, comparable to the ontological relations is_a and has_a;

Notice that the meaning, components or properties of an entity vary according to knowledge

source, which is a consequence of the distinct views of the universe. This feature would eventually

lead to ambiguity problems.

Furthermore, exploiting previously systematized human-defined knowledge bases, this module

provides support for automatic operation, thus reducing the human-being intervention in the

process.

As observed in [Rahm & Bernstein, 2001], much of the projects concerned with similarity

measurement apply background knowledge, but it is not so common the use of domain constraints.

Even if similarity measurement and semantic bridging phases are those that most clearly profit

from this module, no mapping phase should neglect the potential usefulness of these knowledge

sources.

4.4.4 Graphical User Interface

Mapping is a difficult and time-consuming process, which is not less difficult than building an

ontology itself. Ontology mapping process require deep understand of both ontology

conceptualizations and their semantic similarities. Special difficulties arise during the specification

phase of the process, thus requiring human intervention. Moreover, browsing structure of both

ontologies, definition and customization of semantic relations, all require extensive manipulation

support.

A Graphical user interface (GUI) is therefore a fundamental module in an ontology mapping

system, allowing and promoting better ontology mappings, while minimizing human efforts.

30 Meronym/holonym relation corresponds to the ontological relation has_a/is_part_of. For example,

wheel is a meronym of car because wheel is_part_of car, and vice-versa. These are transitive relations.
31 An extensive list of glossaries in several languages and domain can be found in:

http://www.jump.net/~fdietz/glossary.htm

Ontology Mapping Framework

68

Currently, most of the ontology mapping systems represent the ontology either as text (e.g. KIF,

RDFS) or as a tree-like structure. However, typical ontologies are not trees but graphs. Tree-like

representation hides substantial part of the semantics of the ontologies, which are far from being

appellative and truly supportive. This is the case of the work of Crubézy and colleagues [Crubézy et

al., 2003] in the scope of Protégé. In the scope of this thesis however, a fully functional, net-based

GUI has been developed, integrating several phases of the ontology mapping process (refer to

8.1.4).

4.5 Ontology mapping process flow

The ontology mapping process envisaged in the scope of MAFRA grounds on the idea that an

ontology mapping document, as any product or system, exhibits a life cycle. The ontology mapping

process, as the responsible for the ontology mapping document, adopts a cyclic perspective too, so

it can fit the ontology mapping document manipulation requirements. Furthermore, the ontology

mapping process exhibits the following characteristics:

• Incremental, because the document is improved in every phase of the process;

• Interactive, because the human-being is the ultimate responsibility for the flow of the process;

• Continuous, since the ontology mapping document can always be improved, especially if the

automatic methods are applied.

The outcome of each phase serves either as the input of the next phase (except in case of the post-

processing phase) or as feedback to previous phases (except in case of the Lift & Normalization

phase). Besides the cyclic nature of the process, some phases are not mandatory. In fact, all but the

semantic bridging and the execution phases are optional.

4.6 Summary

The MAFRA – MApping FRAmework has been described in this chapter. The three main goals

subjacent to its specification have been extensively addressed, providing a valuable tool for analysis

and comparison of further approaches and projects. While the state-of-the-art research has been

enumerated and briefly described, its focus was on the different perspectives of each sub-process,

even if in several cases no current research is known or available. On the other hand, in case

multiple and very distinct research approaches exist, the description focused on the most recent and

close related approaches, according to the identified requirements.

Complementary analysis and comparison of projects and approaches are further presented during

the rest of this thesis, but then under a more specific and defined context.

69

Chapter 5

SEMANTIC BRIDGING

This chapter describes the semantic bridging phase of the MAFRA – MApping FRAmework. The

work described in this chapter has been previously published in [Maedche et al., 2002b; Maedche et

al., 2002a; Silva & Rocha, 2002; Silva & Rocha, 2003a; Silva & Rocha, 2003d; Silva & Rocha,

2004b].

The chapter is divided into seven main sections. In the first section the semantic bridging phase is

formalized in respect to the ontology mapping process. The second section makes a short analysis

of semantic heterogeneity occurring between two information repositories according to related

research. Grounding on this analysis, third section proceeds with a fine grained analysis of semantic

relations necessary to overcome such semantic heterogeneity. According to this analysis, a

systematization of the semantic relations dimension is derived, which is further applied in defining

envisaged support this work will provide for the semantic bridging phase of the process. Based on

the envisaged support, a rather focused analysis of related research work is provided in fourth

section, which provides inspiration for the rest of the work by revealing their advantages and

Semantic Bridging

70

limitations. The fifth section describes of the Semantic Bridging Ontology, one of the core parts of

this thesis. In sixth section, it is presented an annotated example of the application of the Semantic

Bridging Ontology to a mapping scenario. Seventh section draws a comparison between the

envisaged, the effective support and that provided by related works.

5.1 Ontology mapping: two-phases process

5.1.1 Informal definition

Despite ontology mapping characterization made in Chapter 4, ontology mapping is primarily the

process whereby semantic relations are defined at ontological level between source ontology entities

and target ontology entities; and then further applied at instance level, transforming source

ontology instances into target ontology instances. Figure 5.1 exposes this perspective.

-givenName
-familyName

Onto1:Person

-name
Onto2:Employee

Onto1:Person is semantically
equivalent to Onto2:Employee
and
the concatenation of
Onto1:givenName with
Onto1:familyName is semantically
equivalent to Onto2:name

givenName = John
familyName = Carrew

P1 : Onto1:Person

givenName = João
familyName = Silva

P2 : Onto1:Person

name = John Carrew
E1 : Onto2:Employee

name = João Silva
E2 : Onto2:Employee

C
on

ce
pt

ua
l L

ev
el

In
st

an
ce

 L
ev

el

transformation

Figure 5.1 – Informal representation of ontology mapping

Ontology mapping does not intend to unify ontologies and their data, but to transform ontology

instances according to the semantic relations (mapping relations) defined at conceptual level.

Repositories are therefore kept autonomous and heterogeneous, maintaining their complete

semantics and contents unchanged.

Multi-Dimensional Service-Oriented Ontology Mapping

71

5.1.2 Formal definition

Formally, ontology mapping is also described as a two-phase process [Silva & Rocha, 2003d]. The

first phase, named (semantic bridging) specification phase, is formally defined as a relation between

source and target ontology entities:

s t⊆ ×M E E

M is not defined as a function, but as a relation, because the definition aims to encompass the fact

that:

• M rarely maps all ontology entities from one model into the other. It would be therefore

referred as a partial function;

• M often relates the same source ontology entity more than once, i.e. the same domain element

relates to different co-domain elements.

In a mathematical context “mapping” expression would be misused in the sense that the mapping

term is used as synonym of function. However, the expression “ontology mapping” is widely

accepted in this context [Kalfoglou & Schorlemmer, 2003], and will used for the rest of the work.

M is the ontology mapping specification, or simply ontology mapping, containing the necessary

and sufficient information required to transform, during execution phase, source ontology instances

into target ontology instances.

The goal of this phase is therefore the specification and representation of M according to the

semantic of both (source and target) ontologies, complemented by domain expertise as referred

below. Ontology mapping specification is a meta-level process in the sense that the manipulated

objects represent the domains of instance-level elements. The ontology mapping document will be

further described in section 5.4.7.

The second phase, named (semantic bridging) execution phase is formally defined as a relation

between source knowledge base and target knowledge base, parameterized according to the

ontology mapping document developed in the meta-level phase:

()Τ s t⊆ ×M I I

Ontology mapping execution phase occurs at instance level, transforming source ontology instances

into target ontology instances, according to the specified ontology mapping (M).

5.2 Semantic heterogeneity

As referred in previous chapters, three types of heterogeneities may arise between ontologies:

• Syntactic heterogeneity, which refers to the use of different representation nomenclatures,

notations or syntaxes (e.g. OWL, UML, XOL, natural language);

Semantic Bridging

72

• Model heterogeneity, which refers to the fact that different data models are used to describe the

structure and organization of the information (e.g. OO, Relational, frame-based models);

• Semantic heterogeneity, which is due to different ontological commitment respecting distinct

perceptions of universe32 [Sowa, 1999]. It occurs when ontologies differently represent elements

of the world, or when “disagreement occurs about the meaning, interpretation or intended use

of the ontology elements” [Sheth & Larson, 1990].

Whereas important conflicts arise from syntactic and model heterogeneity, this section specially

focuses on the identification and analysis of semantic heterogeneities arising in the context of

semantic bridging.

Semantic heterogeneity has been studied for a long time [Fodor et al., 2002; Hammer & Medjahed,

1993; Sheth & Larson, 1990; Stuckenschmidt & Wache, 2000; Visser et al., 1997] but no agreement

exists on what semantic heterogeneity formally is, nor it is possible to enumerate all its facets.

Goh [Goh, 1997] suggests the analysis of semantic heterogeneities according to three types:

• Confounding conflicts, occur when identical ontological representation correspond to distinct

domain (real) elements;

• Scaling conflicts occur when distinct units are used to measure (characterize) the concept;

• Naming conflicts occur when distinct terms are used to represent identical domain (real) objects.

Hammer and colleagues [Hammer & Medjahed, 1993], aiming to resolve semantic heterogeneity in

ontology merging scenarios, enumerate the following list of semantic relations:

• Identical relation, occurring when both concepts are “exactly the same”;

• Equivalent relation occurs when both concepts are conceptually identical, but the internal

composition is differently specified. For example, one concept is composed by an attribute

which is described in two parts in the other concept;

• Incompatible concepts relation occurs when no semantic similarity exists between both

concepts;

• Compatible relation occurs when concepts are “neither incompatible nor equivalent”.

Accordingly, not all instances of the source concept can be transformed into the target concept.

This relation further covers two other sub-types:

• Specialization/generalization relation, which occurs when one of the concepts is more

generic/specific than the other;

• Positive “association”, which occurs when, in some context, concepts are interchangeably

32 “the fact we live in the same world does not mean we all agree with it or see it the same way” [cited by

Patrick Hayes in International Semantic Web Conference 2003, Sanibel Island (FL), USA]

Multi-Dimensional Service-Oriented Ontology Mapping

73

used.

Visser and colleagues [Visser et al., 1997] analyze the ontological mismatches and their influence in

interoperability. The analysis systematizes and identifies a set of ontological mismatches according

to the schematic (conceptual mismatches) and the axiomatic (explanation mismatches) dimensions

of the ontology. For each type of mismatch, the analysis determines if a conceptual solution exists

or not. The conceptual solutions subsequently proposed correspond to a set of possible ontological

commitments that can be further suggested to (and applied by) the domain expert. However, these

can hardly be transformed into heuristics and further applied in (semi-automatic) semantic bridging

system. In fact, these solutions are case-based, which has severe limitations especially in ontology

mapping where the types of semantic relations are unpredictable. Yet, the conclusions are very

concise in distinguishing between:

• Manageable mismatches, which are those that can be solved;

• Hard mismatches, are those where only a difficult or unfeasible solution exists;

• Unknown mismatches, which mean the solution “depend on the case at hand”.

While those analyses are important, they do not provide much information on the characteristics

and components of semantic relations occurring between ontologies entities, which represent a

fundamental input when developing a (semi-automatic) semantic bridging system.

Characterization of semantic relations

Unlike previous referred works, the analysis of semantic relations made in the scope of this work

aims to identify and characterize their components. This approach allows better specification of

requirements and possibilities of the envisaged system.

Five components (dimensions) have been identified in the scope of this thesis [Maedche et al.,

2002b; Silva & Rocha, 2003a]:

1. Entity type dimension, which reflects the type of ontological entities being related;

2. Transformation dimension, which relates to with the function to transform instances;

3. Cardinality dimension reflects the number of ontology entities being related;

4. Constraint dimension, which respects the constraints that hold during the execution phase;

5. Structural dimension, which reflects the relations between semantic relations.

These dimensions are further analyzed in the following sections.

5.2.1 Entity type dimension

The entity type dimension considers the type of the ontology entities being related. This dimension

depends on the types available through the ontology representation language, and on the

considered notion of ontology. In fact, the representation language may provide a superset of the

Semantic Bridging

74

types considered in the notion of ontology. For instance, the representation language can provide

the lexical entity type while it is not considered in the ontology. According to Section 3.3, the

notion of ontology in the scope of this thesis considers the types: (i) concepts (or classes), (ii)

properties (either relations or attributes), (iii) lexicons and (iv) axioms.

However, it is important to keep in mind the goal of the ontology mapping process: transform

instances of source ontology entities from the source knowledge base into ontology instances of the

target knowledge base. Lexicons and axioms are ontological entities that are not instantiated in the

knowledge base. Hence, concepts and properties are the only types of entities to transform.

According to the entity types the following semantic relations can exist:

• Concept to Concept, e.g. O1:Person bridges to O2:Employee;

• Concept to Property, e.g. O1:Person.address.Address bridges to O2:Employee.address;

• Property to Property, e.g. O1:Person.name bridges to O2:Employee.name;

• Property to Concept, e.g. O1:Person.supervisor bridges to O2:Employee.managedBy.Employee;

• Entity to Instance, e.g. O1:Professor bridges to O2:Job, i.e. the class O1:Professor will give raise

to an instance of O2:Job.

5.2.2 Transformation dimension

This dimension characterizes the transformation occurring between source and target instances.

This dimension is of fundamental importance in the characterization of the semantic relations, and

has influence in other dimensions. The following analysis focuses on three characteristics:

• Function;

• Directionality;

• Completeness.

5.2.2.1 Function

Source instances are transformed into target instances according to the specified function. This is

eventually the most characterizing element of the semantic bridge, since it reveals much about the

semantic bridge semantics.

Example 5.1 – Several transformation functions
1. Copy, creates a target instance with the same contents of the source instance;

2. Concatenation, concatenates multiple source instances into a single target instance;

3. Split, separates a single source instance into multiple target instances;

4. Table-based translation, transforms a certain source instance according to a mapping
table;

Multi-Dimensional Service-Oriented Ontology Mapping

75

5. Arithmetic function, transforms a set of source instances into a single target instance
according to an arithmetic function (e.g. addition, multiplication);

6. Default value function, would create target property instances with predefined
(default) values.

Notice, however, that the transformation function dimension is not, nor can be, fully characterized,

once the functions to apply depend ultimately on the ontology mapping scenario at hand.

Therefore it is unpredictable the set of functions the mapping system must support.

5.2.2.2 Directionality

Directionality reflects the capability of the semantic bridge to transform instances in both

directions. This characteristic applies both to the function and to the semantic bridge.

The semantic bridge is intrinsically bidirectional if the function is bijective33. Conversely, if the

function is injective, surjective or neither surjective nor injective, the semantic bridge is intrinsically

unidirectional. In case bidirectionality is required and initially applied function is not bijective, the

inclusion in the semantic bridge of extra elements is necessary. In particular, if the inverse relation

exists (see 5.2.2.3) the specification of the inverse function and the correlation of ontologies entities

and functions arguments is a fundamental input.

Directionality is normally not related to the applied function, but to the ontology mapping scenario,

since the function is applied in respect to the semantic relation holding between ontology entities. If

the semantic relation is bijective, a bijective function may be applied. However, bijective relations

(functions) are not so common, and even in case an inverse transformation is possible/exists, it is

not straightforward how to apply or to customize it.

Example 5.2 –Inverse functions: concatenation vs. split
Imagine that a semantic bridge with concatenation function is stated between
O1:Person.givenName, O1:Person.surname and O2:Individual.name. Consider that a
blank space is set between given name and surname values.

For the instances givenName(i1, “Gabriel”), surname(i1, “García Márquez”), the
transformation would result in name(i3, “Gabriel García Márquez”)

Because the concatenation function is not bijective, it is necessary to find an inverse
function. The split function is the obvious inverse function, but the blank character
mentioned earlier, is not sufficient to play the role of split character). In fact, these
transformation scenarios are non-deterministic except if a concatenation/split character is
used that undoubtedly determines the split location.

33 A bijective function is a function that is simultaneously injective (on-to-one) and surjective (onto), which

means that every domain element is associated with exactly one codomain element and each codomain

element is associated with exactly one domain element.

Semantic Bridging

76

5.2.2.3 Completeness

Completeness is the characteristic of the transformation that considers the loss of information in

the transformation process. A transformation is complete if no information is lost (lossless) and

incomplete when information is lost (lossy). Two reasons contribute for the completeness of the

semantic relation:

• The characteristics of the ontologies, especially different granularity and generality (see 3.1);

• The transformation function. If the transformation (function) element is ill-specified or

unavailable the semantic relation is incomplete.

If the transformation is incomplete, no inverse transformation is available/possible without domain

expertise (see 5.2.3) or without loss of information.

Example 5.3 – Transformation completeness: loss of information
Consider the ontology O1 represents the account information according to
O1:Account.credit and O1:Account.debt, and ontology O2 represents only
O2:Account.balance. The granularity of information is much finer in ontology O1.
Accordingly, a semantic bridge from O1 to O2 is possible but impossible from O2 to O1.

Notice that this characteristic can also be applied to the ontology mapping document as a whole. In

addition to generality and granularity, incomplete ontology mapping documents are also due to

representation of different domains. Because this characteristic depends, above all, on the

ontologies and semantic relations holding between them, it is out of control of the representation

language of semantic relations.

Despite the characterization of semantic relations according to completeness, the same

characteristic is used in categorizing the execution process with a similar meaning. In fact, in the

scope of the execution system, completeness concerns with the capability to transform as much as

possible source instances into target instances. This characteristic is further addressed in Chapter 6.

5.2.3 Cardinality dimension

This dimension represents the number of ontologies entities at both side of the semantic bridge,

i.e., the number of entities whose instances are transformed (source ontology entities) and the

number of entities instantiated (target ontology entities).

Cardinality is represented in the form of x:y, where x represents the number of source entities, and

y the number of target entities, ranging from 0:1 to m:n:

• 0:1 cardinality, which typically corresponds to the specification of a default value in the target

instance. This cardinality can be generalized to 0:n, but it conceptually corresponds to n times

0:1 semantic relations (e.g. for each instance of O1:Woman, specify

O1:Person.gender==”feminine”);

Multi-Dimensional Service-Oriented Ontology Mapping

77

• n:0 semantic relations make no sense if unidirectional transformation is supported. However, if

bidirectionality is supported, this cardinality is translated into 0:n in the opposite direction which

makes sense, though;

• 1:1 semantic bridges are those in which one source entity instance is necessary and sufficient to

create one target ontology instance. (e.g. O1:Person.age bridges to O2:Employee.age). This

cardinality is a specific case of both 1:n and n:1 semantic relations;

• 1:n cardinality semantic bridge, are those which one source entity instances gives raise to

multiple ontology entities instance (e.g. O1:Person.name bridges to O2:Employee.givenName

and O2:Employee.surname);

• n:1 cardinality semantic bridges are those in which one instance of multiple source entities is

necessary to create one target entity instance (e.g. O2:Employee.givenName and

O2:Employee.surname bridges to O1:Person.name);

• Semantic relations with cardinality m:n are uncommon and in most cases they can be (easily)

decomposed into two semantic bridges of cardinality m:1 and 1:n.

5.2.4 Constraint dimension

The constraint dimension permits to control the execution of a semantic bridge. The constraint

manipulation process includes:

• Specification of conditions at semantic bridging phase;

• Instantiation and evaluation of conditions at execution time.

Due to distinct ontology modeling decisions, namely concerning with generality and granularity, the

execution process is often dependent not only on the ontologies entities being mapped but in third

party elements. Three situations might occur:

• The ontology entity and the instance are sufficient to determine all elements of the

transformation (e.g. O1:Person bridges to O2:Person);

• Other ontological entities and respective instances are necessary (e.g. O1:Person bridges to

O2:Address foreach O1:Person.address);

• Extra ontology data is necessary (e.g. O1:Person bridges to O2:Man if

O1:Person.gender==”masculine”).

One interesting application of the constraint dimension is the specification of the number of target

instances to be created by each semantic relation. Through this dimension, it would be possible to

create one target instance from each source entity (not source instance), which would in fact

correspond to the Entity to Instance semantic relation, as referred in 5.2.1.

Semantic Bridging

78

5.2.5 Structural dimension

This dimension reflects the way elementary semantic relations may be combined into complex

semantic bridges. There are three main reasons to combine semantic bridges:

• The object-oriented modeling approache provided by the is_a ontological property, permits

inheritance of properties between concepts. Semantic bridges defined between two concepts

would benefice from the semantic bridges specified between their super-classes;

• The property-centric modeling approach provided by the domain and range ontological

properties, allows a property to be part of multiple classes. Such properties would eventually be

transformed by the same semantic bridge independently of the domain concept it is defined in;

• Control the flow of execution of semantic bridges according to constraints.

5.2.6 Summary of characterization

The characteristics of semantic relations between two ontologies have been identified, analyzed and

systematized according to five distinct characteristics, referred as dimensions. This multi-

dimensional characterization of semantic relations (summarized in Table 5.1) provides an easily

perceptible and manageable framework upon which it is possible to categorize semantic relations.

Table 5.1 – Summary of the multi-dimensional characterization of semantic relations

Dimensions Characteristics
Concept to Concept
Concept to Property
Property to Concept
Property to Property

1. Entity type

Entity to Instance
Basic functions required
Combination of functions 2.1 Function
Integration of new functions
Unidirectional
Manually bidirectional

2.
 T

ra
ns

fo
rm

at
io

n

2.2 Directionality
Automatically Bidirectional
0:1
0:n
1:1
1:n
n:0
n:1

3. Cardinality

m:n

Multi-Dimensional Service-Oriented Ontology Mapping

79

Not constrained
Ontology entities-based 4. Constraint
Non-ontology entities-based
Object-oriented
Property-centric 5. Structural support required
Flow execution control

Distinguishing between and characterizing these dimensions instead of categorizing the semantic

relations as a whole, allows a more versatile and applicable categorization process. For example, one

can describe a specific semantic bridge as a “unidirectional, concatenation of 3:1 Property to

Property, not constrained semantic bridge”.

Categorization of semantic relations is a very important step toward an ontology mapping solution

once it provides the elements to limit the problem and address it accordingly. In that respect,

previous characterization and analysis suggests important directions towards modeling, specification

and development of the semantic bridge representation language. In particular, this analysis

distinguishes the components in the semantic bridging phase and their role in the execution phase.

Despite the fact the prior framework provides a mechanism for categorizing semantic relations, it is

necessary to determine which types will be allowed and supported by the semantic bridge

representation language in particular, and by the rest of the system in general. Table 5.2 describes

the envisaged support:

Table 5.2 – Envisaged support according to the characteristics of semantic relations

Dimensions Characteristics Envisaged support
Concept to Concept Yes
Concept to Property Yes
Property to Concept Yes
Property to Property Yes

1. Entity type

Entity to Instance Limited
Set of basic functions Yes
Combination of functions Yes 2.1 Function
Integration of new functions Yes
Unidirectional Yes
Manually bidirectional Limited

2.
 T

ra
ns

fo
rm

at
io

n

2.2 Directionality
Automatically Bidirectional Limited

Semantic Bridging

80

0:1 Yes
0:n Combining n 0:1 bridges
1:1 Yes
1:n Yes
n:0 Limited
n:1 Yes

3. Cardinality

m:n Combining m:1 and 1:n bridges
Not constrained Yes
Ontology entities-based Yes 4. Constraint
Non-ontology entities-based Yes
Object-oriented Yes
Property-centric Yes 5. Structural support
Flow execution control Yes

This characterization is helpful in systematizing the context and problems addressed in the

applicability vector identified in 4.1. In fact, this quality vector is directly and ultimately dependent

on the categories of semantic relations supported by the ontology mapping system. Because the

semantic relations are now fine grained characterized, it becomes possible to state an upper limit to

this quality vector. So, in the context of this work, the upper limit of the applicability quality vector

is the support for the entire set of categories of semantic relations just described. However, because

the transformation dimension is ill-specified, it is necessary to propose solutions even if not formal.

5.3 State of the art

Once the characterization of semantic relations and their support in this system is specified, it is

possible to analyze existent solutions and determine their suitability according to requirements and

quality vectors. While applicability is the only quality vector whose upper limit has been (at least

partially) specified, pair-wise comparison between projects is possible and advisable. The following

research works have been analyzed and compared:

1. Protégé approach;

2. Stuckenschmidt and colleagues approach;

3. RDFT approach;

4. OntoMerge approach.

In the next sections the pros and cons of every one of these research approaches according to the

specified requirements will be analysed. Notice that both Protégé and Stuckenschmidt and

colleagues works describe research efforts running for several years before the work developed in

this thesis. Yet, effective results of Protégé have been mostly presented in the period of this thesis.

The RDFT and OntoMerge approaches have been developed and firstly presented in scientific

events where this work has been presented too.

Multi-Dimensional Service-Oriented Ontology Mapping

81

5.3.1 Protégé

The work described in this section runs in the scope of Protégé since 1994 [Gennari et al., 1994],

and is a very relevant work in the ontology mapping research field. Despite the fact that Protégé has

a very wide knowledge based systems application, the work described here corresponds to the

research on the mapping between knowledge bases (KB) and problem solving methods (PSM). The

efforts aim to develop methods and tools to reuse KBs and PSMs, by the transformation of the

knowledge bases contents in respect to the PSMs requirements and vice-versa.

The work described by Gennari and colleagues [Gennari et al., 1994] is probably the first attempt to

systematize and describe ontology mapping relations through an ontology. This ontology serves not

only as a description of the KB to PSM mapping domain of knowledge, but also as ontology

mapping representation language, when instantiated in specific mapping scenarios. The types of

relations defined in this ontology are:

• Renaming relations, which are able to copy the values of the source instances into the target

instances;

• Filtering relations apply filters (constraints) and/or transformations (functions) to create the

target instances from source instances;

• Class relations, which are able to fill up target instances according to information captured from

source classes (entities) instead of their instances.

While the renaming relation type is far insufficient, filtering relations are able to cope with complex

heterogeneity problems. However, as referred in [Gennari et al., 1994], specification of filtering

relations might not be easy. Class relations correspond, according to the previously defined

terminology, to the Entity to Instance semantic relation.

An important driving concern is the simplicity of the types of semantic relations, about which

authors claim that if complex semantic relations are necessary, then the user or domain expert is

suggested to programmatically (procedurally) implement the mapping.

Later, the approach [Park et al., 1998] was expanded as a result of the feedback received in the

application of the first mapping ontology. A valuable set of desiderata and mapping dimensions is

presented, representing the background for the work described in previous section (5.2). According

to the achieved desiderata, the type of semantic relations described has been redefined to

encompass the following types of semantic bridges (referred as mapping):

• Instance mapping, which corresponds to the Concept to Concept and (possibly to the) Property

to Concept types of semantic relations. Despite the target instance creation, instance mappings

are also used to embrace the mappings responsible for the properties mappings (described next);

Semantic Bridging

82

• Slot mapping, corresponds to the Property to Property and (possibly to the) Concept to

Property types of semantic relations, and are therefore responsible for the creation of target

properties from source entities. Slot mappings are further specialized into:

• Renaming mapping, corresponds to copy instances of source properties to target properties;

• Constant mapping, which correspond to the 0:1 cardinality types of semantic relations;

• Lexical mapping, which basically corresponds to the Concatenation type of semantic

relations and therefore corresponds also to n:1 semantic relations;

• Regular-expression mapping corresponds to the application of regular expression-based

functions, providing higher transformation possibilities than those of the lexical mapping.

The cardinality of this type of mapping ranges from 1:1 to n:m;

• Numerical-expression mapping is the arithmetic version of the regular-expression mapping;

• Functional mapping allows “arbitrarily complex transformations” of properties, since it

permits “user-supplied” functions to be associated with the mapping.

According to the type of slot mapping defined in, the instance mapping is further specialized into:

• Renaming mapping, in which all slot mappings are of renaming type;

• Direct mapping, in which renaming and constant slot mappings are allowed;

• Lexical mapping, in which renaming, constant and lexical slot mappings are allowed;

• Transformation mapping in which all types of slot mapping are allowed.

According to the authors, this specialization of instance mapping promotes expressiveness and

clarity, by characterizing a priory the type of slot mappings allowed and (eventually) used.

No published improvements have been released from 1996 until late 2003, when Crubézy and

colleagues reviewed the work [Crubézy & Musen, 2003]. Still, not many details were presented then,

and apparently the major outcome of this update is the current implementation that exploits the

Semantic Web technologies (namely the RDFS-based ontology representation language) and its

correlation with the Unified Problem-solving Method development Language [Fensel et al., 1999] in

the scope of the Semantic Web. Yet, this is a very valuable reference work in this research domain.

5.3.2 Stuckenschmidt and colleagues

Stuckenschmidt and colleagues [Stuckenschmidt & Visser, 2000; Stuckenschmidt & Wache, 2000]

research work concerns with the combination of “context transformation” and “integration rules”

for the integration of Geographic Information Systems information sources. Context

transformation corresponds to the transformation of data respecting the specificities of a context,

into data respecting the semantics of another context. Contexts are conceptualizations of the

domain of knowledge, which corresponds to the notion of ontology as introduced in 3.3. Once

Multi-Dimensional Service-Oriented Ontology Mapping

83

contextualized, i.e. once the source data is semantically compatible with target context; it is

structurally integrated through integration rules.

Both context transformation rules and integration rules are represented by two other types of rules:

combination and replacement rules. In fact, the approach distinguishes between the representation

level (combination and replacement rules) and the application level (context transformation and

integration rules). While this separation might sound beneficial, it turns out to be difficult to

perceive the approach.

Rules are based on the notion of Template, understood as a generic structure for describing

information, much like a triple, in some ontology representation languages. A template is a “tuple”

in the form of:

(): , , , @T name context type value source=

where:

• name is the name of the information being described;

• context is the metadata describing the information;

• type is the data type of value, which can be a primitive type (e.g. string, number, set), or

complex;

• value is the placeholder for the instances of the information being represented. In case the

complex type is stated, this value corresponds to a nested template. Nested templates

corresponds, in ontology terminology, to relations between concepts;

• source refers to the information source the template belongs to.

Due to the capability to represent nested templates, this generic data model is capable of

representing rather complex information such as those represented by relational data model or

ontologies.

Rules adopt a logic-like structure composed by a head and a body. In particular, combination rules

have the following form:

1 1,..., , ,...n mH B B φ φ←

where:

• H , 1,..., nB B are templates;

• 1,... mφ φ are expressions constraining the execution of the relation.

Instead, replacement rules have the following form:

1 1& ..., , ,...n mH B B B φ φ←

Semantic Bridging

84

where:

• H , B , 1,..., nB B are templates;

• 1,... mφ φ are expressions constraining the execution of the relation.

• B is the template that will replace the head of the rule. Together with a distinct interpretation of

the meaning of the rule, this form allows replacement rules to be nested and streamed.

Every element in the template can be represented by a variable, which provides the mechanism to

interrelate the various templates, including propagating data from the body to the head.

Example 5.4 – Stuckenschmidt and colleagues semantic relations
Consider the ontology mapping scenario represented in Figure 5.2 where O1 ontology is
to be mapped to O2 ontology.

-name
-gender

O1:Individual

O1:Family

-given_name
-surname
-noMarriages

O2:Individual

O2:ManO2:Woman

spouseIn

Figure 5.2 - UML representation of two ontologies

O1:Individual is semantically related to O2:Individual, O2:Woman and O2:Man, and
O2:Individual.given_name and O2:Individual.surname are filled in with the result of the
splitting string of O1:Individual.name by the first white space.

The following replacement rules correspond to both context transformation and
integration rules, which do not provides the advocated separation between context
transformation and integration:

man,_,complex,
{given_name given_name,_,string,?Given_name @O2
surname surname,_,string,?Surname @O2}

@O2

individual,_,complex,
{name name,_,string,?Name @O1
gender gender,_,string,"masculine" @O1}

〈
→ 〈 〉

→ 〈 〉
〉
←
〈

→ 〈 〉
→ 〈 〉

〉@O1 &
?Given_name,?Surname =split(?Name,"").〈 〉

Multi-Dimensional Service-Oriented Ontology Mapping

85

woman,_,complex,
{given_name given_name,_,string,?Given_name @O2
surname surname,_,string,?Surname @O2}

@O2

individual,_,complex,
{name name,_,string,?Name @O1
gender gender,_,string,"feminine" @O1}

〈
→ 〈 〉

→ 〈 〉
〉
←
〈

→ 〈 〉
→ 〈 〉

@O1 &
?Given_name,?Surname =split(?Name,"").
〉
〈 〉

The described approach provides no support for object-oriented modeling structure, such as the

example above denoted and would require, but instead the same slot mapping (split) has been

defined twice, for each target concept.

Nesting and streaming context transformation rules supports, in some extent, the property-centric

modeling feature of the ontology representation language, but the process and the relations

between rules becomes rather complicated and poorly automatable.

In [Stuckenschmidt & Visser, 2000] authors assume some limitations of this approach, and propose

another strategy based on the automatic re-classification of concepts through the standard logic-

based reasoners, such as the FaCT reasoner [Horrocks, 1998]. The proposed approach is based on

the specification of necessary and sufficient conditions for class (concept) membership, a la

description logics. From one side, necessary conditions allow the inference of non-explicitly source

concept instances, while sufficient conditions allow the inference of target class membership based

on properties of source instances. Conditions are represented in PROLOG-like rules, which are

then directly forwarded into the FaCT reasoner.

The re-classification partially supports the object-oriented modeling of ontologies in the mapping

representation, but because both approaches (rule-based and re-classification) are not integrated,

the overall solution, in general, and the representation language in particular, are rather limited.

5.3.3 RDFT

RDFT [Omelayenko, 2002b] has been developed in the same period as the approach proposed and

described in 5.4, and has been therefore strongly considered for representation language of

semantic relations in the scope of this work. Yet, its expressiveness and transformation capabilities

are clearly insufficient. In fact, RDFT has been developed with the B2B catalogue integration

application domain in mind, neglecting some important features such as Property to Concept

semantic relations. According to Omelayenko [Omelayenko, 2002b], such relations give rise to

misunderstandings, and should therefore be treated by procedural-programming based solutions.

Semantic Bridging

86

However, one of the most important limitations of RDFT is its capability to describe only rather

simple regular-expression transformation of attributes.

Despite these important limitations, RDFT has some non-neglectable features. One very important

feature is the capability to represent not only relations at conceptual level but also at syntactic level,

thus supporting the so called normalization sub-phase of the ontology mapping process (4.3.1.2). In

particular RDFT provides constructs to translate from DTD’s and XSD’s into RDFS models and

vice-versa. These capabilities are more functional than conceptual though, since in [Omelayenko &

Fensel, 2001] authors suggest a two-layer approach (as suggested in 4.2), and not only one as the

capabilities of RDFT would suggest.

5.3.4 OntoMerge

In the scope of OntoMerge [Dou et al., 2003; Dou et al., 2002] authors argue that ontology mapping

is better understood and advantageous if thought in terms of ontology merging. Ontology merging

consists in defining a new ontology (the merged ontology) by the union of both source and target

ontologies entities and bridging axioms (semantic bridges in current terminology) representing the

semantic relations between source and target ontologies entities. The merged ontology corresponds

to whose entities are new representations of the original ontologies. Thus, the merged ontology is

itself a fully fledged ontology that can be further merged with other ontologies.

The Web-PDDL language, a Lisp-like, strongly typed first order logic language is used to represent

ontologies and bridging axioms. Despite some extra constructs have been added to the Web-PDDL

language to support ontology merging especially in the scope of Semantic Web, it is automatically

processable by the private but generic OntoEngine reasoner, responsible for the “ontology

translation”.

The simplest bridging axiom corresponds in current terminology to the Concept to Concept

semantic relation. For every pair of semantically related ontology concepts, a new concept is

defined in the merged ontology and two bridging axioms are specified, bridging each ontology

concept with the new merged concept.

Example 5.5 – OntoMerge Concept to Concept semantic relations

Consider the example of Figure 5.2, in which O1:Individual is semantically related to
O2:Individual. To represent this semantic relation in OntoMerge, one new (merged)
concept and two axioms are necessary:

(T->O1:Individual Individual)
(T->O2:Individual Individual)

The T− > meta-predicate is the type-translation (Concept to Concept) construct,

Multi-Dimensional Service-Oriented Ontology Mapping

87

Despite this type of expressions, all other bridging axioms are first order logic predicates using

universal and existential quantifiers, conditions and assertions upon ontologies entities instances.

The exception of the notation is the use of namespaces to keep track of the entities origin, i.e.

source, target or merged ontology.

Example 5.6 – OntoMerge conditional Concept to Concept semantic relations
The bridging axioms specified above do not correspond to the intended ontology
mapping. In order to semantically relate O1:Individual to either O2:Man or O2:Woman,
as referred in example of Figure 5.2, more “substantial” axioms are required than those
presented above:

(T-> @O2:Male Male)
(forall (x - Object)

(if (is Male x)
(and (= x (@skolem:mIndividual x) - @O1:Individual)
(@O1:sex (@skolem:mIndividual x) - @O1:Individual "M"))))

(forall (x - Individual)
(iff (sex x "M")

(is Male x)))
(T-> @O2:Female Female)
(forall (x - Object)

(if (is Female x)
(and (= x (@skolem:fIndividual x) - @O1:Individual)

 (@O1:sex (@skolem:fIndividual x) - @O1:Individual "F"))))
(forall (x - Individual)

(iff (sex x "F")
(is Female x)))

Notice the @skolem control responsible for the creation of objects in the target repository that do

not exist in source repository. This construct corresponds in current terminology to the Property to

Concept semantic relation. Despite this method grounds on well known and established technology

i.e. theorem provers, it is feeble expressive and leads to even poorly expressive representation of

semantic relations. One of the consequences of this construct is the need to create interrelations

between objects at the time they are created, because the identity of the object created (e.g.

(@skolem:fIndividual x) is lost outside the bridging axiom it is specified in34.

Other bridging axioms respect the merging of predicates (properties) of the objects (concept

instances), which corresponds to the Property to Property semantic relations.

34 This situation is not addressed in presented examples.

Semantic Bridging

88

Example 5.7 – OntoMerge Property to Property semantic relations
Using again the ontology mapping example of Figure 5.2, the next bridging axioms
semantically relates O1:Individual.name with O2:Individual.given_name and
O2:Individual.surname:

(forall (p - Individual n - @xsd:string)
(iff (@O1:name p n)

(name p n)))
(forall (p - Individual n1 n2 - @xsd:string)

(if (and (@O2:given_name p n1)
(@O2:surname p n2))

(name p (+ n1 n2))))
(forall (p - Individual n - @xsd:string)

(if (name p n)
(and (@O2:given_name p (@skolem:pName n1) - @xsd:string)

(@O2:surname p (@skolem:pSurname n2) - @xsd:string)
(= n (- n1 n2)))))

Authors argue that the presented approach permits automatic translation in both directions, but as

argued in 5.2.2.2 only in very special cases that would be possible. For instance, notice that in

previous example it has been necessary to specify bridging axioms for both concatenation (+) and

splitting (-).

Yet, probably the most important limitation of OntoMerge is the completeness of the execution.

While this characteristic relates to the execution system and not the representation language, both

are tightly dependent and justify addressing the question here. In fact, OntoMerge is based in the

OntoEngine inference engine, developed by the authors to overcome type-constraint unification,

but just like most theorem-provers it does not guaranty completeness. To overcome this problem, a

very simple (even naïf) heuristic rule is used, based on the size of the left and right size of the

bridging axiom:

1 2size of conclusion size of premiseW W× − ×

Despite the advantages arising from the fact a new ontology arises from the process, as described

by the authors, they ultimately depend on several factors, such as (i) the size of overlaps of merging

ontologies and (ii) how the size of the merging ontology change as they are merged. Considering

the scale, heterogeneity and dynamicity of the web, these solutions tend to be disregarded in favour

of other less centralised and immediate approaches.

5.3.5 Summary

At early stages of this thesis, several works have been analyzed. The Protégé approach and the

Stuckenschmidt and colleagues approaches were the most paradigmatic. MOMIS [Beneventano et

Multi-Dimensional Service-Oriented Ontology Mapping

89

al., 2001; Bergamaschi et al., 1999] in the database integration field and Clio [Miller et al., 2000] in

application of views for information integration have been deeply analyzed too, but their associated

representation languages and application scenarios do not corresponds to the identified

requirements.

Later, during the development phase of the solution, both RDFT and OntoMerge have come to

public knowledge. While OntoMerge is definitely a very good approach in ontology mapping, it is

based on private operational components (OntoEngine) constituting a unique solution. A similar

situation is observed with MOMIS (the integration system), ODB-tools (the DL and inference

system) and the ODLI3 (representation language). Instead, RDFT is far the less capable of the

approaches, but its simplicity and Semantic Web awareness has been a good source of inspiration

and comparison.

Table 5.3 compares the observed characteristics of the described approaches with the quality

vectors identified in 4.1. Notice that not only characteristics of the representation language are

considered in this table, but the overall approach capabilities and limitations.

Table 5.3 – Support of described projects to defined requirements

Requirements Protégé Stuckenschmidt
et al. RDFT Onto

Merge
Required
support

1. Applicability (refer to Table 5.4)
2. Semantic Expressivity + + - + +
3. Automation None None None None +
4. Modularization + - - + +
5. Reutilization - + - + +
6. Declarativity + + + + +
7. Semantic web-awareness > 2003 - + + +

One of the most important revelations of this table is the fact that none of the approaches provide

automation of the specification of semantic relations. It is tempting to argue that no relation exists

between the automation of the mapping process and the representation of semantic relations.

Table 5.4 summarizes the capabilities of the representation languages adopted or developed in the

scope of each of these mapping approaches. Some of the characteristics are unknown and are

therefore referred as “Unknown”.

Semantic Bridging

90

Table 5.4 – Support of described projects in respect to the semantic relations characteristics

D
im

en
si

on
s

C
ha

ra
ct

er
is

tic
s

Pr
ot

ég
é

St
uc

ke
ns

ch
m

id
t

et
 a

l.
R

D
FT

O

nt
oM

er
ge

R

eq
ui

re
d

su
pp

or
t

Co
nc

ep
t t

o
Co

nc
ep

t
Y

es

Y
es

Y

es

Y
es

Y

es

Co
nc

ep
t t

o
Pr

op
er

ty

Y
es

Y

es

Y
es

Y

es

Y
es

Pr

op
er

ty
 to

 C
on

ce
pt

Y

es

Y
es

N

o
Y

es

Y
es

Pr

op
er

ty
 to

 P
ro

pe
rty

Y

es

Y
es

Y

es

Y
es

Y

es

1.
 E

nt
ity

 ty
pe

E
nt

ity
 to

 In
st

an
ce

N

ot
 a

ny
m

or
e

N
o

N
o

N
o

Li
m

ite
d

Se
t o

f b
as

ic
fu

nc
tio

ns

Y
es

Y

es

Li
m

ite
d

Li
m

ite
d

Y
es

Co

m
bi

na
tio

n
of

 fu
nc

tio
ns

Y

es

Y
es

N

o
Y

es

Y
es

2.

1 F
un

ct
io

n
In

te
gr

at
io

n
of

 n
ew

 fu
nc

tio
ns

Y

es

Y
es

N

o
Y

es

Y
es

U

ni
di

re
ct

io
na

l
Y

es

Y
es

Y

es

Y
es

Y

es

M
an

ua
lly

 b
id

ire
ct

io
na

l
N

o
Y

es

N
o

Y
es

Li

m
ite

d

2. Transformation

2.
2 D

ire
ct

io
na

lit
y

A
ut

om
at

ica
lly

 B
id

ire
ct

io
na

l
N

o
Li

m
ite

d
N

o
Li

m
ite

d
Li

m
ite

d
0:

1
U

nk
no

w
n

N
o

N
o

N
o

Y
es

0:

n
U

nk
no

w
n

N
o

N
o

N
o

n
0:

1
br

id
ge

s
1:

1
Y

es

Y
es

Y

es

Y
es

Y

es

1:
n

Y
es

Y

es

Y
es

Y

es

Y
es

n:

0
U

nk
no

w
n

N
o

N
o

N
o

Li
m

ite
d

n:
1

Y
es

Y

es

Y
es

Y

es

Y
es

3.
 C

ar
di

na
lit

y

m
:n

by

 c
om

bi
na

tio
n

of
 1

:n
 a

nd
 m

:1

N
ot

 c
on

st
ra

in
ed

Y

es

Y
es

Y

es

Y
es

Y

es

O
nt

ol
og

ica
l e

nt
iti

es
-b

as
ed

Y

es

Y
es

Li

m
ite

d
Y

es

Y
es

4.

 C
on

st
ra

in
t

N
on

-o
nt

ol
og

ica
l e

nt
iti

es
-b

as
ed

Y

es

Y
es

N

o
Y

es

Y
es

O

bj
ec

t-o
rie

nt
ed

N

o
Li

m
ite

d
N

o
Y

es

Y
es

Pr

op
er

ty
-c

en
tri

c
Y

es

Li
m

ite
d

Y
es

Y

es

Y
es

5.

 S
tru

ct
ur

al
su

pp
or

t

Fl
ow

 e
xe

cu
tio

n
co

nt
ro

l
N

o
N

o
N

o
N

o
Y

es

Multi-Dimensional Service-Oriented Ontology Mapping

91

According to the previous comparison, one might argue that the much features the language has,

the automatic support it provides in comparison with the system possibilities. Empirically however,

it is suggested the semantic bridging process focus on the relations allowed and defined in the

system. In fact, representation languages should be able to represent all but only the semantic

relations the underlying system can process. Manual mapping experiences support this hypothesis

by confirming that users tend to relate entities according to a limited set of well known types of

transformation functions (e.g. copy, concatenation, split or table translation), instead of a large and

unlimited set of possibilities. According to such limited set, the user tries to associate source and

target ontologies entities with one of the transformation functions.

Therefore, instead of analyzing the representation language according to its larger capabilities,

representation language should be analyzed by its limitations and constraints. Furthermore,

representation language should be perfectly declared and represent all but only the system

capabilities.

Addressing the problem under this perspective, the representation language represents the limits to

the semantic relations, and, as a consequence, the searching space is constrained.

5.4 Semantic Bridging Ontology

The Semantic Bridging Ontology (SBO) describes the ontology mapping domain of knowledge.

Exploiting the conceptual and practical characteristics of the ontology (refer to 3.3), SBO has been

developed concerning two purposes:

• Capture and describe the knowledge associated with the ontology mapping subject as perceived

in this context. The analysis of semantic relations (5.2) and the quality indicators (4.1) just

presented, drive its specification;

• Serve as a representation artifact for semantic relations in specific scenarios. An instantiation of

the SBO is an ontology mapping document.

SBO has been totally developed in the scope of this thesis, and it has been initially presented in the

UML static structure notation in [Maedche et al., 2002b], where all combinations of the entity type

and the cardinality dimensions had a correspondent semantic bridge class in the structure. Because

the characterization of the ontology mapping domain of knowledge was particularly studied, it

considerable diverge from subsequent versions. Indeed, later in [Maedche et al., 2002a], a more

pragmatic approach has been derived toward the representation and execution of semantic

relations. While current status of SBO resembles to the one presented in [Maedche et al., 2002a], a

formal definition of SBO has been introduced [Silva & Rocha, 2004b], including integrity and

validation axioms not defined in early publications. These new elements contribute to the formal

Semantic Bridging

92

comprehension of SBO by heterogeneous and divergent communities, while improving its

usefulness to wider range of problems, including the automation feature of the system.

In the next sections the Semantic Bridging Ontology will be described, namely the entities, their

inter-relations and constraints. A top-down description and analysis is followed, starting from the

core concepts of semantic bridges to the more implementation dependent entities. While the

following description is mostly based on logical notation, providing a formal representation, it is

complemented with UML notation, which provides an easily perceivable and immediate

representation of the subject.

5.4.1 SBO Overview

SBO is an ontology of the ontology mapping domain of knowledge. It specifies, classifies and

describes the types of ontology mapping relations, inter relates them and provides other modeling

constructs necessary to express ontology mapping documents. Since the ontologies entities are the

objects to be mapped, SBO is in fact a meta-ontology.

SBO is fundamentally composed by two distinct but complementary concepts:

• SemanticBridge, which represents the semantic relation between a set of source ontology entities

and a set of target ontology entities. It encompasses all information necessary to its correct and

univocal interpretation at execution time;

• Service, which represents the transformation capabilities present in the ontology mapping

system.

Because SemanticBridge concept does not contain by itself transformation capabilities, neither is

able to define the process required to transform source ontologies entities into target ontology

entities, it is necessary to associate to each SemanticBridge one specific Service responsible for

those roles (Figure 5.3).

SemanticBridge

0..* 1

appliesService Service

Figure 5.3 - UML representation of SemanticBridge and Service conceptual relation

The semantics and signature of each Service is defined and described according to their source and

target Arguments and respective characteristics (e.g. the EntityType). The ArgumentValue class

correlates the ontologies entities (i.e. instances of Entity) with the Service Arguments (Figure 5.4).

Notice that Entity class does not concern only to ontologies entities, but also with entities

composed by the ruled association of ontologies entities (composed entities). In turn, EntityType

class corresponds to both the ontology entities and the composed entities (see 5.4.4 through 5.4.6).

Multi-Dimensional Service-Oriented Ontology Mapping

93

SemanticBridge

0..* 1

appliesService
Argument

ArgumentValue

*

1

respectingTo

Entity

0..*

1

hasValue

0..*

1

ofEntityType

EntityType

-location

Service

0..* 1

hasType

1 1..*

defines Argument

1

*

applies

Figure 5.4 – UML representation of the SemanticBridge and Service conceptual relation

The clear separation of competences has three main advantages:

• It allows the separate evolution of semantic bridges upon the entities and transformation

dimensions;

• It allows the enhancement of services according to operation and arguments, with minimal or

no consequences to the semantic bridges specification;

• It allows the incorporation of new functionalities into Services with no consequences to the

semantic bridges specifications. This possibility will be further exploited in other phases of the

ontology mapping process, as described in Chapter 7.

The SBO component described so far is able to limitedly answer to the requirements raised by the

Transformation and Cardinality dimensions of semantic relations. While insufficient to support all

other requirements, it provides a supportive starting point to further and finer characterization of

these and other SBO entities.

5.4.2 Service

The concept of Service is formally described in the scope of semantic bridging and execution

phases as a tuple in the form of:

(): , , , ,s t s tS Location Args Args α α= ∈T

Semantic Bridging

94

where:

• T is the set of all Services available in the ontology mapping system;

• Location corresponds to the necessary information to locate and access the transformation

Service capabilities during the ontology mapping process;

• sArgs and tArgs are, respectively, the set of source and target Arguments composing the

signature of the Service;

• sα is the function that associates an EntityType with each and every source Argument:

:s sArgs EntityTypesα →

• tα is the function that associates an EntityType with each and every target Argument:

:t tArgs EntityTypesα →

• EntityTypes is the set of entity types allowed in Services, corresponding to the union of:

• Ontology concepts;

• Paths, which are fully contextualized ontology properties (further described in 5.4.4);

• Literals (constants);

• Arrays of Paths and Arrays of Literals, which are collections of Paths and Literals (further

described in 5.4.6)

Example 5.8 – Definition (instantiation) of a Service
Consider the CopyAttribute Service, capable to copy instances of a source ontology
attribute into instances of a target ontology attribute.

{ }
{ }

(){ }

1 1 1 1

1

1

1

1

"pt.ipp.isep.gecad.mafra.services.transformations.CopyAttribute",

, , ,

= ,

=

CopyAttribute s t s t

s

t

s

t

S
Args Args

Args sourceAttribute

Args targetAttribute

sourceAttribute attributePath

targetAttr

α α

α

α

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

=

=

(){ },ibute attributePath

5.4.3 Semantic Bridge

The SemanticBridge concept conveys all necessary information from the source semantic bridging

phase to the execution phase. According to the semantic relations characterization (5.2) and to

previously sections, the SemanticBridge concept is formally defined as:

(): , , , , , , , ,s t s t s tB S φ φ δ δ= E E Q K

Multi-Dimensional Service-Oriented Ontology Mapping

95

where:

• sE and tE are respectively the source and target set of Entities, where Entities have an

associated type (EntityTypes);

• Q is a set of constants elements. Every constant element is either a single constant (Literal) or

an Array of Literals (refer to 5.4.6);

• S represents the Service applied in the SemanticBridge;

• sφ and tφ are the functions that associate respectively the source and target entities to the

parameters of the Service (each entity can be associated with more than one argument):

{ }: 2 \
ss s Argsφ → ∅E

{ }: 2 \
tt t Argsφ → ∅E

This function corresponds to the ArgumentValue class instances of Figure 5.4. Because Service

is responsible for the definition and characterization of its own arguments, and because a

SemanticBridge is related to only one Service, the cardinality of the SemanticBridge is in fact

stated by the associated Service;

• sδ and tδ are the relations that associates constants with respectively source and target

arguments of the transformation Service:

{ }: 2 \
ss Argsδ → ∅Q

{ }: 2 \
tt Argsδ → ∅Q

• K is a set of ConditionExpressions that constrain the execution of the SemanticBridge

according to the knowledge base instances. ConditionExpressions are further described in 5.4.5.

The formal definition of ontology (3.3) and the analysis of the entity type dimension of semantic

relations (5.2.1) distinguish between concept and property entities. Following the same approach,

SemanticBridge class is specialized into ConceptBridge and PropertyBridge classes (Figure 5.5).

PropertyBridgeConceptBridge

SemanticBridge

Figure 5.5 – UML representation of the SBO taxonomy of semantic bridges

Semantic Bridging

96

5.4.3.1 Concept Bridge

ConceptBridge class represents the semantic relation between source and target ontology concepts.

Semantically, this bridge means that each instance of the source concept gives rise to a new instance

of the target concept. ConceptBridge specializes the SemanticBridge concept in two characteristics:

• The cardinality of a ConceptBridge is always 1:1, which means that exactly one source concept is

semantically related to exactly one target concept. In order to semantically relate the same

source concept with many different target concepts, multiple ConceptBridges should be defined

(refer to Chapter 6);

• The transformation process executed in transforming concept instances into target concept

instances is always the same, and corresponds to the CopyInstance Service. As consequence, the

transformation Service specification in ConceptBridges can be made implicit.

Accordingly, a ConceptBridge is formally defined as:

(): , , , , ,s t s tB c c δ δ= ∈C CQ K B

where:

• CB is the set of all ConceptBridges;

• s s sc ∈ ⊆C E ;

• t t tc ∈ ⊆C E ;

• Q , sδ , tδ and K are defined as for SemanticBridge.

The following functions are available:

• sConcept : →CB C , returns the source ontology concept of the ConceptBridge;

• tConcept : →CB C , returns the target ontology concept of the ConceptBridge.

5.4.3.2 Property Bridge

PropertyBridge class represents the semantic relation between sets of source and target ontologies

properties. Semantically, this bridge means that the set of source properties instances are

transformed into a set of target properties instances. Unlike ConceptBridge, the transformation

occurring between source and target properties vary enormously. As consequence, the associated

Service has to be explicitly stated in the PropertyBridge. PropertyBridge is formally defined as the

following tuple:

(): , , , , , , , ,s t s t s tB S φ φ δ δ= ∈P PW W Q K B

Multi-Dimensional Service-Oriented Ontology Mapping

97

where:

• PB is the set of all PropertyBridges;

• s s⊆W E is the set of source ontology Paths (refer to 5.4.4);

• t t⊆W E is the set of target ontology Paths;

• Q , S , sφ , tφ , sδ , tδ and K are defined as for SemanticBridge.

Notice that the associated Service is implicitly responsible for several characteristics of the bridge,

in particular:

• The type of the Entities related through the bridge. A concatenation Service for example,

requires string attributes from both source and target ontology, while a Service that would create

relations between target instances requires relations as target ontology entities;

• The cardinality of the PropertyBridge. For example, the concatenation Service states an n:1

cardinality while the split Service states 1:n cardinality.

Unlike ConceptBridge that directly applies ontology concepts as their arguments, PropertyBridges

applies ontologies properties in the context of certain ontology domain (a concept) and range (a

concept or an attribute). This particularity requires other type of entity specification.

5.4.4 Path

According to the ontology model (3.3), properties define their own domain and range concepts.

Additionally, the ontology model does not prevent the same property to have multiple domain and

range concepts. This feature allows that certain instances use the same ontology property to relate

two distinct types of property instances.

Example 5.9 – Multiple ranges of properties
The following KB, first presented in 3.3, depicts this feature. The hasName property in
the domain of both Researcher and Institution:

()
()
{ }
{ }
{ }

1 1 1 1 1

1 1 1 1 1

1

1 1

1

1

, , ,

, _ , ,

,

_ , ,{}

, ,

(,), (,),
(,

inst inst

is a

Researcher Institution

is a

hasName researchesIn inCity

hasName Researcher Literal hasName Institution Literal
researchesIn Researcher Institut

σ

σ

=

=

=

=

=

=

KB O I C P

O C P

C

C C

P

), (,)ion inCity Institution Literal
⎧ ⎫
⎨ ⎬
⎩ ⎭

Due to this central role properties play in the modeling process and data model, and besides the

object-oriented modeling capabilities, ontologies of this kind are (also) categorized as property-

centric ontologies.

Semantic Bridging

98

This ontology feature must be included in the Semantic Bridging Ontology such the domain and

range of the property, are specified as intended in each specific context.

5.4.4.1 Step

This feature is achieved through the Step concept, also referred as statement, which is a tuple in the

form of:

(): , , ,s subject predicate object direction= ∈S

where:

• S is the set of all Steps;

• subject∈C is the domain of predicate ;

• predicate∈P is the ontology property;

• { }object Literal∈ ∪C is the range of the ontology property, which can be either an ontology

concept or Literal;

• direction is the forward or backward value defining the direction the predicate is read, i.e.

“from subject” or “to subject” (refer to 5.4.4.3).

Every Step must represent a valid relation in the ontology, such that:

domain() range()subject predicate object predicate∈ ∧ ∈

Complementarily, three functions are available:

• subject : →S C gives the ontology concept playing the role of subject in the Step;

• predicate : →S P gives the ontology property playing the role of predicate in the Step;

• { }object : C Literal→ ∪S returns the concept or Literal playing the role of object in the Step.

• However, Steps are not directly applied in SemanticBridges but grouped together in Paths.

5.4.4.2 Path

In fact, due to distinct ontological decisions made in modeling ontologies, semantically equivalent

entities from two ontologies are often located in different levels of the ontologies structure.

Example 5.10 – Path is required between two structurally different ontologies
In the ontology mapping scenario of Figure 5.6,
O1:Researcher.researchesIn.Institution.inCity.Literal is semantically related to
O2:Person.address.Literal. This relation semantically means that both attributes (inCity
and address) are semantically related, but only when inCity is accessed through the fully
qualify Path (O1:Researcher.researchesIn.Institution.inCity.Literal). In fact,
O1:Institution.inCity.Literal is not directly semantically related to
O2:Person.address.Literal because no semantic relation exists between O1:Institution and
O2:Person without the researchesIn relation.

Multi-Dimensional Service-Oriented Ontology Mapping

99

-hasName
O1:Researcher

-hasName
-inCity

O1:Institution

*

1

researchesIn

-address
O2:Person

CB1 : ConceptBridge

PB1 : PropertyBridge

Figure 5.6 – Path between two structurally different ontologies

Addressing properties in distinct levels of the ontology in respect to a specific entry class may be

necessary to overcome semantic heterogeneity.

To fulfill this requirement the Path concept is proposed. The Path concept corresponds to a non-

empty list35 of Steps:

[]1 2: , ,..., nW s s s= ∈W

such that:

• W is the set of all Paths;

• is ∈S ;

• lenght : +→W N is the function that gives the (positive integer) number of Steps of the Path;

• entry : +× →W SN is the function that returns the nth entry in the Path.

Because Path represents a set of valid relations between multiple concepts, the subject of certain

Step in the Path should be the same object of the previous Step of the Path. This constraint is

formally defined as:

() ()() () ()()1 1 1, , entry , entry , 1 object subjecti i i i i is s W W i s W i s s s+ + +∀ ∈ ∈ = ∧ + = ⇒ ==S W

Example 5.11 – Path representation
The path mentioned in previous example (O1:Researcher.researchesIn.Institution.
inCity.Literal), is therefore represented as:

()
()1

,1: , 1: , 1: ,

1: , 1: , ,
W

O Researcher O researchesIn O Institution forward

O Institution O inCity Literal forward
=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

.

35 A list is a (possibly empty) ordered collection (sequence) of elements, referred as entries, in which

repetition is allowed. Lists are seen as sets in which duplicated entries are allowed and order of entries do

matters.

Semantic Bridging

100

Furthermore, Paths are differentiated according to the range of their last Step:

• Attribute Paths, if ()() { }lengthobject Ws Literal∈

• Relation Paths, if ()()lengthobject Ws ∈C

No cyclic Paths are allowed, but the same Step can be present more than once in the Path.

5.4.4.3 Directionality

Properties are directional predicates between the subject and the object: subject “relates to” object.

However, due to distinct semantic decisions, it often occurs in ontology mapping scenarios that

certain source ontology property semantically relates to a target ontology property that is exactly its

inverse property.

Example 5.12 – Ontology mapping scenario requiring inverse Path
Consider the ontology mapping scenario of Figure 5.7 in which ontology O1 and
ontology O2 are being semantically bridged. O1 corresponds to the previous presented
ontology (3.3) and O2 is a similar ontology concerning the same real-world domain.

+hasName
O1:Researcher

+hasName
+inCity

O1:Institution

*

1

researchesIn

CB2 : ConceptBridge

PB1 : PropertyBridge

-street
-pobox
-country

O2:ResearchCenter

-firstName
-lastName

O2:Researcher

*

1employs

CB1 : ConceptBridge

Figure 5.7 – Ontology mapping scenario dealing with inverse properties

While O1:Researcher bridges to O2:Research and O1:Institution bridges to
O2:ResearchCenter, the O1:Researcher.researchesInInstitution property corresponds to
the inverse property of O2:RersearchCenter.employs.Researcher.

In order to overcome these semantic differences, it is necessary to (virtually) address properties in

inverse direction, corresponding during execution phase, to inversely query the knowledge base:

which are the subjects that “relate to” the object. In the case of the previous example, it would

correspond to: “which are the O2:ResearchCenters in which O2:Research is employee”.

Inverse properties are defined through Steps (inverse Steps or backward Steps) in which the

direction parameter is stated to backward.

Multi-Dimensional Service-Oriented Ontology Mapping

101

Example 5.13 – Definition of a backward Step
From the previous example, the inverse Step would be represented as the
Step ()1 2 : , 2 : , 2 : ,s O ResearchCenter O employs O Researcher backward= .

Notice that the direction is asserted to the property (Step) and not to the Path, allowing that the

same Path combines simultaneously properties read in forward and backward direction. However,

in case Paths include an inverse Step, they are also referred as inverse Paths (or backward Paths).

Example 5.14 – Definition of a backward Path
The Path corresponding to Example 5.12 would be defined as:

()2 2 : , 2 : , 2 : ,W O ResearchCenter O employs O Researcher backward⎡ ⎤= ⎣ ⎦

5.4.4.4 Alternative notation

In order to simplify previous notation, from now on, Path is specified through an easier notation

that assumes two distinct forms:

• / /Subject Predicate Object , if the direction value of the Path is forward;

• \ \Subject Predicate Object , if the direction value of the Path is backward.

Example 5.15 – Definition of Paths using the simplified notation
Accordingly, Path from Example 5.11 and Example 5.14 would be defined as:

1 :1 / 1: / 1: / 1: /W O Researcher O researchesIn O Institution O inCity Literal=

2 2 : \ 2 : \ 2 :W O ResearchCenter O employs O Researcher=

Furthermore, the reference to the ontology can be omitted in cases it is irrelevant or no ambiguities

arises.

5.4.4.5 Outlook of Path

Paths are a very powerful mechanism to specify ontology entities into SemanticBridges and query

the knowledge base during the execution phase. While the Path mechanism under the point-of-view

of Semantic Bridging has been analyzed in this section, the Path operation in querying and iterating

the knowledge base is addressed in Chapter 6.

5.4.5 Condition Expression

It often occurs that the SemanticBridge depends not only on the set of source and target ontology

entities, but also on the instances of such ontology entities. ConditionExpressions provide the

mechanism to specify semantic constraints upon SemanticBridges. ConditionExpressions are then

instantiated with ontology entities instances in execution phase and evaluated accordingly.

Semantic Bridging

102

ConditionExpression is a Boolean expression of comparison expressions that compares instances

with instances or constants (Literals), through a variety of comparison operators. Using the BNF

notation, ConditionExpression corresponds to:

condition_expression ::= and | or | xor | not | comparison
and ::= and (condition_expression {"," condition_expression })
or ::= or(condition_expression {"," condition_expressi

〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 on })
xor ::= xor(condition_expression {"," condition_expression })
not ::= not(condition_expression)
comparison ::= operand_1 OPERATOR operand_2
operand_1 ::= PATH
operand_2

〉
〈 〉 〈 〉 〈 〉
〈 〉 〈 〉
〈 〉 〈 〉 〈 〉 〈 〉
〈 〉 〈 〉
〈 〉 ::= PATH | LITERAL〈 〉 〈 〉

• The PATH〈 〉 token corresponds to the Path entity described above (5.4.4), and its application

in ConditionExpressions follows the same constraints defined then;

• The OPERATOR〈 〉 token corresponds to the comparison operator. Some of the envisaged

comparison operators are represented in Table 5.5:

Table 5.5 – SBO comparison operators

Operator Meaning
== Op1 “equal to” Op2
< Op1 “less than” Op2

=< Op1 “equal or less than” Op2
>= Op1 “equal or greater than” Op2
> Op1 “greater than” Op2

Match Op1 “matches regular expression” Op2
Like Op1 “string contains string” Op2 (a la SQL)

Cardinality Op1 “cardinality is” Op2
MaxCardinality Op1 “cardinality is less than” Op2
MinCardinality Op1 “cardinality is greater than” Op2

• The LITERAL〈 〉 token corresponds to the Literal ontology entity.

Example 5.16 – Definition of a ConditionExpression

Considering the knowledge base presented in section 3.3, a valid condition expression
would be:

1

/ / / " ",

/ / 1

Researcher researchesIn Institution hasName GECAD ISEP
K and

Researcher researchesIn Institution Cardinality

== −
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

This condition requires that the instance of Researcher researches in the Institution with
name “GECAD-ISEP” and only there.

The following ConditionExpression is always true:

2 / / / /K Researcher researchesIn Institution Researcher researchesIn Institution= ==

Multi-Dimensional Service-Oriented Ontology Mapping

103

5.4.6 Array

Every Service defines a specific number of arguments and respective types, to which the

SemanticBridge applying the Service must conform to. In case an extra argument is required in the

SemanticBridge, a new Service should be developed and applied.

While the transformation requirements are unpredictable and therefore the development of new

Services will be always necessary, the problem can be minimized by the generalization of

transformation Services. Generalization is drastically restricted by the function dimension (5.2.2.1),

which among other affects the type and number or arguments. Nevertheless, certain functions can

be generalized, especially respecting the number of arguments.

Example 5.17 – Generalization of Services parameters
Consider the Concatenation Service in which two source attribute instances are
concatenated into one target attribute instance (e.g. concatenation(“Ontology”,
“Mapping”)).

While typical concatenation process is specified for two attribute instances, the process is
extensible for a variable number of attribute instances (e.g. concatenation(“Ontology”, “
”, “Mapping”) == “Ontology Mapping”).

Instead of developing a new Service capable to concatenate a specific number of
attributes, the Concatenation Service can be generalized such that a variable number of
attribute instances is concatenated.

The Array construct allows the generalization of Services according to the cardinality dimension.

Array is an ordered set of mapping entities of the same type, but unlike sets in which order does

not matter, or in a list in which elements are typically accessed successively, in array the order

matters and elements are accessed in an arbitrary order, as might be required by specific Services.

Concepts, Paths, ConditionExpressions and Literals can be grouped into Array and applied in the

SemanticBridge as a single argument to the Service. The following types of Array are valid in SBO:

• Array of Paths;

• Array of ConditionExpressions;

• Array of Literals.

Because Services are more generic, specification of SemanticBridges is easier and more durable.

Example 5.18 – Definition of Service using Arrays
Instead of choosing between Services such as Concatenation/336 (concatenation of two
source ontology attribute into one target ontology attribute), Concatenation/4
(concatenation of three source ontology attributes into one target ontology attribute), one
might use Concatenation/N capable to concatenate N-1 source ontology attributes into
one target ontology attribute. The Concatenation/N Service would be described as:

36 Notation used in many programming languages (Prolog, Lisp, Erlang) to characterize the arity (number of

arguments) of the function or procedure.

Semantic Bridging

104

{ }
2 2 2 2

2

2

2

"pt.ipp.isep.gecad.mafra.services.transformations.Concatenation",

, , ,

,

{ }

= ,

Concatenation s t s t

s

t

s

S
Args Args

Args sourceAttributes separators

Args targetAttribute

sourceAttributes arrayOfAttri

α α

α

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

=

=

() (){ }
(){ }2

, ,

= ,t

butePaths separators arrayOfLiterals

targetAttribute attributePathα

The separators source argument allows the definition of a set of Literals to concatenate
between every pair of source ontology attribute instance.

5.4.7 Ontology Mapping Document

The core concepts of SBO have been addressed in previous sections. However, the ontology

mapping domain of knowledge is insufficiently described, and thus, even the described concepts

lack semantics. In particular, it is necessary to contextualize and inter-relate SBO concepts and

provide mechanisms to finer constrain and explicitly describe semantic relations in order to reach

the intended ontology mapping execution.

The Ontology Mapping Document provides these necessary elements to inter-relate SBO concepts,

constraining their meaning and interpretation possibilities. Ontology Mapping Document is

formally defined as the following 11-ary tuple:

(): , , , , , , , , , ,s t= ⊥ ⊥ ◊
C P C PC P B B B BM O O T B B A A ≺

where:

• sO is the source ontology;

• tO is the target ontology;

• T is the set of available transformation Services;

• CB is the set of ConceptBridges holding between sO and tO concepts;

• PB is the set of PropertyBridges holding between sO and tO defined Paths;

•
CBA is the set of containers, named AlternativeBridges-of-ConceptBridges that group together

mutually disjoint ConceptBridges;

•
PBA is the set of containers, named AlternativeBridges-of-PropertyBridges, that group together

mutually disjoint PropertyBridges;

• : 2⊥ →
C C CB B BA is the function that associates ConceptBridges with AlternativeBridges-of-

ConceptBridges;

• : 2⊥ →
P P PB B BA is the function that associates PropertyBridges with AlternativeBridges-of-

PropertyBridges;

Multi-Dimensional Service-Oriented Ontology Mapping

105

• : 2 A∪◊ →
PP BC BB is the function that relates PropertyBridges with ConceptBridges.

• ⊆ ×C CB B≺ is a reflexive, acyclic, anti-symmetric and transitive relation between

ConceptBridges, which corresponds to the hierarchical relation between ConceptBridges,

referred as “sub bridge of“.

Figure 5.8 depicts these relations using the UML notation.

Next sections describe
CBA ,

PBA concept, together with the⊥
CB , ⊥

PB and ◊ functions and the

≺ relation.

PropertyBridge
0..1

0..*

ConceptBridge

SemanticBridge

AB-of-ConceptBridge AB-of-PropertyBridge

≺

◊

⊥
CB ⊥

PB

0..*

0..*

0..*

0..*

◊

0..1

0..*

0..*

0..*

Figure 5.8 – UML representation of the SBO relations between SemanticBridges

5.4.7.1 Alternative Bridges of ConceptBridges

The : 2⊥ →
C C CB B BA function is responsible for the specification of disjoint relations between

PropertyBridges into AlternativeBridge-of-ConceptBridges (
CBA). This relation between

ConceptBridges arises from the need to conditionally transform the instances of one source

concept into instances of a set of target concept. In such cases, one ConceptBridge is defined for

each pair of the source ontology concept and target ontology concept. These ConceptBridges are

then grouped together into an AlternativeBridge-of-ConceptBridges. Every ConceptBridge is free

to define ConditionExpressions that determine its execution conditions. AlternativeBridges

Semantic Bridging

106

prevents the execution of more than one of disjoint ConceptBridges, even if multiple

ConceptBridges are conditionally allowed.

Each ConceptBridge can be ⊥
CB -related once:

() ()1 2 1 2 1 2, , , ,cb a a cb a cb a a a∀ ∈ ∀ ∈ ⊥ ∧ ⊥ ⇒ ==
C C CC B B BB A

Besides its execution features, by preventing the execution of more than one of the

ConceptBridges, AlternativeBridge-of-ConceptBridge becomes a modeling primitive that enhances

the semantics and readability of the ontology mapping document, by explicitly stating the disjoint

relation between ConceptBridges.

Example 5.19 – AlternativeBridges of ConceptBridges
Consider the ontology mapping scenario of Figure 5.2 (page 84). Two mutually exclusive
ConceptBridges should be defined from O1:Person to O2:Man and O2:Woman.
Explicitly stating that these two ConceptBridges are mutually exclusive states that an
instance of O1:Person is either O2:Man or O2:Woman. This example is illustrated in 5.5.

5.4.7.2 Alternative Bridges of PropertyBridges

The : 2⊥ →
P P PB B BA function is responsible for the specification of disjoint relation between

PropertyBridges, into AlternativeBridge-of-PropertyBridges (
PBA). Similarly to the disjoint relation

between ConceptBridges, a set of PropertyBridges is often mutually disjoint. While

ConditionExpressions are specified for every SemanticBridge, ConditionExpression might not be

sufficient to guaranty the disjointedness. Besides guaranty disjointedness, AlternativeBridge-of-

PropertyBridges is able to explicitly state constraints, promoting readability and explicit semantics.

Unlike ConceptBridges whose context is the Ontology Mapping Document (M), specification and

execution context of PropertyBridges are ConceptBridges. Also, because every PropertyBridge can

be associated (◊ -related) with multiple ConceptBridges (see 5.4.7.3), PropertyBridge is ultimately

contextualized by the ConceptBridge in which it is being-related or executed. As consequence, it is

possible that a PropertyBridge is disjoint in a certain context (ConceptBridge) but not in another.

Accordingly, every PropertyBridge can be ⊥
PB -related more than once.

5.4.7.3 Relation between ConceptBridges and PropertyBridges

A SemanticBridge is specialized into ConceptBridge and PropertyBridge. The most important

difference between these two classes is the type of Service each one applies. While the applied

Service in ConceptBridge is always responsible for the creation of a target concept instance, the

Service in PropertyBridge varies according to the semantic relations between ontologies properties.

Multi-Dimensional Service-Oriented Ontology Mapping

107

This clear distinction is very important for the characterization of their inter-relations. In fact,

notice that ConceptBridges are responsible for the creation of instances of target ontology

concepts, which in turn will serve as containers or placeholders for instances of target ontology

properties resulting from the execution of PropertyBridges. This means that concept instances are

composed by properties instances. As consequence, ConceptBridges and PropertyBridges are

closely inter-related and interdependent. The ◊ function represents this inter-relation.

Through the ◊ function, PropertyBridges are contextualized into ConceptBridges. During semantic

bridging phase, this relation means that the properties of the source concept correspond to the

target concept properties according to the PropertyBridge. At execution time, the ◊ -related

PropertyBridge will be executed for all properties instances defined in the source concept instances,

giving rise to the target concept properties instances.

Because AlternativeBridges-of-PropertyBridges (
PBA) are composed of PropertyBridges only

(which semantically corresponds to the execution of one of a set of PropertyBridges),

AlternativeBridges-of-PropertyBridges are considered as PropertyBridge. As defined, the ◊ -relation

relates ConceptBridges to both PropertyBridges and AlternativeBridges-of-PropertyBridges.

Moreover, the PropertyBridges defined disjoint in the scope of an AlternativeBridge-of-

PropertyBridge are not directly ◊ -related with ConceptBridge, but only through the

AlternativeBridge-of-PropertyBridge it is ◊ -related.

The ◊ function has consequence on the properties allowed in PropertyBridges. In fact, properties

that are not accessible from the concepts semantically related in the ConceptBridge can not be

semantically related in such context. If PropertyBridges are ◊ -related with certain ConceptBridge, it

is mandatory that the Paths defined in PropertyBridges37 all have the ConceptBridge concepts as

root concept38. This constraint is formally represented as the following conjunction:

()
()

() () ()
() () ()

, , , ,

, , , , , , , , ,

, entry ,1 , subject ,

, entry ,1 , subject ,

s t
cb cb cb

s t s t s t
pb pb

s s s s s s

t t t t t t

cb c c

pb S

W s W cb pb s c

W s W cb pb s c

δ

φ φ δ δ

= ∈

= ∈

∀ ∈ = ◊ ⇒ ∧

∀ ∈ = ◊ ⇒

C

P

Q K B

W W Q A K B

W

W

Additionally, the ◊ function further constrains the length of target Paths to 1:

()lenght 1tW W∀ ∈ ==W

37 Properties are specified in PropertyBridges through Paths.
38 Root concept is the ontology concept playing the role of subject in the first Step of the Path.

Semantic Bridging

108

Besides not representing a conceptual requirement but instead an implementation decision, four

important advantages have been identified, contributing to maintain and promote this constraint:

1. Permits to ignore the execution order of SemanticBridges. If a multi-step target Path is

specified, it would be necessary to previously execute the PropertyBridges that create the

relation between instances;

2. As consequence, it prevents recursive dependencies between SemanticBridges;

3. Promotes modularization, systematization and error detection. If the application of a multi-step

target Path is believed necessary, then it is necessary to ◊ -relate the PropertyBridge with a

ConceptBridge, such:

() ()()tConcept subject , lenghttW cb W W∀ ∈ ==W

and change Paths, such:

()()| entry , lenghttW W s s W W⎡ ⎤∀ ∈ = =⎣ ⎦W

4. Evolution procedures are simplified. Since fewer dependencies exist between SemanticBridges,

fewer number of propagation changes arise between SemanticBridges.

5.4.7.4 Hierarchy of ConceptBridges

The ≺ -relation (subBridgeOf) is the SBO correspondence to the ontology construct _is a

(subclass of) provided in object-oriented ontology models (such as the one suggested in 3.3).

Supporting the subBridgeOf modeling construct, SBO provides:

• Capabilities to better model the semantic relations, including the generalization/specialization of

semantic relations, which has been proven to be a very powerful modeling construct in

knowledge representation languages;

• Capabilities to model SemanticBridges according to the hierarchy of concepts.

Any ConceptBridge may be defined subBridgeOf another ConceptBridge if its source and target

concepts are sub concepts (_is a) of respectively the source and target concept of the envisaged

super-bridge. Additionally, the relation is valid in case either the source concepts or the target

concepts are the same. This constraint is formally defined by:

()

() () () ()
() ()() ()() () ()()

1 2

2 1

1 1 1 1 2 2 2 2

2 1 2 1 2 1 1 2 1 2 2 1

,
,

sConcept , tConcept , sConcept , tConcept ,

_ , _ , _ , _ ,

s t s t

s s t t s s t t s s t t

cb cb
cb cb

cb c cb c cb c cb c

is a c c is a c c is a c c c c c c is a c c

∀ ∈

⇒
∧ ∧ ∧ ∧

∧ ∨ ∧ == ∨ == ∧

≺

CB

Multi-Dimensional Service-Oriented Ontology Mapping

109

Example 5.20 – Hierarchy of ConceptBridges
Figure 5.9 presents an ontology mapping scenario in which the hierarchical relation
between ConceptBridges (≺) is adopted according to the hierarchy of the ontology
concepts. The represented ≺ -relations are defined as:

(2 , 1)CB a CB≺ , (2 , 1)CB b CB≺ , (3, 2)CB CB a≺ and (3, 2)CB CB b≺ , or as the set

{ }: (2 , 1),(2 , 1),(3, 2),(3, 2)CB a CB CB b CB CB CB a CB CB b=≺

Notice that (2 , 1)CB a CB≺ and (2 , 1)CB b CB≺ relationships are valid due to the

()1 2 2 1_ (,)s s t tc c is a c c== ∧ component of the constraint.

O1:Concept2

CB2a : ConceptBridge
O2:Concept2a

O2:Concept1
CB1 : ConceptBridge

O2:Concept2b
CB2b : ConceptBridge

O1:Concept3 O2:Concept3
CB3 : ConceptBridge

≺
≺

≺
≺

Figure 5.9 – Hierarchical relations between ConceptBridges

The fundamental consequence of this relation is the inheritance by sub-bridges of the

PropertyBridges ◊ -related with super-bridges. As so, such PropertyBridges are automatically and

implicitly ◊ -related to its sub-bridges. During execution phase, the PropertyBridges of the super-

bridge with are executed in the scope of sub-bridges as any explicitly ◊ -related PropertyBridge.

Complementarily to the hierarchy of concepts, one very popular and useful constructs in OO

representation languages is that of the “abstract concept”. Abstract concepts are characterized by

the fact that no instances of such concepts are allowed. In some representation languages (e.g.

RDFS, OIL, DAML, OWL) such primitive is not provided, but the modeling decision is yet

adopted by the ontology engineer.

Semantic Bridging

110

Such modeling decision, either implicit or explicit, assumes special relevance in the ontology

mapping specification, since no instances should be created for an abstract target ontology concept.

The ontology mapping representation language (SBO) must provide support for this ontology

feature.

ConceptBridge and the CopyInstance Service are the candidates to accommodate this

feature/parameter. Notice however that unlike ConceptBridges in which the Service is always the

same, in PropertyBridges Services vary from case to case, as their specific parameters. Therefore, in

order to follow and maintain a coherent specification of SBO, this very specific parameter is

associated with the CopyInstance Service, and not with the ConceptBridge, which would require a

new kind of element in the ConceptBridge definition. An example can be found on 5.5.6 and details

about the CopyInstance Service can be found in Chapter 6.

This hierarchical inheritance mechanism, similar to object-oriented modeling, profits and provides

the benefices recognized to the object-oriented modeling. In special, when applied to distributed,

well-structured, inter-dependent ontologies, which are progressively adopted and supported in

Semantic Web [Maedche et al., 2003], it promotes modularity, reusability and readability of the

ontology mapping document.

5.5 Example 5.21 – Semantic bridging annotated example

This section presents semantic bridging examples through the instantiation of SBO. While typical

semantic relations tend to be subjective and ambiguous, the following examples use common sense

ontologies and semantic relations between them.

Consider Figure 5.10 where excerpts39 of two ontologies are represented in UML notation. In the

left side, playing the role of source ontology is the Gedcom ontology (O1) [Gedcom] and in the

right, playing the role of target ontology is the Gentology ontology (O2) [Gentology].

-name
-gender

O1:Individual

O1:Family

-given_name
-surname
-noMarriages

O2:Individual

O2:ManO2:Woman

spouseIn

Figure 5.10 - Excerpt of Gedcom and Gentology ontologies, represented in UML notation

39 For readability reasons, some concepts and properties of both ontologies are omitted.

Multi-Dimensional Service-Oriented Ontology Mapping

111

5.5.1 Ontology Mapping Document

The primary element to define is the Ontology Mapping Document (in which both ontologies are

explicitly related). Also other ontology mapping components are initially introduced:

()
{ }

1 1 1 1 1 1 1 1 1 1

1

1, 2, , , , , , , , ,

, , ,

O O

CopyAttribute CountProperties Concatenation Split

= ⊥ ⊥ ◊

=

≺
C P C PC P B B B BM T B B A A

T

5.5.2 ConceptBridges

Both source and target ontologies define the concept Individual, which must be bridged. Because

the target ontology entity in the semantic relation is a concept, the expected outcome of the

semantic bridge are target ontology concept instances. The transformation/creation of target

ontology concept instances is a competence of ConceptBridges. Accordingly, a ConceptBridge

should be used between O1:Individual and O2:Individual:

()
{ }
{ }
{ }
{ }

2 2 2 2

2

2

2

2

2 1: , 2 : , , , ,s t
I I I I I I I I

I I

s
I I

t
I I

I I

Individual Individual O Individual O Individual Q K

Q

K

δ δ

δ

δ

=

=

=

=

=

The previous line defines a ConceptBridge, whose source ontology concept is O1:Individual and

the target ontology concept is O2:Individual. Actually, O1:Individual instances will give rise to

either O2:Woman or O2:Man instances. For that reason, two more ConceptBridges are necessary:

{ } { } { }()
{ } { } { }()

2

2

2 1: , 2 : , , , ,

2 1: , 2 : , , , ,
I W

I M

Indiv Woman O Individual O Woman K

Indiv Man O Individual O Man K

=

=

Therefore, 1
CB can now be defined as:

{ }1 2 , 2 , 2Individual Individual Indiv Man Indiv Woman=CB

5.5.3 ConditionExpressions

Each of previous ConceptBridges is conditionally executed according to the value of

O1:Individual/genre/Literal attribute of every O1:Individual being transformed: if the

O1:Individual instance is masculine it semantically relates to O2:Man, otherwise it semantically

relates to O2:Woman. Accordingly, both 2I MK and 2I WK are necessarily set to:

{ }
{ }

2

2

1: / / " "

1: / / " "
I W

I M

K O Individual genre Literal W

K O Individual genre Literal M

= ==

= ==

Semantic Bridging

112

As previously described, ConditionExpression is a Boolean expression of comparison expressions,

providing the means to specify very complex conditions. Even if this example does not require

complex ConditionExpressions, it is strongly suggested to improve both 2I MK and 2I WK , in order

to cover wider coding possibilities (e.g. “Male”, “Masculine”, “Female”, and “Feminine”). For

example, one could further specify 2I MK to:

2
1: / / " ",
1: / / "^ | *"I M

O Individual genre Literal M
K or

O Individual genre Literal Match M M
⎧ ⎫==⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

5.5.4 Disjoint bridges

The specification of ConditionExpressions in independent SemanticBridges might not be sufficient

for controlling the execution of the ontology mapping. In fact, definition of ConditionExpressions

ensures that the SemanticBridge is executed only if a condition holds, but it does not ensure that

other bridges are not executed. This would not be a problem in the running example if the

O1:Individual/genre/Literal for each instance of O1:Individual is either “F” or “M”. But, if by

some reason, both values are specified, two O2:Individual instances will be created. This is

considered a semantic error. Similar situation can additionally occur in case no sufficient conditions

or ill-specified conditions are associated with one of the disjoint bridges.

In this particular case, because Indiv2Man and Indiv2Woman are ConceptBridges, the

AlternativeBridge-of-ConceptBridges is applied:

{ }
{ }(){ }

1

1 , 2 , 2

ManOrWoman

ManOrWoman Individual Woman Individual Man

=

⊥ =

C

C

B

B

A

5.5.5 Property Bridges

Once ConceptBridges are defined, PropertyBridges are defined, and further attached to

ConceptBridges. PropertyBridges are responsible for the representation of semantic relations

between properties.

In the running example, two PropertyBridges are necessary:

• name2name, semantically relating O1:Individual/name/Literal with O2:Individual/name/

Literal. This PropertyBridge must copy instances of the source Path to instances of the target

Path. Because both Paths represents ontology attributes, and because a (simple) copy is

necessary between instances, the CopyAttribute Service provides the required transformation

and is therefore attached to the PropertyBridge:

Multi-Dimensional Service-Oriented Ontology Mapping

113

{ } { } { } { } { }()
{ }

{ }

{ }(){ }
{ }(){ }

1 1 1 1

1 1.1

1.1

1 1.1

1.1

1 1.1

1 1.1

2 , , , , , , , , ,

1: / /

2 : / /

,

,

s t s t

s s

s

t t

t

s s

t t

name name CopyAttribute

W

W O Individual name Literal

W

W O Individual name Literal

W sourceAttribute

W targetAttribute

φ φ

φ

φ

=

=

=

=

=

=

=

W W

W

W

• spouseIn2noMariages, which semantically relates O1:Individual/spouseIn/Family with

O2:Individual/noMariages/Literal. The target attribute (O2:Individual/noMariages/Literal)

represents the number of marriages of O2:Individual, which semantically corresponds to the

number of relations O1:Individual has with O1:Family. Therefore, the target attribute should be

instantiated with the number of instances of O1:Individual/spouseIn/Family. The

CountProperties Service fits this requirements, since it counts the number of instances of a

source Path (either AttributePath or RelationPath), and instantiates the target AttributePath with

the evaluated number:

{ } { } { } { } { }()
{ }

{ }

{ }(){ }

2 2 2 2

2 2.1

2.1

2 2.1

2.1

2 2.1

2 2.1

2 : , , , , , , , , ,

:

: 2 : / /

:

: 2 : / /

: ,

: ,

s t s t

s s

s

t t

t

s s

t t

spouseIn noMariages CountProperties

W

W O Individual spouseIn Family

W

W O Individual noMariages Literal

W sourceAttribute

W targetAttri

φ φ

φ

φ

=

=

=

=

=

=

=

W W

W

W

{ }(){ }bute

PropertyBridges are then ◊ -related with ConceptBridges such that the relation respects the

constraint defined in 5.4.7.3, i.e., the root concept of the Paths defined/applied to the

PropertyBridge must be the same concepts of the ConceptBridge to which the PropertyBridge is

◊ -related. Because Paths defined in previous PropertyBridges have the O1:Individual and

O2:Individual as root concepts, both PropertyBridges must be ◊ -related with

Individual2Individual.

{ }(){ }1 2 , 2 , 2Individual Individual name name spouseIn noMariages◊ =

1BP can now be defined as:

{ }1 2 , 2name name spouseIn noMariages=PB

Semantic Bridging

114

5.5.6 Object-Oriented modeling

Notice that the target properties semantically related through the previous PropertyBridges, are not

defined only in O1:Individual, but also in both O2:Man and O2:Woman, due to the object-oriented

modeling approach allowed in the ontology modeling language and applied in this particular

ontology.

If the semantic relation specified in name2name and spouseIn2noMariages are relevant in the scope

of Indiv2Man and Indiv2Woman ConceptBridges too, it is necessary to ◊ -relate these two

PropertyBridges with these ConceptBridges too:

{ }()
{ }()1

2 , 2 , 2 ,

2 , 2 , 2

Indiv Man name name spouseIn noMariages

Indiv Woman name name spouseIn noMariages

⎧ ⎫⎪ ⎪◊ = ⎨ ⎬
⎪ ⎪⎩ ⎭

However, this is not the most appropriate specification, especially because SBO provides object-

oriented modeling constructs capable to address these scenarios. In particular, SBO provides the

following useful constructs:

• Specialization of SemanticBridge into ConceptBridges and PropertyBridges;

• The ≺ relation between ConceptBridges;

• The abstract parameter provided by the CopyInstance (primitive) Service, which is the default

and unchangeable Service associated with ConceptBridge (5.4.7.4).

In the running example, Indiv2Man and Indiv2Woman are ≺ -related with (are sub bridges of)

Individual2Individual:

() (){ }1 2 , 2 , 2 , 2Indiv Man Individual Individual Indiv Woman Individual Individual=≺

Yet, because no O2:Individual instances are expected, but instead instances of either O2:Man or

O2:Woman, O2:Individual is considered an abstract concept and therefore the

Individual2Individual ConceptBridge should not be executed. Preventing the ConceptBridge to

execute is the role of the abstract parameter, provided by the CopyInstance Service. Consequently,

the Individual2Individual definition must be modified in order to encompass this requirement:

{ }()
{ }

(){ }

2 2

2

2

2 1: , 2 : , , ,s
I I I I

I I

s
I I

Individual Individual O Individual O Individual Q

Q true

abstract true

δ

δ

=

=

=

As consequence, the extra ◊ -relations defined earlier in this section are not necessary and are even

redundant.

Multi-Dimensional Service-Oriented Ontology Mapping

115

5.6 Conclusions

One of the SBO main characteristics is its service-based specification, allowing the description of

the ontology mapping system capabilities and its eventual evolution. Table 5.640 summarizes and

compares the support provided by SBO in respect to the required support.

Table 5.6 – Semantic relations characteristics supported by the SBO

Dimensions Characteristics Required support SBO
support

Concept to Concept Yes Full
Concept to Property Yes Full
Property to Concept Yes Partial
Property to Property Yes Full

1. Entity type

Entity to Instance Limited Partial
Set of basic functions Yes Full
Combination of functions Yes Partial 2.1 Function
Integration of new functions Yes Full
Unidirectional Yes Yes
Manually bidirectional Limited No

2.
 T

ra
ns

fo
rm

at
io

n

2.2 Directionality
Automatically Bidirectional Limited No
0:1 Yes n/a
0:n n 0:1 bridges n/a
1:1 Yes n/a
1:n Yes n/a
n:0 Limited n/a
n:1 Yes n/a

3. Cardinality

m:n m:1 and 1:n bridges n/a
Not constrained Yes Full
Ontological entities-based Yes Yes 4. Constraint
Non-ontological entities-based Yes Yes
Object-oriented Yes Yes
Property-centric Yes Yes 5. Structural support
Flow execution control Yes Yes

Some of the required support is not directly addressed by SBO itself, but instead it provides the

mechanisms that will further permit supporting many of the envisaged characteristics. This is for

example the case of the cardinality of the semantic relations that is ultimately defined by the

40 “Partial” means that SBO does not directly and fully supports the characteristic, but provides the

mechanisms for further support it. “n/a” means that the support of the characteristic does not concern to

SBO and is not further addressed. “Full” means that full support is provided for the characteristic

according to the envisaged support. “Yes” is stated in contrast to “Full” to reflect the fact that the

characteristic is supported but due to its nature it is unclear what full support is.

Semantic Bridging

116

available Services. In fact, as been argued in 5.2.2, the transformation dimension of the semantic

relation is one of the most prevalent, preponderant and orthogonal characteristic of the semantic

relation, in what it means, implies and provides to the other characteristics.

Notice that the bidirectionality is not automatically supported by SBO since it has been observed

that this characteristic is highly dependent on the Service. As consequence, its support is provided

by the Service, which is competent to decide its behavior:

• The Service transformation function is bidirectional (bijective function);

• The Service is not able to perform the inverse relation;

• It suggests other Service that would perform the inverse relation;

• No inverse function exists;

• An inverse function eventually exists but no Service performing that function is known.

Example 5.22 – Characterization of Service according to its inverse Service
The concatenation Service may determine that the Split Service is able to perform the
inverse relation of the transformation performed by the concatenation Service.

One of the goals in specifying the Semantic Bridging Ontology has been to minimize new

constructs and to maintain and promote existent ones, especially concerning the representation

languages of the Semantic Web. This approach promotes the SBO acceptance and understanding

by agents and manipulation tools in general, and in the scope of the Semantic Web in particular.

[Maedche et al., 2002b; Silva & Rocha, 2003e]. This has been one of the main reasons why SBO has

been proposed in the Semantic Web representation languages, such as DAML+OIL and RDFS

[SBO].

Notice however, that none of these ontology representation languages is expressive enough to

represent all the constraints defined in SBO. SBO has been partially represented in DAML+OIL

and RDFS, but its fully representation has been done in the implementation only. This is not a

drawback of SBO or of the representation languages, but a simple observation on the expressive

power of current ontology representation languages for the Semantic Web. Because no large

improvements should be necessary, ontology representation languages would not evolve that much

in next years. Instead, a logic and inference layers will be specified above the representation layer

that will expand the specification and proofing capabilities as specifically required (Figure 8.1).

However, due to the formal specification of SBO, multiple notations, syntaxes and representation

mechanisms may be used in the future.

117

Chapter 6

EXECUTION PROCESS

This chapter describes the work developed during this thesis concerning with the execution phase

of the MAFRA - MApping FRAmework. The work described in this chapter has been first

introduced in [Silva & Rocha, 2003d; Silva & Rocha, 2004b].

The first section formalizes the execution phase according to the semantic bridging output, and

generically describes the proposed execution process based on the relation between

ConceptBridges and PropertyBridges. The second section concerns with the details and

formalization of the execution process behind the SemanticBridges. The third section presents the

extensional specification mechanism, developed to overcome the semantic heterogeneity that

requires semantic relations between properties and concepts. The fourth section presents the

develop method to constrain the execution of SemanticBridges according to the evaluated target

instances. The fifth section presents an overview of this chapter and highlights its fundamental

contributions.

Execution process

118

6.1 Execution process overview

The execution process described in this chapter relates with the MAFRA Execution module (4.3.4).

In this phase, a set of source instances give raise to a set of target instances according to the

ontology mapping document M specified in the semantic bridging phase:

() 2 2Τ
s t

⊆ ×I IM

The execution process is directly and intimately related to the semantic bridging phase and to the

semantics of the SBO. Like SBO that distinguishes between ConceptBridge and PropertyBridge,

which in turn reflects the ontology model, the execution process distinguishes between:

• The execution of all ConceptBridges, responsible for transforming all referred source instances

into target concept instances;

• The execution of all PropertyBridges responsible for creating the properties instances for all

created target concept instances.

This process corresponds to the simple flowchart diagram of Figure 6.1:

ConceptBridges
execution

Source KB Target KB

PropertyBridges
execution

 instanceM

Execution flow

Read/write KB
Figure 6.1 –Simple representation of the execution process

The execution process is ultimately dependent on the transformation Services available in the

system. As referred in 5.4.3.1, the transformation Service applied in ConceptBridges is made

implicit and fixed due to its specificities. Instead, Services applied in PropertyBridges change

according to the transformation requirements.

Because concept instances are aggregations of properties instances, and following the approach

described in 5.4.3.1, PropertyBridges are executed for and in the scope of every target concept

instance.

Multi-Dimensional Service-Oriented Ontology Mapping

119

6.1.1 ConceptBridge execution

The CopyInstance Service implicitly associated with ConceptBridges is formally defined as follows:

{ }

"pt.ipp.isep.gecad.mafra.services.transformations.CopyInstance",

, , ,CopyInstance s t s t
CopyInstance CopyInstance CopyInstance CopyInstance

s
CopyInstance

t
CopyInstance

S
Args Args

Args sourceConcept

Args

α α
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
=

={ }
(){ }
(){ }

= ,

= ,

s
CopyInstance

t
CopyInstance

targetConcept

sourceConcept concept

targetConcept concept

α

α

While during semantic bridging phase the CopyInstance Service means that the source ontology

concept is semantically related with the target ontology concept, at execution phase it means that

every instance of source ontology concept will give raise to an instance of the target ontology

concept41.

Every newly created target concept instance is characterized by:

1. The concept it represents, which defines and constrains its semantics and properties;

2. Its unique identification. For every newly created target instance, a (new) identity is associated

with it. Three main reasons justify this decision:

• The target concept instance is different from the source instance, once they are defined

according to two distinct ontologies;

• The target concept instance is defined in a new repository;

• Many target concept instances may arise from the same source concept instance.

Because the properties of target concept instances are created according to the properties of the

source concept instances, it is necessary to relate every target concept instance with the source

concept instance from which it has been generated. Thus, a map relating the every pair of source

and target concept instances is created for every target concept instance created. This information is

named Transformation Information (TI) and takes the form of tuple in the form of:

(): _ _ , _ _TI source concept instance target concept instance=

However, this information must be extended in order to support some other requirements. In

particular, notice that:

• The properties of the target instance are created by the PropertyBridges ◊ -related with the

ConceptBridge responsible for the target instance creation;

41 Later, this specification will be expanded to accommodate some other transformation requirements.

Execution process

120

• The set of PropertyBridges ◊ -related with ConceptBridges varies from ConceptBridge to

ConceptBridge, which means that different PropertyBridges will be executed in the scope of

each target concept instance.

It is therefore necessary to keep track of the ConceptBridge responsible for the transformation of

the target instance. This implies the expansion of the transformation information tuple to:

(): _ _ , _ _ , _TI source concept instance target concept instance concept bridge=

The set of transformation information tuples is named transformation information table, and is

represented by 2TI .

Example 6.1 – Execution process of ConceptBridges
Consider the ontology mapping scenario of Figure 6.2, previously introduced in 5.5.1.
The O1:Family concept has been expanded with “marriage” and “divorce” properties,
relating O1:Family to O1:Event. Additionally, O1:Individual concept is now related with
O1:Event through the “birth” relation.

This very simple ontology mapping scenario permits the description and analysis of the
mechanisms behind the ConceptBridges execution process. Three ConceptBridges are
defined between source and target ontology: Indiv2Indiv, Indiv2Man and Indiv2Woman.
Indiv2Man and Indiv2Woman are sub-bridges of Indivual2Individual and mutually
exclusive.

-given_name
-surname
-noMariages

O2:Individual

-name
-gender

O1:Individual

O2:Man

O2:Woman

sourceConcept targetConcept

targetConcept

sourceConcept

sourceConcept

≺

Indiv2Woman : ConceptBridge

if gender==”F”

Indiv2Man : ConceptBridge

If gender==”M”

Indiv2Indiv : ConceptBridge

abstract=true

AB1 : AB-of-ConceptBridge

⊥
CB

targetConcept

⊥
CB

≺

O1:Family

2

*

spouseIn

+date
O1:Event

*

1

marriage

*

1

birth

*

1
divorce

Figure 6.2 – UML-like representation of ontology mapping scenario

Notice that the notation used to specify the ConditionExpressions (e.g. if gender==”F”)
is a simplification of UML and SBO.

Multi-Dimensional Service-Oriented Ontology Mapping

121

Also, consider the following excerpt of the source knowledge base:

{ }
() () () ()
() () ()

() ()

1 1.1 1.2 1.3 1.4 1.5 1.1 1.2 1.3 1.1 1.2 1.3 1.4

1.1 1.2 1.3 1.4

1 1.5 1.1 1.2 1.3

1.1 1.2

, , , , , , , , , , ,

, , , ,

, , , (),

,

O

O

i i i i i f f f e e e e

Individual i Individual i Individual i Individual i

inst Individual i Family f Family f Family f

Event e Event e

=

=

I

C

() ()
() () ()
() ()

1.3 1.4

1.1 1.2 1.3
1

1.4 1.5

, ,

," " , ," " , ," " ,

," " , ," "O

Event e Event e

gender i M gender i F gender i F
inst

gender i M gender i F

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

P

The execution process upon this scenario is rather straightforward because each source
concept is semantically bridged to a unique target concept. In fact, notice that
Indiv2Indiv ConceptBridge is stated abstract and therefore no O2:Individual instances
will be created. Indiv2Man and Indiv2Woman ConceptBridges are mutually exclusive,
which means that from each O1:Individual instance, a unique target concept instance
(either O2:Man or O2:Woman) will be created. Accordingly, the transformation
information respecting this scenario corresponds to the following set:

() () ()
() ()

1.1 2.1 1.2 2.2 1.3 2.32
1 2

1.4 2.4 1.5 2.5

, , 2 , , , 2 , , , 2 ,

, , 2 , , , 2O O

i i Indiv Man i i Indiv Woman i i Indiv Woman
TI

i i Indiv Man i i Indiv Woman−

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

Previous information corresponds to the following table-based representation:

Table 6.1 – Table-based representation of the Transformation Information Table (2
1 2O OTI −)

Source Concept
Instance ID

Target Concept
Instance ID ConceptBridge

i1.1 i2.1 Indiv2Man
i1.2 i2.2 Indiv2Woman
i1.3 i2.3 Indiv2Woman
i1.4 i2.4 Indiv2Man
i1.5 i2.5 Indiv2Woman

Accordingly, the target knowledge base will contain the following instances:

{ }
() () () () (){ }

2 2.1 2.2 2.3 2.4 2.5

2 2.1 2.2 2.3 2.4 2.5

, , , ,

, , , ,
O

O

i i i i i

inst Man i Woman i Woman i Man i Woman i

=

=

I

C

6.1.2 PropertyBridge execution

PropertyBridges run in the scope of every target concept instance. Because the ConceptBridge

responsible for the target concept instance creation is known through 2TI , it is possible to

enumerate all PropertyBridges that should be executed for each target concept instance.

Moreover, due to the ≺ relation between ConceptBridges, the sub bridges inherit the

PropertyBridges from their super bridges, as described in 5.4.7.4 and exemplified in 5.5.6.

Each PropertyBridge is executed, and its outcome associated with the target concept instance in

which the PropertyBridge runs for.

Execution process

122

Example 6.2 – Execution process of PropertyBridges
Consider the mapping scenario of section 5.5 where the name2names and
spouseIn2noMarriages PropertyBridges are defined and ◊ -related with Indiv2Indiv
ConceptBridge. Figure 6.3 illustrates this scenario using the UML notation.

Link14

-given_name
-surname
-noMariages

O2:Individual

O2:Man

O2:Woman

sourceConcept targetConceptIndiv2Indiv : ConceptBridge

abstract=true

spouseIn2noMarriages : PropertyBridge

name2names : PropertyBridge

location = ...mafra.CountProperties
CountProperties : Service

location = ...mafra.Split
Split : Service

◊◊

-name
-gender

O1:Individual

O1:Family

2

*

spouseIn

+date
O1:Event

*

1

marriage

*

1

birth

*

1
divorce

Figure 6.3 – PropertyBridges representation in UML

Also, consider the following knowledge base that extends the previously presented
knowledge base, by defining some Literals and property instances:

{ }
() () () ()
() () () ()

() ()

1 1.1 1.2 1.3 1.4 1.5 1.1 1.2 1.3 1.1 1.2 1.3 1.4

1.1 1.2 1.3 1.4

1 1.5 1.1 1.2 1.3

1.1 1.2

, , , , , , , , , , ,

, , , ,

, , , ,

, ,

O

O

i i i i i f f f e e e e

Individual i Individual i Individual i Individual i

inst Individual i Family f Family f Family f

Event e Event e E

=

=

I

C

() ()
() () () ()
() () ()

()

1.3 1.4 1.5

1.1 1.2 1.3 1.4

1.5 1.1 1.5 1.5

1.1 1.2

1

, (),

," " , ," " , ," " , ," " ,

," " , , , ,1769 ,

," " , ,"

O

vent e Event e Event e

gender i M gender i F gender i F gender i M

gender i F birth i e date e

name i Napoleon Bonapart name i Joséph

inst

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

=P

()
() ()
()

() () ()
() ()

1.3 1.4

1.5

1.1 1.1 1.1 1.2 1.2 1.1

1.3 1.2 1.4 1.3 1.5

" ,

," " , ," " ,

," " ,

, , , , , ,

, , , , ,

ine de Tasher

name i Marie Louise de Austria name i William Clinton

name i Hillary Rodham

spouseIn i f spouseIn i f spouseIn i f

spouseIn i f spouseIn i f spouseIn i

−

()
() ()
() ()

() () () ()

1.3

1.1 1.1 1.1 1.2

1.2 1.3 1.3 1.4

1.1 1.2 1.3 1.4

,

, , , ,

, , , ,

,1796 , ,1810 , ,1810 , ,1975

f

marriage f e divorce f e

marriage f e marriage f e

date e date e date e date e

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

Multi-Dimensional Service-Oriented Ontology Mapping

123

Previous knowledge based corresponds to the following table-based representation
(Table 6.2):

Table 6.2 - Table-based representation of knowledge base

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Family

Individual/
birth/
Event

i1.1 “Napoleon Bonapart” “M” f1.1 e1.5

i1.1 “Napoleon Bonapart” “M” f1.2 e1.5

i1.2 “Joséphine de Tasher” “F” f1.1

i1.3 “Marie-Louise de Austria” “F” f1.2
i1.4 “William Clinton “M” f1.3
i1.5 “Hillary Rodham” “F” f1.3

Event/

ID/
Literal

Event/
date/
Literal

e1.1 1796
e1.2 1810
e1.3 1810
e1.4 1975
e1.5 1769

Family/
ID/

Literal

Family/
marriage/

Event

Family/
divorce/

Event
f1.1 e1.1 e1.2
f1.2 e1.3
f1.3 e1.4

PropertyBridges execution will run for every target concept instances. Considering the
previously presented 2TI , i1.1 and i1.4 instances have been created by the Indiv2Man
ConceptBridge. No PropertyBridge has been directly ◊ -related with Indiv2Man. Yet,
Indiv2Man is sub bridge of Indiv2Indiv thus inheriting its ◊ -related PropertyBridges:
name2names and spouseIn2noMarriages. Equivalent situation occurs for the i1.2, i1.3 and
i1.5 instances through Indiv2Woman ConceptBridge. The target knowledge base becomes
therefore:

{ }
() () () () (){ }

() ()
() ()

2 2.1 2.2 2.3 2.4 2.5

2 2.1 2.2 2.3 2.4 2.5

2.1 2.2

2.3 2.4

2

, , , ,

, , , ,

_ ," " , _ ," " ,

_ ," " , _ ," " ,

O

O

O

i i i i i

inst Man i Woman i Woman i Man i Woman i

given name i Napoleon given name i Joséphine

given name i Marie Louise given name i William

giv

inst

=

=

−

=

I

C

P

() ()
() ()
() ()

() () ()

2.5 2.1

2.2 2.3

2.4 2.5

2.1 2.2 2.3

_ ," " , ," " ,

," " , ," " ,

," " , ," " ,

,"2" , ,"1" , ,"1" ,

en name i Hillary surname i Bonapart

surname i de Tasher surname i de Austria

surname i Clinton surname i Rodham

noMarriages i noMarriages i noMarriages i

noMar () ()2.4 2.5,"1" , ,"1"riages i noMarriages i

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

Despite no internal process details have been presented so far, this generic description shows that

the essence of the ontology mapping execution phase process is very clear and maintains the

essence of SBO philosophy.

Execution process

124

6.2 Internal process

During the semantic bridging phase, Paths are applied in establishing the ontology entities

semantically related in the SemanticBridge, which are applied in the execution phase both in

accessing the source knowledge base and creating new target knowledge base instances. Paths are

therefore the basic elements for reading and writing knowledge bases.

The execution process is divided into three phases:

1. Querying the source knowledge base according to the source Paths defined in the

SemanticBridges, which result in particular views upon the source concept instances;

2. Filter the knowledge base query according to ConditionExpressions, constraining the view of

the properties values of the source concept instances, previously evaluated;

3. Create the target knowledge base instances according to the filtered properties instances

evaluated in previous phase.

Next sections will describe each of these three phases.

6.2.1 Querying the source knowledge base

In order to describe the developed approach, the relational data model [Codd, 1970] and the

corresponding relational algebra will be used. Annex 1 provides simple insights on the

fundamentals of the relational data model as used during this thesis.

Paths are treated equally independently if they are applied in SemanticBridges as arguments for

Services or in ConditionExpressions. Notice that only the source Paths defined in the

SemanticBridge are considered in this phase. Each source Path corresponds to a specific

perspective of the source concept instance according to the properties values.

As referred in 6.1, SemanticBridges are always executed in the scope of a source concept instance

(SCI), which corresponds to all property values of the instance, i.e. the Cartesian product of all

property values. This corresponds to a table whose attributes correspond to the concept properties

and the attributes values are the properties values. The KB querying always occurs upon a source

concept instance (SCI). Table 6.3 is the table-based representation of the i1.1 SCI .

Table 6.3 - Table-based representation of the i1.1 source concept instance

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Family

Individual/
birth/
Event

i1.1 “Napoleon Bonapart” “M” f1.1 e1.5

i1.1 “Napoleon Bonapart” “M” f1.2 e1.5

Multi-Dimensional Service-Oriented Ontology Mapping

125

A single step Path query results in a certain perspective of the SCI . In fact, because the property

specified in the unique Step is in SCI , query the KB through a single step Path corresponds

algebraically to project SCI according to the first and unique Step of the Path.

These relational operations are denoted by the λ operator:

[]1:Path PathT Tλ π=

where:

• T is any valid set of source concept instances (a table) or SCI ;

• []1Path is the first Step of the Path, which in this case is unique.

Notice that the query operation is based on the Path and not on the Step of the Path. In this

particular case, because the Path is composed by one single Step, the result is the same.

Example 6.3 – Querying a single-Step Path

The / / 1.1Individual spouseIn Familyiλ operation upon the knowledge base presented in section 6.1

results in the set { }1.1 1.2,f f , since source instance 1.1i has two instances of spouseIn
property. This corresponds in natural language to state that “Napoleon Bonapart married
twice”. Table 6.4 is the table-based representation of previous operation:

Table 6.4 – Result of the single-Step Path query

Individual/spouseIn/Family
f1.1

f1.2

Querying the KB through multi-step Paths is more complicated. Pragmatically, it corresponds to

enumerate all values of the last Step in the Path, such there is a relationship from the source

concept instance through every Step of the Path. Algebraically, it corresponds to consecutively “left

join” the concepts defined in the Path. Adopting an experimental approach, querying a SCI

through a Path with n Steps corresponds to:

() ()

() ()

() ()

()

1 1 1 1

2 2 2 2

1 1 1 1

1 1/ / , / /

2 1 2/ / , / /

1 2 1/ / , / /

/ 1

|

|

...
|

n n n n

n

S P O O ID Literal

S P O O ID Literal

n n nS P O O ID Literal

n Path Path Step n

T SCI O

T T O

T T O

T Tπ ρ
− − − −− − −

−

= ∗

= ∗

= ∗

=

where:

• iS and iP are respectively the subject and predicate of the Step of order i in the Path;

• iO corresponds to:

• The object of the Step of order i in the Path, when used as a parameter to the operator;

Execution process

126

• To the instances of concept iO when used in place of a table.

Previous operations can be systematized into the recursive λ operator as follows:

[] () [] []()()
[] []

[] [] [] ()
[] () ()

1 , 1/

/ / ,

, 1 , 1

/ / / / , / /

1 :

[2] :

3 :

4 : |

Path Path Path Path PathPath Path length Path

S P O

Step Path StepPath Path Path

S P O S P O O ID Literal

T T

T T

T T

T T O

λ π ρ η

η

η η ω

ω

−⎡ ⎤⎣ ⎦

−

=

=

=

= ∗

This operator comprehends four distinct phases, inversely described for better explanation:

[4] For each Step in the Path, a left join operation is performed between the table resulting from

previous Steps (T) and the table representing the instances of object concept (O). The join

attributes are the current Step (/ /S P O) and the ID attribute of the object concept table;

[3] Previous operation will be executed for each Step in the Path except for the last Step (line [2]).

The table resulting from the query of each Step will be applied as the input table for the next

Step;

[2] For the last Step of the Path no query operation is required since all the attributes of the subject

are already presented in the table;

[1] Because the query corresponds to a table with one column named after the Path, it is necessary

to project the last column into a 1-column table and rename it to Path.

Example 6.4 – Left-join operation of a forward Step

Figure 6.4 depicts this situation for the / /Individual spouseIn FamilyTω operation. T is the left

table in the figure, which corresponds to the 1.1i instance of previous KB42.

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
spouseIn/

Family
i1.1 “Napoleon Bonapart” f1.1
i1.1 “Napoleon Bonapart” f1.2

|∗
Family/

ID/
Literal

Family/
marriage/

Event

Family/
divorce/

Event
f1.1 e1.1 e1.2
f1.2 e1.3
f1.3 e1.4

join attributes

Figure 6.4 – Schematic representation of the left-join attributes in a forward Step

42 The O1:Individual/gender/Literal and O1:Individual/birth/Event properties are not represented in the

table in order to maintain the scenario as simple as possible. The same approach is followed in the next

examples.

Multi-Dimensional Service-Oriented Ontology Mapping

127

The result of previous left-join operation is presented in Table 6.5:

Table 6.5 – Query result of / / 1.1Individual spouseIn Familyiω operation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
spouseIn/

Family

Family/
ID/

Literal

Family/
marriage/

Event

Family/
divorce/

Event
i1.1 “Napoleon Bonapart” f1.1 f1.1 e1.1 e1.2
i1.1 “Napoleon Bonapart” f1.2 f1.2 e1.3

However, this query operator works only for forward Paths, i.e. Paths composed only by Steps

whose direction attribute is set to “forward”. Yet, as defended in 5.2.2.2 and further supported in

SBO, backward Steps (backward Paths) are a fundamental construct in ontology mapping, that

should therefore reflect distinct but coherent queries.

Because directionality is defined in the scope of each Step, and because line [2] and line [4] are the

only lines that process Steps, the changes required in λ operator are concentrated in these lines.

Backward Step (S\P\O) determines all instances of concept O that relate to instances of S through

property P.

Example 6.5 – Left-joint operation of a backward Step
Consider the Individual/spouseIn/Family\spouseIn\Individual Path that represents the
Individuals that are married in the same Families.

Because the first Step of the Path is the same as the Path applied in previous example,
this example concerns with the \ \Family spouseIn IndividualTω operation only. Thus, input table
T corresponds to the table resulting from previous example (Table 6.5). Figure 6.5
illustrates the left join operation between T (partially presented) and the instances of the
subject concept defined in next Step.

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
spouseIn/

Family
i1.1 “Napoleon Bonapart” f1.1
i1.1 “Napoleon Bonapart” f1.2
i1.2 “Joséphine de Tasher” f1.1
i1.3 “Marie-Louise de Austria” f1.2
i1.4 “William Clinton” f1.3
i1.5 “Hillary Rodham” f1.3

 Family/
ID/

Literal

Family/
marriage/

Event

Family/
divorce/

Event
 f1.1 e1.1 e1.2
 f1.2 e1.3

join attributes

|∗

Figure 6.5 – Schematic representation of left-join attributes in a backward Step

Execution process

128

The result of previous left join operation is presented in Table 6.6:

Table 6.6 – Query result of \ \Family spouseIn IndividualTω operation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
spouseIn/

Family

Family/
ID/

Literal

Family/
marriage/

Event

i1.1 “Napoleon Bonapart” f1.1 f1.1 e1.1
i1.1 “Napoleon Bonapart” f1.1 f1.1 e1.1
i1.1 “Napoleon Bonapart” f1.2 f1.2 e1.3
i1.1 “Napoleon Bonapart” f1.2 f1.2 e1.3

Family/
divorce/

Event

Individual\
ID\

Literal

Individual\
name\
Literal

Individual\
spouseIn\

Family
e1.2 i1.1 “Napoleon Bonapart” f1.1
e1.2 i1.2 “Joséphine de Tasher” f1.1

 i1.1 “Napoleon Bonapart” f1.2
 i1.3 “Marie-Louise de Austria” f1.2

In order to support backward Paths, the λ operator should be extended to:

[] () [] []()()
[] []

[] [] () () () ()()
[] [] [] ()
[] () ()

[]

1 , 1/

/ / ,

\ \ , \ \ , / / / / , / /

, 1 , 1

/ / / / , / /

\ \

1 :

[2.1] :

[2.2] : |

3 :

4.1 : |

4.2

Path Path Path Path PathPath Path length Path

S P O

S P O S P O O P S S ID Literal O P S

Step Path StepPath Path Path

S P O S P O O ID Literal

S P

T T

T T

T T O

T T

T T O

λ π ρ η

η

η ρ

η η ω

ω

ω

−⎡ ⎤⎣ ⎦

−

=

=

= ∗

=

= ∗

() ()/ / , / /: |O S ID Literal O P ST T O= ∗

From the previous specification, two lines have been extended:

• Line [2] gave rise to line [2.1] and line [2.2]. While line [2.1] corresponds to line [2] of previous

definition, line [2.2] has been added to addresses backward Steps. Unlike last forward Steps of

the Path, whose attributes are present in the input table (T) and therefore no operation is

required, in backward Steps a left join operation is necessary between T and the table that

represents the subject of the backward Step (O). The rename operation is necessary because of

the rename operation in line [1], which expects a Step as it is specified in the Path (backward

Step) an not as it is represented in the table (forward Step);

• Line [4] gave rise to line [4.1] and [4.2]. While line [4.1] is identical to line [4] of previous

specification, line [4.2] processes the backward Step as in line [2.2] (except the rename operation

that is not necessary).

Multi-Dimensional Service-Oriented Ontology Mapping

129

This version of the λ operator provides the functionalities for querying both single-Step and multi-

Step Paths and therefore it fully substitutes the previous specification. Still, it will be slightly

modified later (6.2.1.2) to address a special requirement.

This operation is executed for every Paths of the SemanticBridge and the outcome is a table for

every Path (PathT) whose unique column is also named after the Path.

Example 6.6 – Querying through a multi-Step backward Path

From the knowledge base presented in 6.1, the 1.1Individual/spouseIn/Family\spouseIn\Individualiλ results
in Table 6.7:

Table 6.7 – Result of the query through a multi-Step backward Path

Individual/spouseIn/Family\spouseIn\Individual
i1.1
i1.2
i1.1
i1.3

This corresponds to enumerate all the Individuals involved in the marriages in which
“Napoleon Bonapart” is involved, including himself.

This phase proceeds by combining the n 1-column tables into one n-column table. The simplest

method to combine tables is through the Cartesian product:

1 2
: ...

nPath Path PathT T T T= × × ×

However, in some cases, Paths in the same SemanticBridge have sub-Paths in common, which

causes referential constraints between Path queries. In such cases, the Cartesian product is

meaningless and derives semantic errors.

Example 6.7 – Querying multiple Paths without addressing referential constraints
Consider that the following Paths have been defined in the same SemanticBridge:

• Individual/spouseIn/Family

• Individual/spouseIn/Family/marriage/Event/date/Literal

The Cartesian product of these Paths, upon the i1.1 SCI of the knowledge base presented
in Example 6.2, is represented in Table 6.8:

Table 6.8 – Cartesian product of the two previous tables

Individual/spouseIn/Family Individual/spouseIn/Family/
marriage/Event/date/Literal

f1.1 1796
f1.1 1810
f1.2 1796
f1.2 1810

Execution process

130

As noticeable, some of previous relations are semantically incorrect. For example, Family
f1.2 has no relation with the date of 1796.

Therefore, the combination of tables based on Cartesian product is admissible only between Paths

without common parts. In case Paths share a common initial sub-Part, a slightly different process is

necessary in order to comply with referential constraints.

To describe and systematize the necessary combination process, an experimental approach is

followed. Consider the following Paths:

• Individual/spouseIn/Family

• Individual/spouseIn/Family/marriage/Event/date/Literal

• Individual/spouseIn/Family/divorce/Event/date/Literal

Notice that both have the first Step in common (i.e. Individual/spouseIn/Family), as required by

constraints in 5.4.7.3. The result of the query based on this Step constrains the query of the next

Steps. Therefore, a “left join” operation is required between the table resulting from the common

sub-Path query, and the tables resulting from the query for the rest of the Paths. The results of the

rest of the Paths are left joined through the common Path attribute (referential constraint). The

necessary operations are as follows:

()

0

1

2

0 / / , / /

/ /
/ / / / / /
/ / / / / /

| Individual spouseIn Family Family ID Lite

Path Individual spouseIn Family
Path Individual spouseIn Family marriage Event date Literal
Path Individual spouseIn Family divorce Event date Literal
S SCI

=
=
=

= ∗ ()

() () ()()()
() ()

01

02

1 , / / 0/ / / / / , / /

2 , / / 0/ / / / / , / /

|

|

ral

Path Event date LiteralPath Event date Literal Family marriage Event Event ID Literal

Path Event date LiteralPath Event date Literal Family divorce Event Event ID Lite

Family

S S Event

S S

ρ π

ρ π

= ∗

= ∗ ()()()
() ()0 01 2,| *

ral

final Path Path

Event

T S S=

Executing previous operations for the 1.1i SCI , FinalT would correctly result in Table 6.9:

Table 6.9 – Multiple Paths with common sub-Path querying

Individual/spouseIn/
Family

Individual/spouseIn/Family/
marriage/Event/

date/Literal

Individual/spouseIn/Family/
divorce/Event/

date/Literal
f1.1 1796 1810
f1.2 1810

The previous experimental process can be systematized into the following steps:

• Query the KB according to common sub Path (0S);

• The resulting table is “left joined” with the query of distinct branches of the Path (1S and 2S);

Multi-Dimensional Service-Oriented Ontology Mapping

131

• The query of every distinct branch is combined with the others through the left join operation,

whose join attributes is the common sub-Path.

Because the described process depends on the characterization of Paths according to their

common/distinct parts, it is necessary to represent Paths accordingly.

6.2.1.1 Tree-based representation of Paths

The specified solution adopts a tree-based representation of Paths, in which the tree nodes

represent the common sub-Paths and the tree branches represent the distinct sub-Paths.

Two or more Paths are considered distinct if their first Step is different from each other. In such

case they are represented in different branches of the tree. Instead, if they have the first Step in

common they (partially) belong to the same branch of the tree. In case two or more Paths have

distinct first Steps but share certain sub-Path after the first Step, these Paths are still considered

distinct.

Example 6.8 – Paths with common sub-Paths
Consider the UML representation of the ontology presented in Figure 6.6 and the
following Paths upon the ontology, all applied in the same SemanticBridge:

1. 1: / /O Individual spouseIn Family

2. 1: / / / / / /O Individual spouseIn Family marriage Event date Literal

3. 1: / / / / / /O Individual spouseIn Family divorce Event date Literal

4. 1: / / / /O Individual birth Event date Literal

O1:Family

O1:Individual

spouseIn

+date
O1:Event

marriage

birth

divorce

Figure 6.6 – UML representation of ontology

Execution process

132

Observe that first, second and third Paths have the same first Step (i.e.
Individual/spouseIn/Family). Therefore they belong to the same branch of the tree.
Instead, fourth Path belongs to a different branch even if they all share the
Event/date/Literal sub-Path.

The common sub-Path of a branch of the tree is the longest sub-Path that is common to all Paths

in the branch. Hence, the common sub-Path of a branch can be longer than one-Step. The distinct

sub-Paths in a branch form sub-branches, which in turn are treated as any other branch, with

common sub-Path and distinct sub-Paths. Accordingly, the adopted tree-based representation of

Paths is defined according to the following recursive structure:

:: *
:: ,

BRANCHES BRANCH
BRANCH PATH BRANCHES

=
=

PATH is a Path specified in the SemanticBridge, or a sub-Path common to all (sub-)

BRANCHES of the tuple.

Example 6.9 – Tree-based representation of Paths
The Paths of Example 6.8 are represented in the following tree-based structure. Because
this example will be used later, every component of the Paths is explicitly named.

{ }

{ }

{ }

{ }
{ }

1 1 1 1 2

1 1 1 1 1 1

1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 1 1

1 1 1

1 1 2 1 1 2 1 1 2

1 1 2

1 2 1 2

,

,

,

,

,

,

O O O

O O O D

O D O O

O O O D

O D

O O O D

O D

O O

O

Paths Paths Paths

Paths CP Paths

Paths Paths Paths

Paths CP Paths

Paths

Paths CP Paths

Paths

Paths CP

CP

− −

− − −

− − − − −

− − − − − −

− −

− − − − − −

− −

− −

=

=

=

=

=

=

=

=

1 1

1 1 1

1 1 2

1 2

/ /
/ / / /
/ / / /

/ / / /

O

O

O

Individual spouseIn Family
CP Family marriage Event date Literal
CP Family divorce Event date Literal
CP Individual birth Event date Literal

−

− −

− −

−

=
=
=

=

To access and manipulate this information structure, three constructs have been specified:

• []Paths n provides access to the nth branch defined in the Paths tree-based representation of

Paths.

Example 6.10 – Array-like access to tree-based represented Paths
Considering the previously defined tree-based representation of Paths,
then []1 1 11O OPaths Paths −==

Multiple levels can be specified to access nested branches using the array-like

nomenclature [][] []..Paths n m x .

Multi-Dimensional Service-Oriented Ontology Mapping

133

Example 6.11 – Multi-dimension array-like access to tree-based represented Paths

Considering again previous Paths, then [][]1 1 1 21 2O OPaths Paths − −== ;

• ()distinctBranches Branch returns the set of all distinct branches of a branch.

Example 6.12 – Retrieving distinct Branches of tree-based represented Paths
The set of distinct branches for the “Individual/spouse/Family” branch of previous
Paths (i.e. []1 1OPaths), is defined by []()1 1 1distinctBranches 1O O DPaths Paths −== ;

• ()commonPath Branch returns the Path that is common to all distinct branches of Branch .

Example 6.13 - Retrieving the common Path of a tree-based represented Path

The Path common to all Paths belonging to the first branch of 1OPaths is defined by:

[]()1commonPath 1 / /OPaths Individual spouseIn Family== .

6.2.1.2 Tree-based query

Querying the knowledge base according to previous tree-based representation of Paths

comprehends the following operations:

• Query KB according to each distinct branch and combine them either through:

• The Cartesian product if they have no attributes in common;

• The left join if they share a sub-Path;

• Process every distinct branch as follows:

• Query the KB according to the branch common sub-Path based on previous table;

• The resulting table serves as input for querying KB according to every distinct branch of the

sub-Path.

This corresponds to the following ϕ operator:

[] { }

[] []() [] []()[] []()[]()()
[] { }

[] []() () () []()
[]

1 1 ,commonPath 1 1 commonPath 1 1

,

, 1 , 1 ,,

, di

1 :

2 :

3 :

4 : | *

5 :

Branches Branches Branches Branches Branches Branches

PathP

Branches PathP Branches Branches PathP Branches PathPPathP PathP

Branch PathP

T T

T T T

T T

T T T

T

ϕ

ϕ ϕ τ π

ψ

ψ ψ τ

τ ψ

−

−

=

= ×

=

=

= () ()()
[] () () ()

sjointBranches ,commonPath() commonPath ,

, ,,6 : |

Branch Branch Branch PathP

Path PathP Path PathPPathP PathP

T

T T T

υ

υ λ= ∗

Execution process

134

These lines correspond to the following processes:

[1] This line corresponds to the stop condition when dispatching for processing Paths that have

only the root concept in common (e.g. / /Individual spouseIn Family and

/ / / /Individual birth Event date Literal);

[2] This line dispatches every of those distinct Paths for processing. The input table is projected

(π) in order to maintain only the attribute corresponding to the first Step of the Path

(e.g. / /Individual birth Event). This attribute will serve as join attribute in next lines. Resulting

tables are combined through the Cartesian product because they have no attribute in common;

[3] This line corresponds to the stop condition when dispatching distinct branches of Paths that

have a common sub-Path;

[4] This line dispatches every distinct branch of the Path for processing. The resulting tables are left

joined through the attribute corresponding to the common sub-Path of the branches;

[5] This line queries the KB according to every branch. The first part of the line dispatches the

distinct sub-branches of the branch for processing. The second part of the line dispatches the

common Path of the branch for query. The result will serve as input for the first part of the line;

[6] This line left joins the input table with the table resulting from the query of the common Path.

The first Step of the Path will serve as join attribute in the first iteration, but in subsequent

iterations the common Path will serve as join attribute. The result of this line is a table with one

more column than the input table.

Notice that line [6] makes use of the λ operator. However, the current λ specification does not

conform to line [6] requirements. In particular, remark that the output of the λ operator is a one-

column table (named after Path). However, besides this column, it is necessary another column that

allows the left join with the input table. Accordingly, in order to inform the λ operator that

another column is to maintain in the resulting table, a new parameter is necessary (PathP).

Furthermore, this parameter will also serve as the first Step of the query. This is necessary because

the input table does not contain all attributes of the subject but only the attributes that result from

the query process (e.g. the initial input table is projected into a one-column table). In that sense it is

necessary to inform the λ operator about the initial join attribute. Therefore, the PathP

parameter will be also used by the η operator as the first Step of the query process.

Therefore, while lines [2]-[5] require no changes, line [1] of the λ operator has to be changed to:

[] ()(), , / [()] ,1 :Path PathP Path PathP Path Path length Path Path PathPT Tλ π ρ η=

This corresponds to the ultimate specification of the λ operator.

Multi-Dimensional Service-Oriented Ontology Mapping

135

Example 6.14 – Querying KB through multiple tree-based represented Paths

Considering previous tree-based representation of Paths,
1OPaths SCIϕ would correspond

to the annotated diagram of Figure 6.7:

01 1CP −

1 1 2OCP − −

O1:Family

O1:Individual

spouseIn

+date
O1:Event

marriage

birth

divorce

1 1 1OCP − −

()

1 1 1

1 2

1 1 1 1 1 1 1 1 1 1

1 2 2 1 2 1 2 1 2 2

, / /

, / /

, , ,

, , ,

O O

O

O O D O O

O O D O O

Paths Paths Individual spouseIn Family

Paths Individual birth Event

Paths PathP Paths CP CP PathP

Paths PathP Paths CP CP PathP

SCI SCI

SCI

SCI SCI

SCI SC

ϕ τ
τ

τ ψ υ

τ ψ υ

−

−

− − − −

− − − −

= ×

=

= ()
() () ()
() () ()

() () () ()

1 1 1 1 1 11 1

1 2 2 1 2 22 2

1 1 1 1 1 1 1 1 1 1 1 2 1 11 1 1 1

1 2

, ,,

, ,,

, 1 , 1 , 1,

,

|

|

| *

O O

O O

O D O O O O OO O

O D O

CP PathP CP PathPPathP PathP

CP PathP CP PathPPathP PathP

Paths CP Paths CP Paths CPCP CP

Paths CP

I

SCI SCI SCI

SCI SCI SCI

T T T

υ λ

υ λ

ψ τ τ

ψ

− −

− −

− − − − − − − −− −

−

= ∗

= ∗

=

()
()

() () ()

1 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 1

1 1 1 1 1 1 1 1 1 11 1 1 1

1 1 2 1

2 2

, 1 , , 1

, 1 , , 1

, 1 1 , 1,

,

|

O O O D O O O

O O O D O O O

O O O OO O

O O

Paths CP Paths CP CP CP

Paths CP Paths CP CP CP

CP CP CP CPCP CP

CP CP

T T

T T

T T

T T T

τ ψ υ

τ ψ υ

υ λ

υ

−

− − − − − − − − − −

− − − − − − − − − −

− − − − − −− −

− −

=

=

=

= ∗

() () ()1 1 1 2 1 11 1 1 1

1 1 1 1 1 1

1 1 2 1 1 1

1 1 , 1,

, 3 3

, 4 4

|
O OO O

O D O

O D O

CP CPCP CP

Paths CP

Paths CP

T T T

T T

T T

λ

ψ
ψ

− − − −− −

− − − −

− − − −

= ∗

=

=

1T

2T

3T

4T

1 2OCP −

Figure 6.7 – Querying KB through Paths with and without common sub-Paths

The result of this phase is therefore an n-column table corresponding to the query of the tree-based

representation of Paths. Table 6.10 presents the query result of previous Paths for instance 1.1i :

Table 6.10 - Query result of operation
1 1.1OPaths iϕ

Individual/
spouseIn/Family

Individual/
spouseIn/Family/
marriage/Event/

date/Literal

Individual/
spouseIn/Family/

divorce/Event/
date/Literal

Individual/
birth/Event/
date/Literal

f1.1 1796 1810 1769
f1.2 1810 1769

For each branch in the tree-based representation of Paths a table column is delivered. However, in

some circumstances not all delivered columns are required by the original Paths.

Example 6.15 – Useless query generated columns
Consider that, instead of previous four Paths, the first one is not specified in the
SemanticBridge. Despite of this, the tree-based representation of the three Paths is the
same in both cases. In fact, while the “Individual/spouseIn/Family” Path is not explicitly
stated in the second case, it still appears in the tree-based representation of second case
because it is the common sub-Path of both Path2 and Path3. As consequence, the

Execution process

136

resulting table would include the “Individual/spouseIn/Family” attribute, even if it is not
explicitly specified by original Paths.

Yet, because property values are accessed through the fully qualified Path, the existence of non-

explicit Paths in the resulting query causes no problems and may be maintained in the resulting

query.

6.2.2 Filter the knowledge base query

It is now time to filter the rows of the resulting query table according to the ConditionExpression

defined in the SemanticBridge.

Because every source Path defined in the ConditionExpression has been also included in the tree-

based representation and in the resulting query, the evaluation of ConditionExpressions runs for

every row in the table.

Algebraically, this phase corresponds to a Select operation in the form of:

(): ConditionExpression PathsFQ SCIσ ϕ=

This table is referred as the Filtered Query (FQ) table.

Example 6.16 – Filtering queries
Consider that the following ConditionExpression is associated with the SemanticBridge
that gave rise to previous table (Table 6.10):

{ }1 / / / / / / 1800Individual spouseIn Family marriage Event date Literal= >K

The resulting table would be:

Table 6.11 - FQ table resulting from ()1 1 1.1OK Paths iσ ϕ operation

Individual/
spouseIn/Family

Individual/
spouseIn/Family/
marriage/Event/

date/Literal

Individual/
spouseIn/Family/

divorce/Event/
date/Literal

Individual/
birth/Event/
date/Literal

f1.2 1810 1769

6.2.3 Create the target knowledge base instances

The transformation Service associated with the SemanticBridge will be executed for every row in

the resulting table, creating a target ontology instance for each row.

As suggested and enumerated in 5.2.2, several transformation Services are envisaged. Some of the

most commonly used are described next:

• CopyAttribute Service copies (no changes) source attribute instances into new target attribute

instances. Its interface is depicted in Table 6.12.

Multi-Dimensional Service-Oriented Ontology Mapping

137

Table 6.12 – CopyAttribute Service interface

Argument ID Type Semantics
Source Attribute AttributePath Source ontology attribute whose instances will be copied.
Target Attribute AttributePath Target ontology attribute in which instances will be created.

• CopyRelation Service transforms source property instances into target relations. Its interface is

depicted in Table 6.13:

Table 6.13 – CopyRelation Service interface

Argument ID Type Semantics
Source Path Path Source ontology path for each path the bridge will be executed.
Target Path RelationPath Target ontology path to create.

The CopyRelation Service is a special Service concerning its role in the system. In particular,

CopyRelation is responsible for the creation of relationships (relation instances) between target

concept instances. It is understood as a built-in, seldom-evolving Service. Despite this

categorization, its behaviour and application in PropertyBridges follows the same rules as any

other Service. It will be deeply described, analyzed and deployed during the rest of this chapter.

In that sense, do not consider this the ultimate description of the CopyRelation Service;

• Split Service transforms the instance of one source attribute into one instance of multiple target

attributes. It takes the source attribute instance (i.e. Literal) and divides it by the Literals

provided in the Separator parameter. Its interface is depicted in Table 6.14:

Table 6.14 – Split Service interface

Argument ID Type Semantics

Source Attribute AttributePath Source ontology attribute whose instances will be
splited.

Separators ArrayOfLiterals Literals or regular expressions to split by.
Target Attributes ArrayOfAttributePaths List of target attributes to create with splited values.

• Concatenation Service concatenates several attribute instances into one target attribute instance.

The strings defined through the Separators parameter are concatenated between every two

source instances. Its interface is depicted in Table 6.15:

Table 6.15 – Concatenation Service interface

Argument ID Type Semantics

Source Attributes ArrayOfAttributePath List of source attributes whose instances will be
concatenated.

Separators ArrayOfLiterals Literals to concatenate between attribute values.
Target Attribute AttributePath Target attributes to create with concatenated values.

Execution process

138

• RegularExpressionSubstring Service creates a target attribute instance from the first occurrence

in the text (of the source attribute instance) that matches the value in Regular Expression

parameter. Its interface is depicted in Table 6.16:

Table 6.16 – RegularExpressionSubstring Service interface

Argument ID Type Semantics

Source Attribute AttributePath Source ontology attribute whose instances will
be scanned.

Regular Expression ArrayOfLiterals Literals or regular expressions to split by.

Target Attributes ArrayOfAttributePaths List of target attributes to create with splited
values.

• CountProperties Services counts the number of properties instances and creates the target

attribute instance with the resulting value. Its interface is depicted in Table 6.17:

Table 6.17 – CountProperties Service interface

Argument ID Type Semantics
Source Path Path Source ontology path whose instances are counted.
Target Attribute AttributePath Target ontology attribute to create.

• AttributeTableTranslation Service transforms source attribute instances into target attribute

instances according to the translation map provided in the external file specified by the File

Location parameter. Its interface is depicted in Table 6.18:

Table 6.18 – AttributeTableTranslation Service interface

Argument ID Type Semantics
Source Attribute AttributePath Source ontology attribute whose instances will be transformed.
File location FilePath The location of the file containing the table.
Target Attribute AttributePath Target attributes to instantiate with translated value.

Some of these Services correspond to an empirically understandable transformation, which will be

exemplified in the following annotated example. Others however, require further knowledge about

their internal process and inter-relations. This is case of the Copy Instance and the Copy Relation

Services, which capture and reflect a very important part of the work developed in the scope of this

thesis. These two Services will be deeply described in section 6.3.

6.2.4 Example 6.17 – Execution process annotated example

The example presented in this section describes the execution process under the following

perspectives:

• ConceptBridges, corresponding to the execution of CopyInstance Service;

Multi-Dimensional Service-Oriented Ontology Mapping

139

• PropertyBridges that create target attribute instances, which corresponds to the execution of all

Services except of CopyInstance and CopyRelation Services;

• PropertyBridges that create relationships between target concept instances, which corresponds

to the execution of the CopyRelation Service.

Each of these SemanticBridges perspectives will be described and analyzed in the next three

sections.

6.2.4.1 ConceptBridge

Consider the ontology mapping scenario depicted in Figure 6.8, where excerpts of TourinFrance

[TourinFrance] (TIF namespace) and SIGRT [SIGRT] (SIGRT namespace) ontologies are being

mapped.

SIGRT:HotelAccommodation

+DirectorName
+Address
+PostalCode

SIGRT:ContactInformation

TIF:Hotel

TIF:Identification

identification

contact

contactInformation

+FirstName
+LastName

TIF:Contact

H2HA : ConceptBridge

I2CI : ConceptBridge

+Address1
+Address2
+Address3
+PostCode

TIF:Address

address

Figure 6.8 – ConceptBridges between excerpts of TourinFrance and SIGRT ontologies

The two minimally represented ConceptBridges of Figure 6.8, are fully specified in the following

definition:

{ } { } { } { } { }()
{ }

{ } { } { }()
{ } { } { }()

, , , , , , , , , ,

2 , 2

2 : , : , , ,

2 : , : , , ,

TS TS TS TS TS

TS

TIF SIGRT

H HA I CI

H HA TIF Hotel SIGRT HotelAccommodation

I CI TIF Identification SIGRT ContactInformation

= ◊

=

=

=

C P

C

M T B B

B

Execution process

140

The execution engine performs ConceptBridges in an arbitrary order but always before any

PropertyBridge. Consider the execution of previous ConceptBridges upon the following KB:

{ }
() ()

() () () ()
() () () ()
() ()

1 2 1 2 3 1 2 3 4 1 2 3

1 2

1 2 3 4

1 2 3 4

1 2

, , , , , , , , , , ,

, ,

, , , ,

, , , ,

, ,

TIF

TIF

h h i i i c c c c a a a

Hotel h Hotel h

Identification i Identification i Identification i Identification i
inst

Contact c Contact c Contact c Contact c

Address a Address a Address

=

=

I

C

()3a

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

Because no ConditionExpressions are specified for any of the neither ConceptBridges, nor sub

bridge relations exists between them, their execution is straightforward. The resulting KB is:

{ }
() ()

() ()
() ()

1 1 1 2 3

1 2

1 2

3 4

, , , ,

, ,

, ,

,

SIGRT

SIGRT

ha ha ci ci ci

HotelAccommodation ha HotelAccommodation ha

inst ContactInformation ci ContactInformation ci

ContactInformation ci ContactInformation ci

=

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

I

C

The execution of ConceptBridge will give raise to a filled in transformation information table (2TI)

as represented in Table 6.19:

Table 6.19 – Table-based representation of 2TI for previous ConceptBridges and KB

Source Concept
Instance ID

Target Concept
Instance ID ConceptBridge

h1 ha1 H2HA
h2 ha2 H2HA
i1 ci1 I2CI
i2 ci2 I2CI
i3 ci3 I2CI

Once all ConceptBridges are executed no more concept instances will be created in the target

knowledge base during this execution process.

6.2.4.2 PropertyBridge

Consider now that four PropertyBridges have been complementarily defined (Figure 6.9):

{ }
{ }

{ }() { }(){ }

, ,

, , , 2

2 , , , , 2 , 2

TS

TS

TS

CopyRelation CopyAttribute Concatenation

names addresses pcode i ci

I CI names addresses pcode H HA i ci

=

=

◊ =

P

T

B

Multi-Dimensional Service-Oriented Ontology Mapping

141

SIGRT:HotelAccommodation

+DirectorName
+Address
+PostalCode

SIGRT:ContactInformation

TIF:Hotel

TIF:Identification

identification

contact

contactInformation

+FirstName
+LastName

TIF:Contact

H2HA : ConceptBridge

I2CI : ConceptBridge

i2ci : PropertyBridge

+Address1
+Address2
+Address3
+PostCode

TIF:Address

address

pcode : PropertyBridge

names : PropertyBridge

addresses : PropertyBridge

◊

◊

Figure 6.9 – Several SemanticBridges between TourinFrance and SIGRT ontologies

Additionally, consider the following properties instances (also represented in Figure 6.10):

() () ()
() () () ()
() () ()

() ()

1 1 1 2 2 3

1 1 2 2 3 3 3 4

1 1 2 2 3 3

1 1

, , , , , ,

, , , , , , , ,

, , , , , ,

," " , ," " ,

TIF

identification h i identification h i identification h i

contact i c contact i c contact i c contact i c

address i a address i a address i a

FirstName c John LastName c Smith

Fi

inst =P

() ()
() ()
() ()

() () ()
()

2 2

3 3

4 4

1 1 1

2 2

," " , ," " ,

," " , ," " ,

," " , ," " ,

1 ,"245" , 2 ,"22 ." , 3 ," " ,

1 ,"43" , 2 ,"

rstName c James LastName c Ewing

FirstName c Otto LastName c Halle

FirstName c Ralf LastName c Frigs

Address a Address a nd St Address a NewYork

Address a Address a() ()
() () ()
() () ()

2

3 3 3

1 2 3,

." , 3 ," " ,

1 ,"24" , 2 ," ." , 3 ," " ,

,"10166" , ,"10004" , "12529"

Broad St Address a NewYork

Address a Address a Dorf Str Address a Berlin

PostCode a PostCode a PostCode a

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

Execution process

142

h1 : TIF:Hotel h2 : TIF:Hotel

i1 : TIF:Identification i2 : TIF:Identification i3 : TIF:Identification

FirstName = John
LastName = Smith

c1 : TIF:Contact
FirstName = James
LastName = Ewing

c2 : TIF:Contact

FirstName = Otto
LastName = Halle

c3 : TIF:Contact

FirstName = Ralf
LastName = Frings

c4 : TIF:Contact

Address1 = 24
Address2 = Dorf Str.
Address3 = Berlin
PostCode = 12529

a3 : TIF:Address
Address1 = 43
Address2 = Broad St.
Address3 = New York
PostCode = 10004

a2 : TIF:Address
Address1 = 245
Address2 = 22nd St.
Address3 = New York
PostCode = 10166

a1 : TIF:Address

Figure 6.10 – Some instances of the TourinFrance ontology

The pcode PropertyBridge copies the TIF:Identification/contact/Contact/PostCode/Literal

instances to PostalCode attribute instances of the current SIGRT:ContactInformation instance:

{ } { } { } { } { }()
{ }

{ }

. . . .

. .1

.1

. .1

.1

, , , , , , , , ,

: / / / /

: /

s t s t
TS pcode TS pcode TS pcode TS pcode

s s
TS pcode TS

s
TS

t t
TS pcode TS

t
TS

pcode CopyAttribute

W

W TIF Identification address Address PostCode Literal

W

W SIGRT ContactInformation PostalCo

φ φ=

=

=

=

=

W W

W

W

(){ }
(){ }

. .1

. .1

/

,

,

s s
TS pcode TS

t t
TS pcode TS

de Literal

W sourcePath

W targetPath

φ

φ

=

=

Executing pcode in the scope of the ci1 instance results in the following FQ table (Table 6.20):

Table 6.20 - FQ table resulting from the pcode execution in the scope of ci1 instance

Identification/address/Address/PostCode/Literal
“10166”

Because the pcode PropertyBridge applies the CopyAttribute Service, it means that one target

attribute instance will be created for each instance of source Path (i.e.

Identification/address/Address/PostCode/Literal). The property instances resulting from the

pcode PropertyBridge execution for all target concept instances are as follows:

Multi-Dimensional Service-Oriented Ontology Mapping

143

() () (){ }1 2 3,"10166" , ,"10004" , ,"12529"SIGRTinst PostalCode ci PostalCode ci PostalCode ci=P

The addresses PropertyBridge aims to create TIF:ContactInformation/Address/Literal instances

from the concatenation of Address1, Address2 and Address3 attributes instances, accessed from

the instance of SIGRT:Identification. Furthermore, a space will be concatenated between Address1

and Address2 instances, and a comma and space between Address2 and Address3 instances. This

description corresponds to the following specification:

{ } { } { } { } { }()
{ }

. . . .

. .2 .3 .4

.2

.3

, , , , , , , , ,

, ,

: / / / 1/

: / / /

s t s t
TS addr TS addr TS addr TS addr

s s s s
TS addr TS TS TS

s
TS
s

TS

addresses Concatenation

W W W

W TIF Identification address Address Address Literal

W TIF Identification address Address Ad

φ φ=

=

=

=

W W

W

{ }

(){ }

.4

. .2

.2

. .2 .3 .4

.

2 /

: / / / 3/

: / /

, , ,

""

s
TS

t t
TS addr TS

t
TS

s s s s
TS addr TS TS TS

s
TIF addr

dress Literal

W TIF Identification address Address Address Literal

W

W SIGRT ContactInformation Address Literal

W W W sourceAttributesφ

δ

=

=

=

⎡ ⎤= ⎣ ⎦

=

W

 [](){ }
(){ }. .2

,", " ,

,t t
TS addr TS

separators

W targetAttributeφ =

Executing addresses PropertyBridge in the scope of the ci2 instance results in the following FQ

table (Table 6.20):

Table 6.21 - FQ table resulting from the addresses execution in the scope of ci2 instance

Identification/address/
Address/Address1/Literal

Identification/address/
Address/Address2/Literal

Identification/address/
Address/Address3/Literal

“43” “Broad St.” “New York”

Accordingly, these three attribute instances will be concatenated into a unique string in the form of

“43 Broad St., New York”. Identical process occurs for each of the other instances of

SIGRT:ContactInformation concept, resulting in the following instances:

()
() ()

1

2 3

,"245 22 ., " ,

,"43 ., " , ,"24 ., "SIGRT

Address ci nd St NewYork
inst

Address ci Broad St NewYork Address ci Dorf Str Berlin

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

P

Identical process occurs for the names PropertyBridge. FirstName and LastName attributes should

be concatenated into DirectorName attribute. FirstName and LastName properties should be

accessed through the TIF:Identification/contact/Contact/FirstName/Literal and

TIF:Identification/contact/Contact/LastName/Literal Paths respectively:

Execution process

144

{ } { } { } { } { }()
{ }

. . . .

. .5 .6

.5

.6

, , , , , , , , ,

,

: / / / /

: / / /

s t s t
TS names TS names TS names TS names

s s s
TS names TS TS

s
TS
s

TS

names Concatenation

W W

W TIF Identification contact Contact FirstName Literal

W TIF Identification contact Contact LastNam

φ φ=

=

=

=

W W

W

{ }

(){ }
[](){ }

(){ }

. .3

.3

. .5 .6

.

. .3

/

: / /

, ,

"" ,

,

t t
TS names TS

t
TS

s s s
TS names TS TS

s
TIF names

t t
TS names TS

e Literal

W

L SIGRT ContactInformation DirectorName Literal

W W sourceAttributes

separators

W targetAttribute

φ

δ

φ

=

=

⎡ ⎤= ⎣ ⎦

=

=

W



The execution of this PropertyBridge in the scope of ci3 instance results in the following FQ table:

Table 6.22 - FQ table resulting from the names execution in the scope of ci3 instance

Identification/contact/Contact/
FirstName/Literal

Identification/contact/Contact/
LastName/Literal

“Otto” “Halle”
”Ralf” “Frings”

For each row of previous table, a target instance will be created. The set of property instances

resulting from this PropertyBridge execution for all target instances is therefore:

() ()
() ()

1 2

3 3

," " , ," " ,

," " , ," "SIGRT

DirectorName ci John Smith DirectorName ci James Ewing
inst

DirectorName ci Otto Halle DirectorName ci Ralf Frings

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

P

In case of ci3 instance, it corresponds to say that the hotel has two directors, which might be

considered a semantic error. In case the domain expert decides that a unique director is admissible,

it is necessary to apply cardinality constraints. This subject is addressed in section 6.4.

6.2.4.3 Inter-relation of instances

This section concerns the creation of relationships between target ontology concept instances. The

CopyRelation Service is used for this purpose, but its functionality and internal details are very

dependent on the CopyInstance Service:

• CopyInstance Service creates target ontology instance and the transformation information tuple

in 2TI ;

• CopyRelation Service inter-relates target concept instances according to the map provided by

TI 2 and according to the source ontology property instances.

Multi-Dimensional Service-Oriented Ontology Mapping

145

The PropertyBridge whose Service is the CopyRelation is ◊ -related with the ConceptBridge whose

target concept is the domain of the relation to instantiate through the PropertyBridge.

In order to create relationships between target instances it is necessary to define the source

ontology relation to copy from and the target ontology relation to instantiate. Such elements are

specified through Paths. While the target ontology relation Path is mandatorilly a 1-Step Path, the

source ontology Path may contain an arbitrary number of Steps.

Because the source relation Path has been included in the query, the resulting FQ table will have a

column corresponding to the source Path instances. According to this FQ table, the Copy Relation

transformation Service comprehends three stages:

1. Identify the pair of source concept instances whose relationship is to be copied;

2. Identify the pair of target instances resulting from previous source instances pair;

3. Create the relationship between target instances.

Considering the ontology mapping scenario of Figure 6.9 (below), the i2ci PropertyBridge aims to

copy the relationships between TIF:Hotel and TIF:Identification instances, to relationships

between SIGRT:HotelAccommodation and SIGRT:ContactInformation:

{ } { } { } { } { }()
{ }

{ }

. 2 . 2 . 2 . 2

. 2 .7

.7

.4

.4

2 , , , , , , , , ,

: / /

: / /

s t s t
TS i ci TS i ci TS i ci TS i ci

s s
TS i ci TS

s
TS

t t
TS TS

t
TS

i ci CopyRelation

W

W TIF Hotel identification Identification

W

W SIGRT HotelAccommodation contactInformation ContactInforma

φ φ=

=

=

=

=

W W

W

W

(){ }
(){ }

. 2 .7

. 2 .4

,

,

s s
TS i ci TS

t t
TS i ci TS

tion

W sourcePath

W targetPath

φ

φ

=

=

The first stage operates upon the resulting FQ table. Because only one source Path is defined in

the i2ci PropertyBridge, the resulting FQ table will be a 1-column table. Moreover, because the

source Path is defined between TIF:Hotel and TIF:Identification, the resulting table will

correspond to the relationships between the TIF:Hotel instance and one or more of

TIF:Identification instances. In case of h1 instance, the FQ table corresponds to Table 6.23:

Table 6.23 – FQ table resulting from the i2ci execution in the scope of ha1 instance

Hotel/identification/Identification
i1

i2

Execution process

146

According to the FQ table, the h1 TIF:Hotel instance is related to i1 and i2 TIF:Identification

instances. This information is the outcome of the first stage of the CopyRelation Service.

The second stage, known as correlation process, runs for every row in FQ table. In this stage it is

necessary to determine the ID of the target concept instance that has been originated from the

source concept instance defined in the table resulting from previous stage (e.g. i1). For that, every

table value is matched against the Source Concept Instance ID column of 2TI , which in turn

corresponds (maps) to the target concept instance ID that this stage is seeking for (Figure 6.11).

Hotel/identification/Identification
i1

i2

Source Concept
Instance ID

Target Concept
Instance ID ConceptBridge

h1 ha1 H2HA
h2 ha2 H2HA
i1 ci1 I2CI
i2 ci2 I2CI
i3 ci3 I2CI

Figure 6.11 – Correlating source and target concept instances through FQ and 2TI

Third stage instantiates the target instance property value with the evaluated target concept

instances. Accordingly, the i2ci PropertyBridge execution, in the scope of all target concept

instances, corresponds to the following target KB:

() ()
()

1 1 1 2

2 3

, , , ,

,SIGRT

contactInformation ha ci contactInformation ha ci
inst

contactInformation ha ci

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

P

6.3 Extensional Specification

As defined so far, the CopyRelation process runs well for ontology mapping scenarios where one

source concept instance originates a unique target concept instance (i.e. 1:1 semantic relations

between concepts) or multiple concepts to one concept semantic relations (i.e. n:1 semantic

relations between concepts) . However, if multiple target concept instances are created from the

same source instance (i.e. 1:n semantic relations between concepts), the correlation between source

and target instances becomes ambiguous. This ambiguity arises because two or more values in the

Target Concept Instance column of 2TI correspond to the same Source Concept Instance value.

Multi-Dimensional Service-Oriented Ontology Mapping

147

6.3.1 Example 6.18 - ConceptBridges with 1:n cardinality

Consider the ontology mapping scenario presented in Figure 6.12, where SIGRT ontology is being

mapped to TourinFrance ontology.

SIGRT:HotelAccommodation TIF:Hotel

TIF:Identification

identification

contact

contactInformation

TIF:Contact

HA2H : ConceptBridge

CI2C : ConceptBridge

CI2I : ConceptBridge

ci2i : PropertyBridge

◊

+DirectorName
+Address
+PostalCode

SIGRT:ContactInformation
ci2c : PropertyBridge

◊

Figure 6.12 – Excerpts of SemanticBridges between SIGRT and TourinFrance ontologies

According to the inverse scenario (Figure 6.8) SIGRT:HotelAccommodation semantically relates to

TIF:Hotel, and SIGRT:ContactInformation semantically relates to TIF:Identification, suggesting

the specification of the HA2H and CI2I ConceptBridges.

Moreover, it is necessary to define a ConceptBridge responsible for the creation of instances of

TIF:Contact. Because the DirectorName property is the entity that resembles more the semantics

of TIF:Contact, the ConceptBridge should bridge SIGRT:ContactInformation to TIF:Contact.

Complementarily, it is necessary a PropertyBridge to create the relationships between

TIF:Identification and TIF:Contact instances. Because TIF:Contact instances are created from

SIGRT:ContactInformation instances, the source Path for the CopyRelation Service should be

SIGRT:HotelAccommodation/contactInformation/ContactInformation.

Consider the following excerpt of the SIGRT knowledge base (corresponds to the set of concept

instances created from TIF knowledge base in example presented in section 6.2.4):

Execution process

148

{ }
() ()

() ()
()
()

1 2 1 2 3

1 2

1 2

3

1 1

, , , ,

, ,

, ,

, ,

SIGRT

SIGRT

SIGRT

ha ha ci ci ci

HotelAccommodation ha HotelAccommodation ha

inst ContactInformation ci ContactInformation ci

ContactInformation ci

contactInformation ha ci con

inst

=

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

=

I

C

P

()
()

() ()
() ()

1 2

2 3

1 2

3 3

, ,

, ,

," " , ," " ,

," " , ," "

tactInformation ha ci

contactInformation ha ci

DirectorName ci John Smith DirectorName ci James Ewing

DirectorName ci Otto Halle DirectorName ci Ralf Frings

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

The 2TI table resulting from the execution of previous ConceptBridges corresponds to Table 6.24:

Table 6.24 – Table-based representation of 2TI

Source Concept Instance Target Concept Instance ConceptBridge
ha1 ha HA2H
ha2 hb HA2H
ci1 ia CI2I
ci2 ib CI2I
ci3 ic CI2I
ci1 ca CI2C
ci2 cb CI2C
ci3 cc CI2C

It is now time to execute PropertyBridges. The ci2i PropertyBridge is ◊ -related with HA2H, which

means that it is executed in the scope of TIF:Hotel instances only (i.e. ha and hb created from ha1

and ha1, respectively). Considering target instance ha, the FQ table resulting from the ci2i

PropertyBridge execution corresponds to Table 6.25:

Table 6.25 - FQ table for ci2i PropertyBridge, executed in the scope of ha instance

HotelAccommodation/contactInformation/ContactInformation
ci1

ci2

Once the CopyRelation Service is associated with the ci2i PropertyBridge, the correlation process

runs for every row of FQ table. The process aims to correlate the source instance ID value found

in FQ table with the target instance created from the source instance. For first row in the table, the

process finds two possible target instances (Figure 6.13).

According to the correlation process, instance ci1 gave rise to both to ia and ca, which does not

permits to decide univocally. While this is a quite simple scenario, it perfectly demonstrates the

inaccuracy and lack of expressiveness of the process concerning 1:n semantic relations situations.

Multi-Dimensional Service-Oriented Ontology Mapping

149

Source Concept Instance Target Concept Instance ConceptBridge
ha1 ha HA2H
ha2 hb HA2H
ci1 ia CI2I
ci2 ib CI2I
ci3 ic CI2I
ci1 ca CI2C
ci2 cb CI2C
ci3 cc CI2C

HotelAccommodation/contactInformation/ContactInformation
ci1

ci2

Figure 6.13 – Ambiguous correlation process

6.3.2 Analysis of the problem

The analysis of the problem results from observations carried out during user-based ontology

mapping experiences. They showed that the 1:n concept to concept semantic relations are in fact

the result of a combination of one concept to concept semantic relation plus many property to

concept semantic relations. It has been noticed that multiple semantic relations between concepts

are based on the existence or specific value of the instances of certain properties. In certain cases,

even multiple properties instances are necessary to justify the creation of the target concept

instance. Such cases are referred as n:1 properties to concept semantic relations. Other cases exist

when one source property instance justify the creation of several target concept instances, known as

1:n property to concept semantic relations (5.2).

Notice that the same source property instance can give rise to multiple target instances, including

target concept instances and target property instances.

Example 6.19 – Property to Concept semantic relations
Consider the ontology mapping scenario of Figure 6.14, where several semantic relations
are depicted. In particular, notice that O1:Person/address/Literal is semantically related
to (i) O2:Address; (ii) O2:Address/street/Literal, (iii) O2:Address/pobox/Literal, (iv)
O2:Address/hasAddress/Address, (v) O2:WebAddress, (vi) O2:WebAddress/address/
Literal, and (vii) O2:WebAddress/hasWebAddress/WebAddress.

While semantic relation between O1:Person and O2:Individual is directly supported in
current SBO execution process (in this case the P2I ConceptBridge), the same of the
other semantic relations are not yet supported. Hence the simple straight line to represent
the semantic relations.

Execution process

150

+address
O1:Person O2:Individual

+address
O2:WebAddress

P2I : ConceptBridge

hasAddress

hasWebAddress

+street
+pobox

O2:Address

Figure 6.14 – 1:n Property to Concept semantic relations

As observed, it often occur that target concepts are semantically related to source properties. In

fact, in many situations, the simple existence of the property instance denotes the creation of the

target concept. Other situations require that the property instance matches some value, or a certain

number of instances exist.

Example 6.20 – Constrained Property to Concept semantic relations
Considering the scenario presented in Example 6.19, it empirically makes sense to create
O2:Address concept instance in case O1:Person/address/Literal instance exists. Instead,
the creation of O2:WebAddress instances might be constrained by the value of
O2:Person/address/Literal instances. For example, it might be stated that an instance of
O2:WebAddress is created if O2:Person/address/Literal instance values matches a URI
pattern.

Two approaches naturally arise as potential solutions:

1. The creation of a new subclass of SemanticBridge, respecting the property-to-concept semantic

relation. This approach is based on the entity type dimension of semantic relations, and

promotes its importance. Concerning the adoption of this approach the following remarks arise:

1.1 Clear ontological distinction according to the entity type dimension;

1.2 New transformation Service required;

1.3 More complexity in inter-relating SemanticBridges;

2. The adoption of an enhanced transformation Service permitting the specification of

complementary arguments. This approach is based on the transformation dimension of

semantic relations, and promotes its relevance. Concerning the adoption of this approach the

following remarks arise:

2.1 Clear ontological classification according to the transformation dimension;

2.2 Evolution of the transformation Service is required;

2.3 No changes of inter-relations between SemanticBridges are necessary.

Multi-Dimensional Service-Oriented Ontology Mapping

151

Because both approaches are mutually exclusive, a decision has to be drawn based on the

advantages and disadvantages mentioned in prior remarks. For that, a brief analisys has been done:

• Ontological clarification:

• The first approach distinguishes more types of semantic relations, which does not directly

represent benefices. In fact, under the application point-of-view, fine grained ontologies are

not always better then more coarse grained ontologies. Fine grained ontologies often lead to

a large and unpractical number of concepts.

Example 6.21 – Fine vs. Coarse grained ontology
Considering the cardinality dimension, a fine grained version of SBO has been presented
in [Maedche et al., 2002b] aiming to describe the ontology mapping domain of knowledge.
However, this dimension has been completely abstracted under the transformation
dimension in [Maedche et al., 2002a] in order to meet the ontology mapping system
application requirements (refer to 5.4.3);

• The second approach suggests the clarification of SemanticBridges according to the

transformation dimension, which has been previously adopted in respect to the abstraction

of the cardinality dimension (5.4.3). Promoting the transformation dimension in disfavor of

the entity type dimension would promote consistency of the decisions in modeling SBO;

• Transformation service:

• The first approach requires developing a new service in respect to the type of entities

semantically related through the bridge. Moreover, adopting this approach, the competency

of creation of target concept instance is duplicated in two types of SemanticBridges;

• The second approach does not require a new transformation service, but requires the

inclusion of functionalities permitting to define the source properties;

• Inter-relations between SemanticBridges concerns the changes in type and semantic of relations

between the classes type of SemanticBridges. The following remarks arise:

• The first approach suggests the specification of more types of semantic relations, which

would cause an increased number of inter-relation types. Moreover, because the (hypothetic)

property-to-concept SemanticBridge relates properties with concepts, its semantics may

cause ambiguity in the stable inter-relation rules established between SBO SemanticBridges.

Some ontology mapping approaches suggest the application of skolem terms [Dou et al., 2002;

Russel & Norvig, 1995], which requires nested relationships between ConceptBridges (refer

to 5.3), affecting expressivity, declarativity, and clarity of the mapping document. While the

skolem term based approach makes sense on systems based on inference engines, it tends to be

hard to manage at semantic bridging and hard to track at execution phase;

• The second approach suggests the maintenance of the SemanticBridges types, preventing

further inter-relation types.

Execution process

152

Table 6.26 summarizes the analysis described in previous paragraphs.

Table 6.26 – Summary of the Property-to-concept semantic relations approaches
Analyzed parameters First Approach Second Approach

1. Ontological clarification
1.1 Dimension oriented Entity type Transformation
1.2 Ontological decision Inconsistent Consistent

2. Transformation Service requirements New Service New functionalities
3. SemanticBridges inter-relations

3.1 Inter-relations required New relations No new relations
3.2 Ontological decision Ambiguous Clear

It is now possible to choose one of the approaches according to a set of indicators resulting from

the systematized analysis. Indeed, from previous descriptions and previous table, second approach

stands as the more advantageous and less disadvantageous, leading to its adoption.

As consequence, the ConceptBridge concept and SBO fundamental characteristics are maintained,

including the inter-relations between ConceptBridge and between ConceptBridges and

PropertyBridges. In fact, the CopyInstance Service is the only component requiring modifications.

6.3.3 Developed approach

Notice that the problem is not about how to create multiple target concept instances from the same

source concept instance, but how to determine the correct target concept instance according to the

source concept instance. I.e. how to refer to a concept instance that does not really exists as

concept instance.

This issue assumes special importance for CopyRelation Service, which needs to evaluate source-

target correlations based on 2TI table, filled in by ConceptBridge executions (i.e. by the

CopyInstance Service). The CopyRelation Service dependency from the CopyInstance Service is

therefore evident and of fundamental importance for the execution process, motivating the

coordination between both Services.

The developed approach is based on the notion of perspective of the source concept instance.

Each source concept instance has multiple perspectives depending on the values of the properties

selected to uniquely identify the concept instance perspective. This is referred as Extensional

Specification43.

43 While the ontology is the intentional part of the knowledge base, the ontology entities instances

correspond to the extensional part.

Multi-Dimensional Service-Oriented Ontology Mapping

153

Example 6.22 – Different perspective of the same concept instance
Once again, considering the scenario presented in Example 6.19, one might say that
certain instance of O1:Person will give rise to an instance of O2:Address under the
perspective that an instance of O1:Individual/address/Literal property exists. The same
source concept instance gives rise to an instance of O2:WebAddress under the
perspective that the text of the O1:Individual/address/Literal property instance matches
an URI pattern.

Once the properties values match the perspective requirements, the target concept instance is

created and the properties values associated with the transformation information. The pair

constituted by the source instance ID and the Extensional Specification forms a primary (unique)

key in the 2TI permitting the identification of the concept instance perspective that gives raise to

every target instance. Moreover, because such information is present in the knowledge base it is

possible to reconstruct it during the execution process whenever is needed, providing the means to

refer to that concept instance perspective and therefore access the ID of the unique target concept

instance created from that perspective.

Accordingly, it is necessary to incorporate the extensional specification features in the

CopyInstance Service and coordinate the process with other Services, especially with the

CopyRelation Service.

The extensional specification step is potentially based on arbitrary combination of multiple Path

constraints. ConditionExpression features these competencies in perfection, arising as a strong

candidate mechanism to represent the extensional specification. In particular, notice that:

• No new SBO entity would be required. ConditionExpression entity provides the mechanisms to

represent complex arbitrary combination of properties instances and constant expressions;

• No changes are required in the query knowledge base process, since ConditionExpressions are

based on Paths which are already addressed in the query process (refer to 6.2.1);

• No changes are required in filtering the result of the knowledge base query. Because the filtering

process is based on ConditionExpressions, the ConditionExpression representing the

extensional specification is just another one;

• Simplified evolution of SBO and execution process, since the constraints and extensional

specification grounds on the same representation entity;

• Small changes in the CopyInstance and CopyRelation Service.

CopyInstance and CopyRelation Service need to be modified to include the ConditionExpressions

of the Extensional Specification.

Execution process

154

6.3.3.1 ConceptBridge and PropertyBridge

Because the CopyInstance Service has been made implicit in ConceptBridges, new Service

arguments need to be explicitly included in the ConceptBridge specification.

Unlike in ConceptBridges, Services in PropertyBridges are explicit. The association between Service

arguments and respective values is made through the sφ and tφ functions, which depend on the

Service specification. At first sight, the Extensional Specification argument might be understood

just like any other argument of the Service whose type is ConditionExpression. However, both sφ

and tφ functions relate Paths to arguments only, which excludes ConditionExpressions. In that

sense, the PropertyBridge specification requires further changes.

Despite distinct structures, ConceptBridge and PropertyBridge have some elements in common.

One of these is the set of ConditionExpressions element, denoted by K :

(): , , , , ,s t s tB c c δ δ=C Q K

(): , , , , , , , ,s t s t s tB S φ φ δ δ=P L L Q K

Notice that the ConditionExpression of the Extensional Specification argument is a full-fledged

ConditionExpression, i.e. it constrains the execution process as any other ConditionExpression. In

that sense, the K argument might be used to convey ConditionExpressions to the SemanticBridge,

without any side-effect. In order to assign specific ConditionExpressions to the Extensional

Specification arguments, a specific function would be applied, as for the Paths and Literals

arguments through the sφ , tφ sδ and tδ functions respectively. This approach would correspond

to the following specifications:

(): , , , , , ,s t s tB c c δ δ χ=C Q K

(): , , , , , , , , ,s t s t s tB S φ φ δ δ χ=P L L Q K

where:

• K is the set of both general and Extensional Specification ConditionExpressions;

• χ is the function that assigns ConditionExpressions to the Extensional Specification

arguments.

This approach has the following advantages:

• The same approach is adopted for both types of SemanticBridges;

• The function-based argument assignment approach is extended;

• The Service specification is modestly changed;

Multi-Dimensional Service-Oriented Ontology Mapping

155

• The execution process is not changed;

and disadvantage:

• Potential ambiguity concerning the classification of ConditionExpressions, either referring to

the Extensional Specification or as general ConditionExpressions.

In order to cope with the ambiguity problem of previous approach, another approach suggests the

specification of a new SemanticBridge argument concerning the separate representation of the

ConditionExpressions representing the Extensional Specification. Because multiple arguments

might make use of these ConditionExpressions, a function would be necessary to assign every

ConditionExpression to the proper Service argument, as suggested in prior approach. This

approach would then be reflected in the following specifications:

(): , , , , , , ,s t s tB c c δ δ χ=C Q K X

(): , , , , , , , , , ,s t s t s tB S φ φ δ δ χ=P L L Q K X

where:

• X is the set of ConditionExpressions concerning with the Extensional Specification;

• χ is the function that assigns ConditionExpressions to the Extensional Specification

arguments.

The following advantages are envisaged:

• The same approach is adopted for both types of SemanticBridges;

• The function-based argument assignment approach is extended;

• The Service specification is modestly changed;

• Clear and univocal expressivity;

along with the following disadvantage:

• The filtering phase of the execution process will take not only the ConditionExpressions in K

but also the ConditionExpressions in X (i.e. ∪K X).

The last described solution has been adopted in disfavor of first approach since it has been

considered that the clarity and univocal expression of semantic relations is more important than the

change in the execution process.

6.3.3.2 Semantics of the Extensional Specification arguments

Despite their equal name, semantics of the Extensional Specification argument of CopyInstance

and CopyRelation Services differ substantially. In CopyInstance Service, the argument aims to

determine and evaluate the constraints of properties instances necessary to define a new and unique

Execution process

156

perspective of the concept instance. Such a new target instance is created according to such unique

perspective (Table 6.27).

Table 6.27 – CopyInstance Service parameters

Argument ID Type Semantics
Source Concept Concept Source ontology concept to copy.
Extensional
Specification ConditionExpression Expression representing the properties and constraints

applied in characterizing the source concept instance.
Target Concept Concept Target ontology concept to create.

In CopyRelation Service instead, it refers to a specific source concept instance perspective in order

to correlate it with the target concept instance created from it (Table 6.28).

Table 6.28 – CopyRelation Service parameters

Argument ID Type Semantics

Source Path Path Source ontology path for each path the bridge will be
executed.

Extensional
Specification ConditionExpression Expression representing the properties and constraints

applied in characterizing the source concept instance.
Target Path RelationPath Target ontology path to create.

Accordingly, the 2TI table is the inter-relation mechanism between both Services:

• The CopyInstance Service writes the 2TI . For every target instance created it will attach the

extensional specification information to the transformation information tuple;

• The CopyRelation Service reads the 2TI . For every relation to create, it complements the source

concept instance ID with the extensional specification information in order to define a unique

characterization of a source concept instance.

Notice that the read operation is not exclusive of the CopyRelation Services but instead it may be

used by any Service that requires the Extensional Specification feature.

As consequence, the transformation information tuple assumes the following form:

_ _ , _ ,
:

_ _ , _
source concept instance extensional specification_expression

TI
target concept instance concept bridge
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

where:

• _ _source concept instance , _ _target concept instance and _concept bridge corresponds to

the elements as defined in section 6.1;

• _extensional specification_expression is a structure in the form of:

{ }()
instantiated_condition_expression :: and | or xor | not | instantiated_comparison

and :: and instantiated_condition_expression "," instantiated_condition_expression

=

=

Multi-Dimensional Service-Oriented Ontology Mapping

157

{ }()
{ }()

()

or :: or instantiated_condition_expression "," instantiated_condition_expression

xor :: xor instantiated_condition_expression , "," instantiated_condition_expression

not :: not instantiated_condition_expression

ins

=

=

=

tantiated_comparison :: instance_operand_1 OPERATOR instance_operand_2

instance_operand_1 :: path_value

instance_operand_2 ::= path_value | LITERAL

path_value ::=" " PATH , VALUE " "

=

=

〈 〉

〈 〉

where:

• PATH , OPERATOR and LITERAL are as described in 5.4.5;

• VALUE is the value for column PATH in the FQ table

The extension specification expression element of the transformation information tuple is therefore

an instantiated ConditionExpression such its tokens operand _1 and operand_2 are

transformed into instance_operand_1 and instance_operand_2 respectively, representing not

only the Paths operand but also the instances of the Path as found in FQ table.

Because the _extensional specification_information relays on ConditionExpression

representation, the extensional specification mechanism is structure-oriented. As referred for the

ConditionExpression (5.4.5), this is not a limitation but a feature. In fact, the same set of

comparison elements serve to create distinct source instances perspectives due to the fact that the

comparison between instantiated_condition_expressions is performed by the structure and not by

the logical value of comparisons. This feature provides the mechanism to create multiple target

instances from the same logical source instance perspective.

Example 6.23 – Structural interpretation of ConditionExpressions
Because the two following ConditionExpressions are considered different, they define
distinct perspectives of the same source instance:

(){ }

.1
3

.1

4 .1

: / / ,
: / /

: / /

TIF

TIF

TIF

TIF Hotel identification Identification i
K and

TIF Hotel identification Identification i

K and TIF Hotel identification Identification i

⎧ ⎫==⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟==⎪ ⎪⎝ ⎠⎩ ⎭
= ==

These two logically equivalent ConditionExpressions give rise to two distinct
instantiated_condition_expressions that do not match between them, even if they
always evaluate to the same logical value.

Execution process

158

6.3.3.3 Extensional Specification and Description logics

The extensional specification step provides the mechanism to distinguish and address between

different perspectives of the same (source) instance. Such approach can be understood as the

virtual creation of multiple source instances. Extensional specification has closely resemblances

with Description Logics (DL) as applied in Semantic Web ontology representation languages, such

as OIL, DAML, DAML+OIL and OWL. Basically, DL-based ontology representation languages

exploit characteristics of concepts to refine its classification. Generically, sub-classes are defined by

constraining the values and characteristics of the super-class. This serves to explicitly and

semantically describe the domain of knowledge and to infer the better classification (type) of an

instance according to its property values.

The extensional specification mechanism does not intent to create new source concepts but instead

to extensionally define virtual instances and access to its specification.

6.3.4 Example 6.24 - Extensional specification annotated example

Consider the mapping scenario of Figure 6.15, where SIGRT ontology is being mapped to
TourinFrance ontology.

SIGRT:HotelAccommodation TIF:Hotel

TIF:Identification

identification

contact

contactInformation

TIF:Contact

HA2H : ConceptBridge

CI2C : ConceptBridge

CI2I : ConceptBridge

ci2i : PropertyBridge

◊

+DirectorName
+Address
+PostalCode

SIGRT:ContactInformation
dn2c : PropertyBridge

◊

Figure 6.15 – Excerpt of the SIGRT-TIF mapping scenario

This UML diagram is underspecified due to the complexity to represent all Services arguments,

including the Extensional Specification argument. The diagram is provided to complement the

understanding of the following SIGRT TIF−M specification, which indeed represents all details of the

envisaged semantic bridging. PropertyBridges are also presented during this section.

Multi-Dimensional Service-Oriented Ontology Mapping

159

{ } { } { } { } { }()
{ }

{ } { } { } { } { } { }()
{ } { } { } { } { } { }()

, , , , , , , , , ,

2 , 2 , 2

2 : , : , , , , , ,

2 : , : , , , , , ,

2 : , :

SIGRT TIF ST ST ST ST

ST

SIGRT TIF

HA H CI I CI C

HA H SIGRT HotelAccommodation TIF Hotel

CI I SIGRT ContactInformation TIF Identification

CI C SIGRT ContactInformation TIF Conta

− = ◊

=

=

=

=

C P

C

M T B B

B

{ } { } { } { }()
{ }

(){ }

2 2

2 2

2 .1 .1

2 2

.1

, , , , , ,

,

: / /

CI C CI C

CI C CI C

s s
CI C ST ST

CI C CI C

s
ST

ct

K

K W W

K extensionalSpecification

W SIGRT ContactInformation DirectorName Literal

χ

χ

=

= ==

=

=

X

X

Three ConceptBridges are defined between SIGRT and TourinFrance ontologies. While HA2H

and CI2I ConceptBridges do not present any new aspects, the CI2I ConceptBridge makes use of

the Extensional Specification mechanism, represented in the diagram by the dashed line. The

Extensional Specification mechanism is further used in dn2c PropertyBridge, to create instances of

TIF:Identification/contact/Contact relation from the

SIGRT:ContactInformation/DirectorName/Literal source attribute instances.

According to the domain expert, one TIF:Contact instance is created for each instance of

SIGRT:ContactInformation/DirectorName/Literal attribute. In that sense, each new TIF:Contact

arises from each SIGRT:ContactInformation instance perspective such its

SIGRT:ContactInformation/DirectorName/Literal instance is unique. The property instance is

attached to the transformation information tuple, wrapped by the ConditionExpression structure.

Consider once again the following SIGRT knowledge base:

{ }
() ()

() ()
()
()

1 2 1 2 3

1 2

1 2

3

1 1

, , , ,

, ,

, ,

, ,

SIGRT

SIGRT

SIGRT

ha ha ci ci ci

HotelAccommodation ha HotelAccommodation ha

inst ContactInformation ci ContactInformation ci

ContactInformation ci

contactInformation ha ci con

inst

=

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

=

I

C

P

()
()

() ()
() ()

1 2

2 3

1 2

3 3

, ,

, ,

," " , ," " ,

," " , ," "

tactInformation ha ci

contactInformation ha ci

DirectorName ci John Smith DirectorName ci James Ewing

DirectorName ci Ralf Frings DirectorName ci Otto Halle

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

Because HA2H has no K nor X ConditionExpressions, for every source concept instance of

SIGRT:HotelAccommodation one TIF:Hotel instance is created. Accordingly, no Extensional

Specification information is attached to the respective transformation information tuples.

Analogous process occurs for CI2I ConceptBridge. For the CI2C ConceptBridge instead, X

Execution process

160

ConditionExpressions are specified, which further require generation of the corresponding FQ

table. The execution of CI2C ConceptBridge in the scope of ci3 instance will call:

()2 3/ / ,{}CI CK ContactInformation DirectorName LiteralFQ ciσ ϕ=

which generates the following table:

Table 6.29 - FQ table for CI2C ConceptBridge and ci3 instance

ContactInformation/DirectorName/Literal
“Ralf Frings”
“Otto Halle”

For every row of previous table, a source concept instance perspective will be created in 2TI ,

providing the information to create a new target TIF:Contact instance. It corresponds to the last

two lines of 2TI (Table 6.29).

Table 6.30 - 2TI resulting from execution of previous ConceptBridges upon the KB

Source
Concept
Instance

ID

Extensional Specification

Target
Concept
Instance

ID

ConceptBridge

ha1 ha HA2H
ha2 hb HA2H
ci1 ia CI2I
ci2 ib CI2I
ci3 ic CI2I

ci1
SIGRT:ContactInformation/DirectorName/

Literal==”John Smith” ca CI2C

ci2
SIGRT:ContactInformation/DirectorName/

Literal==”James Ewing” cb CI2C

ci3
SIGRT:ContactInformation/DirectorName/

Literal==”Ralf Frings” cc CI2C

ci3
SIGRT:ContactInformation/DirectorName/

Literal==”Otto Halle” cd CI2C

Consider now the rest of SIGRT TIF−M mapping specification, in which the two generically

represented PropertyBridges of Figure 6.15 are fully defined:

{ }
{ }

{ }() { }(){ }
2 , 2

2 , 2 , 2 , 2

ST

ST

ST

CopyRelation

ci i ci c

HA H ci i CI I ci c

=

=

◊ =

P

T

B

Multi-Dimensional Service-Oriented Ontology Mapping

161

{ } { } { } { } { } { }()
{ }
{ }
(){ }
(){ }

2 2 2 2

2 .2

2 .1

2 .2

2 .1

.2

2 , , , , , , , , , ,

,

,

: / /

s t s t
ST ci i ST ci i ST ci i ST ci i

s s
ST ci i ST

t t
ST ci i ST

s s
ST ci i ST

t t
ST ci i ST

s
ST

ci i CopyRelation

W

W

W sourcePath

W targetPath

W SIGRT HotelAccommodation contactInformation

φ φ

φ

φ

− − − −

−

−

−

−

=

=

=

=

=

=

W W

W

W

{ } { } { } { }()
{ }
{ }
(){ }

.1

2 2 2 2 2 2

2 .1

2 .2

2 .1

: / /

2 , , , , , , , , , ,

,

t
ST

s t s t
ST ci c TS ci c ST ci c ST ci c CI C ci c

s s
ST ci c ST

t t
ST ci c ST

s s
ST ci c ST

ST

ContactInformation

W TIF Hotel identification Identification

ci c CopyRelation

W

W

W sourcePath

φ φ χ

φ

φ

− − − −

−

−

−

−

=

=

=

=

=

W W X

W

W

(){ }
(){ }

2 .2

2 2

.1

.2

,

,

: / /

: / /

t t
ci c ST

ci c CI C

s
ST
t

ST

W targetPath

K extensionalSpecification

W SIGRT ContactInformation DirectorName Literal

W TIF Identification contact Contact

χ

=

=

=

=

The novelty of this example is concentrated on the ci2c PropertyBridge. In this PropertyBridge the

SIGRT:ContactInformation/contactInformation/Literal source attribute is to be copied to

TIF:Identification/contact/Contact relation. This source ontology Path is used to uniquely identify

a specific source instance perspective that created the target concept instance that is the object of

the relationship to create. The referred Path is therefore used in both the sourcePath argument

and in the ConditionExpression defined for the extensionalSpecification argument. For that, the

FQ table should be evaluated once again according to:

{ }()2 3/ / ,CI CK ContactInformation DirectorName LiteralFQ ciσ ϕ=

which evaluates exactly to the same FQ table evaluated for the CI2C ConceptBridge (Table 6.31).

This is due to the fact that the same Extensional Specification ConditionExpression is used and

applied to the same source concept instance.

Table 6.31 - FQ table for ci2c PropertyBridge upon ci3 instance

ContactInformation/DirectorName/Literal
“Ralf Frings”
“Otto Halle”

Execution process

162

For every row of the FQ table an instantiated ConditionExpression is generated, corresponding to

Table 6.32:

Table 6.32 – Instantiated ConditionExpression for Extensional Specification

Extensional Specification
SIGRT:ContactInformation/DirectorName/Literal=”Ralf Frings”
SIGRT:ContactInformation/DirectorName/Literal=”Otto Halle”

To this table, a column is added to incorporate the source concept instance (Table 6.33):

Table 6.33 – Complete characterization of source instance perspective

Source Instance ID Extensional Specification
ci3 SIGRT:ContactInformation/DirectorName/Literal=”Ralf Frings”
ci3 SIGRT:ContactInformation/DirectorName/Literal=”Otto Halle”

It is now possible to uniquely identify the pair formed by the source instance perspective and the

target concept instance that has been created from it. Figure 6.16 depicts this process for the source

instance perspective described by the first line of previous table.

Source
Concept
Instance

ID

Extensional Specification

Target
Concept
Instance

ID

ConceptBridge

ha1 ha HA2H
ha2 hb HA2H
ci1 ia CI2I
ci2 ib CI2I
ci3 ic CI2I

ci1
SIGRT:ContactInformation/DirectorName/

Literal==”John Smith” ca CI2C

ci2
SIGRT:ContactInformation/DirectorName/

Literal==”James Ewing” cb CI2C

ci3
SIGRT:ContactInformation/DirectorName/

Literal==”Ralf Frings” cc CI2C

ci3
SIGRT:ContactInformation/DirectorName/

Literal==”Otto Halle” cd CI2C

Source Instance ID Extensional Specification

ci3
SIGRT:ContactInformation/DirectorName/

Literal==”Ralf Frings”

ci3
SIGRT:ContactInformation/DirectorName/

Literal==”Otto Halle”

Figure 6.16 – Univocal correlation through extensional specification

Multi-Dimensional Service-Oriented Ontology Mapping

163

Notice that only one line of 2TI table matches each of the rows of previous table, providing

therefore a univocal correlation between source instance perspective and target instance.

Accordingly, the TIF:Identification/contact/Contact is instantiated as follows:

{ }
() ()

() () ()
() () () ()

()

, , , , , , , ,

, ,

, , ,

, , ,

, ,

TIF a b a b c a b c d

a b

TIF a b c

a b c d

a a
TIF

h h i i i c c c c

Hotel h Hotel h

inst Identification i Identification i Identification i

Contact c Contact c Contact c Contact c

identification h i identificat
inst

=

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

=

I

C

P
() ()

() () () ()
, , , ,

, , , , , , ,
a b b c

a a b b c c c d

ion h i identification h i

contact i c contact i c contact i c contact i c

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

6.4 Constraints upon target instances

Complementarily to the constraints defined upon the source knowledge base, it is often necessary

to constrain the execution process upon the generated target instances.

While this problem relates with any type of constraint, cardinality dimension has been selected to

describe and analyze the problem because it is probably the most common constraint upon the

target instances.

6.4.1 Analysis of the problem

Sometimes, even if multiple target instances can be created from the same source instance, it is

important to define the minimum, maximum or exact number of target instances to create.

The number of target instances to create in the scope of a SemanticBridge depends on the number

of existent source instances to transform (i.e. the number FQ table rows), but specially and

ultimately on the transformation occurring for every row, which might result in the creation of

more than one target instance from each row.

Example 6.25 – Service-dependent cardinality
Imagine that the Service (say SplitRegExpression) intends to split an attribute instance
(String) into string tokens according to a string pattern (regular expression). For each
resulting token a target instance attribute is created. Multiple target instances can be
created from each row.

Therefore, it makes no sense to check the SemanticBridge target cardinality according to the FQ

table. Considering previous example, it makes no sense to create some instances of the target

attribute if the number of resulting tokens is less than the specified cardinality.

Similar observations occur for any other type of comparison done upon the transformation

performed a posteriori by the Services.

Execution process

164

Another problem relates to the ambiguity of the comparison operators. In particular referring to

the cardinality dimension, three cardinality operators have been originally suggested:

Table 6.34 – Cardinality operators constraining the execution of SemanticBridges

Operator Meaning (true if)
EQCardinality cardinality of Op1 is equal to Op2
LTCardinality cardinality of Op1 is less than Op2
GTCardinality cardinality of Op1 is greater than Op2

These operators compare the number of different instances of Op1 property in FQ table with

Op2. If the comparison evaluates to true it means that the SemanticBridge should be executed, i.e.

one target instance is created from each FQ table row. Therefore, these comparisons test the

executability of the SemanticBridge, but do not states any constraint about the number of target

instances to create.

While previous operators could be overloaded to constrain the creation of target instance

cardinality, adopting such approach would conduct to ambiguity of the operator and poor semantic

expressiveness. In particular, multiple contradictory interpretations would be plausible for several

comparison situations (Table 6.35):

Table 6.35 – Ambiguous interpretations of cardinality operators concerning executability
and target instance creation

Target cardinality interpretations

Operator Comparison
operands Do not

execute
Do not
create

instances

Create all
possible
instances

Create
instances

but
Op1<Op2 Yes Yes - -

Op1==Op2 - - Yes - EQCardinality
Op1>Op2 Yes - - = Op2
Op1<Op2 Yes Yes Yes -

Op1==Op2 Yes Yes Yes - GTCardinality
Op1>Op2 - - Yes -
Op1<Op2 - - Yes -

Op1==Op2 Yes Yes - < Op2-1 LTCardinality
Op1>Op2 Yes Yes - < Op2-1

For example, notice that when EQCardinality is used and Op1>Op2, two mutually exclusive

interpretations are admissible:

• The constraint is applied to check the cardinality, then the SemanticBridge should not be further

executed;

• The constraint states the cardinality of the target instances, then the target instances are created,

but only Op2 number of instances.

Multi-Dimensional Service-Oriented Ontology Mapping

165

Resuming, two problems arise from the adoption of constraints upon target instances:

• The evaluation of the target instances according to ConditionExpressions;

• Ambiguity of the comparison operators, originally suggested as comparison operators upon

source instances only.

6.4.2 Developed solution

To overcome the first problem, the proposed solution suggests the inclusion of two more phases in

the execution process, resulting in the following five-phase process:

1. Querying the source knowledge base (as described previously);

2. Filter the knowledge base query according to the ConditionExpression defined upon the source

knowledge base (this phase results in the first FQ table);

3. Transformation of the source KB into target ontology instances as described previously, but the

resulting instances are reserved instead of the immediate inclusion in the target KB;

4. Filter the target ontology instances resulting from previous phase according to the

ConditionExpression defined upon the target knowledge base (this phase results in the second

and last FQ table);

5. Create the target instances resulting from the last FQ table, in the target KB.

As noticed, while the analysis of the problem has been done upon the cardinality dimension, the

proposed solution is not focused in this dimension only, but is generic enough to address any

dimension and its comparison operators.

With respect to the second problem and in order to improve clarity and semantic expressiveness, it

is suggested the specification of new comparison operators upon target knowledge base.

Thus, two groups of cardinality operators have been defined:

• Source cardinality operators, referring to the previously defined EQCardinality, LTCardinality

and GTCardinality operator, which check the executability of the SemanticBridge according to

the cardinality of the source instances;

• Target cardinality operators, that control cardinality of the target instance creation.

Accordingly, three new target cardinality operators are defined with the following purposes:

Table 6.36 – Target instance creation cardinality operators

Operator Purpose
Target Entity ExactCardinality Value Creates exactly Value instances of TargetEntity
Target Entity MaxCardinality Value Creates at maximum Value instances of TargetEntity
Target Entity MinCardinality Value Creates at minimum Value instances of TargetEntity

Execution process

166

Every target condition expression cardinality expression is evaluated and interpreted accordingly.

Each target cardinality expression may evaluate to three distinct results, conducting to distinct

interpretations and actions. Table 6.37 provides the interpretation and correspondent action for

every result of the operators (Op1 corresponds to cardinality of the Target Entity and Op2 to

Value):

Table 6.37 – Cardinality operators constraining the creation of target instances

Interpretations

Operator
Cardinality

Comparison
result

No instance
created

Create all
possible
instances

Execute only
Op2

instances
Op1<Op2 Yes - -

Op1==Op2 - Yes - ExactCardinality
Op1>Op2 - - Yes
Op1<Op2 - Yes -

Op1==Op2 - Yes - MaxCardinality
Op1>Op2 - - Yes
Op1<Op2 Yes - -

Op1==Op2 - Yes - MinCardinality
Op1>Op2 - Yes -

Target cardinality expressions are specified through ConditionExpressions, which in turn are

Boolean expressions. However, because Or logical expressions permit that more than one of the

operands evaluate to true, it is possible to define ambiguous target cardinality expressions.

Example 6.26 – Or-based ambiguous cardinality constraints

Considers that the following target instances have been evaluated for 1Path target entity:

{ }1 1 2,Path instance instance=

Considers that the following target cardinality expression is evaluated upon previous set:

(){ }4 1 12, 1K Or Path MinCardinality Path MaxCardinality=

Notice that both target cardinality expressions evaluate to true. Yet they are mutually
contradictory:

• If the MinCardinality constraint is respected, the MaxCardinality is neglected;

• If MaxCardinality constraint is respected, the MinCardinality is neglected.

In that sense, it has been decided that Or logical expressions cannot be defined in target

ConditionExpressions. Additionally, target ConditionExpressions can only be based on properties

instances that are presented in the last FQ table.

Multi-Dimensional Service-Oriented Ontology Mapping

167

6.4.3 Example 6.27 - Cardinality annotated example

Consider the ontology mapping scenario between TourinFrance and SIGRT ontologies. Despite

nothing is stated in SIGRT ontology, the domain expert determined that Cardinality of

contactInformation property between SIGRT:HotelAccommodation and

SIGRT:ContactInformation is 1.

In order to ensure the creation of exactly one SIGRT:ContactInformation instance, the I2CI

ConceptBridge should be refined. Because it makes no sense to create a

SIGRT:ContactInformation instance if it is not related with a SIGRT:HotelAccommodation

instance, the I2CI ConceptBridge should be defined between TIF:Hotel and

SIGRT:ContactInformation for one and only one instance of identification relation. This

description is fully characterized by the following specification:

{ } { } { }
{ }

{ }

(){ }

2 2 2

2 2 .1

2 .1 .1

2 2 .2

2 .2 .1 .1

2 2 .2

.1

: , : ,
2

, , , , ,

ExactCardinality1

,

:

I CI I CI I CI

I CI I CI

s
I CI ST

I CI I CI

s s
I CI ST ST

I CI I CI

s
ST

TIF Hotel SIGRT ContactInformation
I CI

C

C W
C

C W W

C extensionalSpecification

W TIF Hote

χ

χ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

=

=
=

= ==

=

=

K X

K

X

/ /l identification Identification

The execution of this ConceptBridge for the h1 TIF:Hotel instance will give rise to the FQ table

represented in Table 6.38.

Table 6.38 - FQ table evaluated for I2CI ConceptBridge in the scope of h1 instance

Hotel/identification/Identification
i1

i2

Because all execution constraints (from Table 6.37) succeed (i.e. it is possible to create exactly one

target instance), the ConceptBridge will give rise to one SIGRT:ContactInformation instance. In

that sense the resulting 2TI table is (Table 6.39):

Table 6.39 - 2TI table resulting from the refined TIF SIGRT−M execution

Source
Concept
Instance

ID

Extensional Specification

Target
Concept
Instance

ID

ConceptBridge

h1 ha1 H2HA

Execution process

168

h2 ha2 H2HA
h1 Hotel/identification/Identification=i1 ci1 I2CI
h2 Hotel/identification/Identification=i3 ci2 I2CI

Because an extensional specification has been used to create SIGRT:ContactInformation instances,

it becomes necessary to refine the i2ci PropertyBridge such the same target cardinality expressions

and extensional specifications are defined as for the I2CI ConceptBridge.

{ } { }(). 2 . 2 . 2 . 2 2 2 22 , , , , , , , , ,s t s t
TS i ci TS i ci TS i ci TS i ci I CI I CI I CIi ci CopyRelation Kφ φ χ= W W X

Table 6.40 despite the extensional specification perspectives calculated by the i2ci PropertyBridge in

the scope of the ha1 instance:

Table 6.40 – Different order of the same source instance perspectives

Source Instance ID Extensional Specification
h1 TIF:Hotel/identification/identification=i2
h1 TIF:Hotel/identification/identification=i1

Notice that while the achieved rows are identical to those of Table 6.39 their order is different. The

execution engine would try to create a relationship between ha1 and the target instance originated

from the source instance perspective defined according to first row of the table. However, because

such instance does not exist the engine will provoke an exception. If the process continues for the

next source instance perspective instead, it will succeed in creating the inter-relation, because such

perspective indeed originated a target instance.

In fact, because order in query tables is unpredictable, when generating the same source instance

perspectives in the scope of different SemanticBridge the order might be different.

As observed, the fact that one of the source instance perspectives does not match 2TI entries does

not mean the execution must fail, but that another source instance perspective should be used.

Therefore, in case one source instance perspective fails the match, the process continues to the next

perspective until the cardinality has been reached or no further source instance perspectives are

available. CopyRelation Service must be therefore modified in a way exceptions are raised only if

both next conditions are verified:

• All source instance perspectives have been matched against 2TI rows;

• The target cardinality has not been reached (after previous condition).

Yet, this solution does not exclude the need to specify, in the PropertyBridge, a target cardinality

smaller or equal to the target cardinality specified in the ConceptBridge that created the target

instances the PropertyBridge is inter-relating.

Multi-Dimensional Service-Oriented Ontology Mapping

169

6.5 Conclusions

The execution process described in this chapter is based on the instantiation of the SBO ontology

into a meaningful mapping specification. Section 6.1 described the fundamental principles of the

execution process, namely the execution order between ConceptBridges and PropertyBridges and

the Transformation Information Table (2TI).

One of the most important contributions of this thesis has been presented in Section 6.2, and is

referred as the internal process. The core stage of the internal process is the process of querying the

source knowledge base. In this stage a new tree-based representation of Paths has been developed,

which permits to query and combine instances of the Paths coherently, even when they share some

parts of the branches. The process has been described according to relational algebra, providing a

well-established ground for the required analysis and argumentation of the problem, as well as the

tools to propose and deploy solutions to the problem.

Due to modeling decisions, the proposed SBO does not provide support to property to concept

semantic relations. This limitation has been described and a solution proposed based on the

extensional specification mechanism. Yet, the solution caused no fundamental changes in SBO,

which maintained its core philosophy, structure and semantics. The developed extensional

specification mechanism provides the missing features by forwarding the required changes to both

the CopyInstance and CopyRelation Services, while maintaining the fundamentals of SBO and of

the execution process. These two Services evolved during Section 6.2.4 both concerning the

semantics and interface, but the execution process cycle as well as the internal process did not

change. What is more, SBO entities and developed internal mechanisms have been successfully

applied to the new extensional specification mechanism with minimal or no changes.

Section 6.4 concerned with the target execution process constraints defined upon the target

instances. The execution process previously defined does not provide enough features to deal with

this requirement. Additionally, it has been noticed that the proposed operators of SBO could lead

to ambiguity in the semantic bridging and execution processes. In respect to the first problem, it

has been proposed the extension of the three-phase query-filtering-transformation process, into the

five-phase query-filtering-transformation-filtering-instantiation process. This process filters the

source and target instances in different moments of the process, constraining the flow of process

when required and possible. In respect to the problem raised by the ambiguity of the operators,

three new cardinality operators have been proposed and their semantics defined, which suggest the

separation between source and target cardinality operators. Distinguishing between source and

target comparison operators might be adopted for other operators, but this should be decided in a

case by case basis.

Execution process

170

It is now important to compare the requirements identified in Chapter 5 with the functionalities

added in this chapter and supported by the execution process (Table 5.6).

Table 6.41 – Semantic relations characteristics supported by SBO and execution process

Dimensions Semantic Relations
Characteristics

Required
support

SBO
support

Added
support

Concept to Concept Yes Full -
Concept to Property Yes Full -
Property to Concept Yes No Full
Property to Property Yes Full -

1. Entity type

Entity to Instance Limited No -
Set of basic functions Yes Full -
Combination of functions Yes No - 2.1 Function
Integration of new functions Yes Full -
Unidirectional Yes Yes -
Manually bidirectional Limited No -

2.
 T

ra
ns

fo
rm

at
io

n

2.2 Directionality
Automatically Bidirectional Limited No -
0:1 Yes n/a -
0:n n 0:1 bridges n/a -
1:1 Yes n/a -
1:n Yes n/a -
n:0 Limited n/a -
n:1 Yes n/a -

3. Cardinality

m:n by m:1+1:n n/a -
Not constrained Yes Full
Ontological entities-based Yes Yes 4. Constraint
Non-ontological entities-based Yes Yes

target
instance

cardinality
Object-oriented Yes Yes -
Property-centric Yes Yes - 5. Structural support
Flow execution control Yes Yes -

Previous table illustrates the contribution of the execution process to the fulfillment of the support

envisaged to the ontology mapping system. However, probably more important than the support

added by the execution process, it is the fact that all features of semantic bridging phase supported

by SBO are supported by the execution process. The exception is the Entity to Instance semantic

relation that is not yet supported by the execution process.

Therefore, the main research contributions of this chapter are:

1. The generic execution process together with the transformation information table that relates

each created target concept instance with the source concept instance that originate it;

2. The internal process described in terms of relation algebra, where source knowledge base is

semantically queried and filtered according to SemanticBridges arguments;

Multi-Dimensional Service-Oriented Ontology Mapping

171

3. Extensional specification of non-explicitly existent source concept instances, which permits to

support property to concept semantic relations, maintaining SBO fundamental characteristics,

namely the clear and versatile set of inter-relations between ConceptBridges and between

ConceptBridges and PropertyBridges;

4. The developed solution to control target instances cardinality based on generic

ConditionExpressions.

173

Chapter 7

MULTI-DIMENSIONAL

SERVICE-ORIENTED ARCHITECTURE

This chapter describes the research done in the analysis and specification of the architecture of the

ontology mapping system according to the research proposals suggested in previous chapters. The

work described in this chapter has been initially published in [Silva et al., 2003; Silva & Rocha,

2003c; Silva & Rocha, 2003e; Silva & Rocha, 2004a; Silva & Rocha, 2004b].

The major goal of the architecture is not only to propose a model for the implementation of the

ontology mapping system, but to apply, respect and exploit the ideas explicitly or implicit

represented through the MAFRA – MApping FRAmework, and especially the ideas proposed in

the semantic bridging and execution phases.

Multi-Dimensional Service-Oriented Architecture

174

In fact, the proposed architecture is the result of the combination of many different valuable

knowledge inputs, and it represents one of the major outcomes of the research work described in

this thesis.

First section of this chapter analyzes the problem of the automation of the ontology mapping

system. Second section presents the proposed architecture, describing its components and inter-

relations. The third chapter describes the research efforts made in the specification of the automatic

semantic bridging process, as a case test of the proposed architecture.

7.1 Observations

Because the ontology mapping process is a time-consuming, knowledge-demanding, user-based

process, automation is a very important feature for most of the application scenarios suggested in

Chapter 2.

However, automation is difficult and error-prone, especially due to the incompleteness and

subjectivity of ontologies. In fact, despite the fact ontology is a formal and explicit specification of a

conceptualization, it reflects the subjectivity of the conceptualization and might therefore be

difficult to understand and manage. Because of a subjective element, some of the phases of the

process are inherently subjective, and therefore hard to automate.

This is especially true for the semantic bridging and similarity measuring phases, but the

cooperative consensus building and evolution tasks also suffers its effects. Next three sections

describe the observed requirements and limitation in automating these tasks.

7.1.1 The gap between similarity measuring and semantic bridging

Current ontology mapping systems [Dou et al., 2002; Omelayenko, 2002a; Omelayenko, 2002b;

Stuckenschmidt & Visser, 2000; Stuckenschmidt & Wache, 2000; Xiao et al., 2004] are capable to

represent and execute semantic relations defined by the domain expert, but none is capable to

support the automatic definition of semantic relations. On the other hand, many research efforts

[Beneventano et al., 2001; Dionísio et al., 2001; Doan et al., 2002; Kang & Naughton, 2003; Miller et

al., 2000; Resnik, 1999] is running on developing similarity measuring systems, the so called

matchers, whereby similarities between ontologies entities are discovered and measured. Distinct

approaches are adopted, such as linguistic disambiguation [Dionísio et al., 2001; Resnik, 1999],

clustering [Beneventano et al., 2001; Doan et al., 2002], graph-based [Beneventano et al., 2001; Miller

et al., 2000] and instance-based [Kang & Naughton, 2003] analyses. Matchers are, in most cases,

capable to determine the existence of a semantic relation between a pair of ontologies entities

[Doan et al., 2002; Kang & Naughton, 2003; Miller et al., 2000], and in some cases are even able to

Multi-Dimensional Service-Oriented Ontology Mapping

175

determine the existence of 1:n semantic relation [Beneventano et al., 2001]. However, no matcher is

capable to determine the type of transformation occurring in the semantic relation. Resuming:

• Matching is capable to discover and measure the existence of semantic relations;

• Ontology mapping system is capable of representing the semantic relations;

• Neither matching nor mapping processes are capable to determine the type of transformation

associated with the semantic relation.

An import gap exists therefore between ontology mapping systems and similarity measuring

systems, consisting in determining the correct Service to associate with a SemanticBridge according

to a set of similarity measures. Overcome this gap is one of the major goals of any ontology

mapping system, which corresponds to the automation of the semantic bridging phase.

User-based specification of SemanticBridges, including the application of a Service to every

SemanticBridge, is based on heuristics rules constrained by the set of related entities and the

transformation performed by the Service. The primary approach consists therefore in capturing

these heuristic rules into a rule-based system, which would be applied in deciding the suitability of

the Service in context of each SemanticBridge.

However, due to the dynamics and subjective nature of the ontology mapping scenarios, it is

natural that new transformation capabilities would be often required, motivating the appearance of

new Services. In turn, new Service development results in changes in the rule-based system,

including the addition (and eventually modification) of new heuristic rules according to the new

Services requirements. This evolution requires considerable expertise upon the rule-based system by

the Service developer which otherwise could generate undesired effects in the already defined

Services.

7.1.2 Cooperative consensus building

A new dimension is added to the ontology mapping process when, instead of a unique actor (user),

two or more actors take part and influence the ontology mapping process. In fact, within a context

of multiple actors, there is not anymore a unique subjective interpretation and decision, but instead

multiple subjective interpretations trying to influence the final decision.

The semantic bridging phase is envisaged as the one profiting more from the cooperative

consensus building capabilities of the system, and is therefore the special focus of this observation.

Cooperative consensus building at semantic bridging phase aims to either:

• Achieve a consensus between two entities mapping the ontologies;

• Improve the quality of the mapping by recruiting third-party entities competencies into the final

mapping document;

Multi-Dimensional Service-Oriented Architecture

176

• Provide the mechanisms to support user in deciding about two or more (eventually exclusive)

SemanticBridges.

The goal however, is not to derive SemanticBridges but to combine the perspectives of the

intervenients about a set of SemanticBridges and derive a mapping document with certain

characteristics (e.g. better quality, commonly accepted). In fact, the cooperative consensus building

process starts when the different intervenients already have their own proposals about the

SemanticBridges. This characteristic clearly distinguishes the semantic bridging process from the

cooperative consensus building process. Consequently, the process will naturally focus on

negotiating the characteristics of SemanticBridges suggested by the intervenients, which in turn

results in arguing about the competency and semantic validity of applying a specific Service in

relating a set of source and target entities. Services arise once again as a corner stone in the process.

7.1.3 Evolution

Once the mapping document is defined and “running”, it often occurs that mapped ontologies

evolve by a multitude of reasons. In these circumstances, the ontology mapping specification often

becomes schematic or semantically incorrect. Schematic errors occur when the ontology mapping is

no longer compatible with the schematic elements of the ontologies.

Example 7.1 - Schematic evolution of ontologies demand SemanticBridges
evolution

Consider that the PropertyBridge price2price exists between O1:Item.price.Literal and
O2:Article.price.Literal, in which CopyAttribute is the applied Service. Meanwhile O1
ontology evolved such property O1:Item.price.Literal has been substituted by the
O1:Person.priceEUR.Literal property. The price2price PropertyBridge becomes
schematic invalid because the applied source property no longer exists in the ontology.

Semantic errors occur when the mapped ontologies change in a way that semantic relations in the

mapping document are no longer semantically valid.

Example 7.2 - Semantic evolution of ontologies demand SemanticBridges
evolution

Consider the initial price2price PropertyBridge of previous example. Also, consider that
O1 ontology evolved such the O1:Item.price.Literal property no longer represents the
price in PTE currency but in EUR currency. As consequence, it is no longer semantically
correct to copy instances (transformation provided by the CopyAttribute Service) of
O1:Item.price.Literal to O2:Article.price.Literal since both properties represents different
values. However, the price2price PropertyBridge is still schematic correct.

Managing evolution of the ontology mapping document is, in some aspects, similar to the semantic

bridging process, but there are a few important differences:

• Parts of the mapping document are eventually not affected by the ontologies changes, and

should therefore be kept unchanged;

Multi-Dimensional Service-Oriented Ontology Mapping

177

• Even the affected parts of the existent mapping document contains valuable, eventually correct

semantic bridging information, reflecting important user-based decisions that can/should be

exploited in the evolution process.

Thus, the evolution process of mapping should respect not only the ontologies but also the already

defined SemanticBridges. Existent SemanticBridges and their associated Services arise consequently

as one of the main reasoning elements to consider in the evolution task.

7.1.4 Synthesis

According to previous descriptions and considering all knowledge described in previous chapters,

two important facts are systematized:

1. The central role of Services. Service, as one of the core components of the proposed ontology

mapping approach, is responsible for the transformation capabilities of the ontology mapping

system. Because every SemanticBridge has an associated Service, the types of SemanticBridges

and thus of the transformation capabilities of the ontology mapping system are ultimately

dependent on the transformation Services available in the system.

2. The virtually incomplete transformation capabilities. As referred along this thesis, the

transformation requirements vary according to the heterogeneity of the ontologies and their

subjective nature, and the user interpretation of the semantic relations holding between them. In

that sense it is virtually impossible to provide transformation capabilities, by the ontology

mapping system, capable to solve any mapping scenario.

7.2 Proposal

This section describes the developed approach in order to address the problems raised by the

automation of the different phases of the ontology mapping process, resulting in the so called

Multi-Dimensional Service-Oriented Architecture.

Previous observations together with the seven quality vectors introduced in 4.1, lead to the

adoption of three distinct but interrelated lines of research:

1. Improve the competency of Services so they can contribute with specific know-how to other

phases of the overall mapping process that would request their competencies and know-how.

Services are no longer limited to transform source instances into target instances during the

execution process, but are endowed with multiple types of competencies, arising as the so called

Multi-Dimensional Services;

2. Turn Services independent from any core MAFRA module, and not intrinsically belonging to

the execution module. The relation between Services and core modules evolves from a

dependent, subservient relation of Services in relation to the modules, to a cooperation-based

Multi-Dimensional Service-Oriented Architecture

178

relation. Competencies (know-how) are requested by modules and provided by Services, clearly

separating both types of entities. Services and modules should therefore cooperate according to

a commonly established interface;

3. Model Services as pluggable, self-describing entities, supporting the capability of the ontology

mapping system to adapt to new mapping scenarios, while respecting and promoting the

independence of Services from core modules. This arises from, and drives to, a generalization of

the previous line of attack, in which Services are made so independent from the core system that

they can be made external to the system. Services should therefore provide their own

description of competencies and requirements in a way the core system can recruit their

competencies according to each phase requirements.

The result is the so called Multi-Dimension Service-Oriented Architecture, illustrated in Figure 7.1.

MAFRA Service Interface

S
pl

it

C
op

y
In

st
an

ce

C
op

y
R

el
at

io
n

C
op

y
A

ttr
ib

ut
e

C
on

ca
te

na
tio

n

C
ur

re
nc

y
C

on
ve

rte
r

S
er

vi
ce

 X

A
ttr

ib
ut

eT
ab

le
Tr

an
sl

at
io

n

Manual
Bridging

Automatic
Bridging Execution

Common
Consensus

Building
Evolution

Source
instances

SBO
InstanceSource

Ontology

Semantic
Bridge

Ontology

Target
Ontology

Similarity
Measurement

Source
Schema/
Ontology

Target
Schema/
Ontology

Target
instances

Source
Instances

Target
Instances

MAFRA Core Engine

Lift & Normalization

S
er

vi
ce

 Y

DBDB

Figure 7.1 – Multi-Dimensional Service-Oriented Architecture

Multi-Dimensional Service-Oriented Ontology Mapping

179

This architecture reflects the adoption of a modular, decentralized architecture, where Services are

attached to the system functional core modules (i.e. bridging, execution, common consensus

building, evolution, etc.) through a specific interface, referred as the MAFRA Service Interface.

Services are therefore understood as independent, dynamic, intelligent entities, encompassing the

better as possible the user-acquirable and user-acquaintable know-how, providing different

competencies as required by each core modules. The MAFRA Core Engine is responsible for

general tasks, such as loading and storing ontologies and knowledge bases, and processing and

dispatching user-requests to core modules.

7.3 Automatic Semantic Bridging

In order to demonstrate the application and exploitation of the Multi-Dimensional Service-

Oriented Architecture, the automation of the semantic bridging phase will serve as a case test. The

goal of the process is to choose the right combinations of source entities with target entities

through a Service.

7.3.1 Observations

Recurring to lexical tools like dictionaries, specific domain thesaurus and WordNet, it is possible to

classify multiple similarities between pair of entities. However, these classifications are typically

insufficient and error-prone due to the classification defined by the annotated corpus used in the

process. Structural analysis of ontological entities and statistical and probabilistic analyses of

ontologies instances are other ambiguous or insufficiently accurate similarity measuring techniques.

In fact, according to literature [Bernstein & Rahm, 2001; Doan et al., 2002; Rahm & Bernstein,

2001] and analyzing their respective results, it is empirically evident that no technique or algorithm

is accurate enough, thus the need to combine efforts from all knowledge sources possible into a

useful system.

7.3.2 Hypothesis

Instead of research on new, eventually better similarity systems capable to assign a Service to a

SemanticBridge, it is suggested to research on the technology that permits the semantic bridging

phase to adopt and exploit the similarity measuring systems already available, through the

independent and specific know-how of Services.

It is proposed to adopt and exploit the evaluated similarity measures according to each Service

specificities and specifications, so the system is able to decide the best Service to apply between two

sets of ontologies entities. However, instead of centering that competency in the automatic

semantic bridging core module, the Multi-Dimensional Service-Oriented Architecture is exploited.

Multi-Dimensional Service-Oriented Architecture

180

For that, each Service capabilities are enhanced in a way that, through the set of provided similarity

measures, it can reason, emit an opinion or decide about its aptitude to relate a set of source

ontology entities with a set of target ontology entities.

In order to maintain the system dynamic and as open as possible, each similarity measuring system

would be implemented by an external, pluggable entity connected to the core system by a common

specific interface (just as described for Services).

7.3.3 Specification

This section describes the systematization and specification process of the proposed approach. In

the first sub-section the fundamental input entities and objects of the system are described:

matchers and matches respectively. Second sub-section describes the core automatic bridging

process, referred as Clustering. It consists in grouping matches into meaningful sets so a specific

Service is able and competent to transform the instances of the ontologies entities referred in

matches. As central process in the system, clustering is the ultimate responsible for the quality of

the resulting SemanticBridges. Yet, clustering is not itself a specific monolithic piece of the system

but is instead distributed by Services. Thus changes or refining clustering is then preferably

performed incrementally and according to each Service specificities.

7.3.3.1 Matchers and Matches

Similarity measuring is the process performed by the similarity measuring systems, referred as

matchers entities, which evaluate the similarities between pairs of source and target ontologies

entities. The similarity measure is referred as a match and denotes a certain degree of a certain type

of similarity between the source and the target ontology entities.

Example 7.3 – Matchers and the different dimensions of ontologies
One matcher might measure the similarity between two entities according to their names,
while another matcher might use the lexical information associated with the entities, while
another might use the hierarchical structure in which they are defined.

Therefore, in the context of this thesis, a match is a structure in the form of:

, ,
:

, ,
Source ontology entity Target ontology entity

Match
Matcher Similarity value Justifications

=

where:

• Source ontology entity is the source ontology concept or property addressed in the match;

• Target ontology entity is the target ontology concept or property addressed in the match;

Multi-Dimensional Service-Oriented Ontology Mapping

181

• Matcher is the identification of the matcher that evaluated the similarity measure, which in

turn characterize the type of similarity measured. At maximum one match is evaluated by a

matcher for the same pair of ontologies entities;

• Similarity value corresponds to the degree of the similarity, normally ranging from 0 to 1;

• Justifications is the set of statements providing argumentation for the evaluated value.

Currently, justifications are not being used, but their application is envisaged in the common

consensus building part of the process.

Because multiple matchers are supposedly available in the system, multiple matches may be

evaluated for the same entity (either source or target ontology entity) potentially forming an n:m

relation. It is therefore beneficial to index the repository of matches (M) by (i) the source entity,

(ii) the target entity and (iii) the matcher. Moreover, the set of all matches evaluated for the same

pair of ontology entities is referred as a Knot.

Example 7.4 – Similarity measuring scenario
Consider the ontology mapping scenario of Figure 7.2 where ontology O1 is to be
semantically related to ontology O2.

-name
-gender

O1:Individual

O1:Family

-given_name
-surname
-noMarriages

O2:Individual

O2:Man

O2:Woman
spouseIn

Figure 7.2 – Simple ontology mapping scenario using UML notation

Consider also the three available matchers:

• Resnik-like matcher, based on the Resnik method [Resnik, 1999] on word-sense
disambiguation (WSD);

• MOMIS-like matcher, based on structural and clustering techniques suggested on
MOMIS [Bergamaschi et al., 1999];

• Type-checker matcher, which is capable to determine the types of ontologies entities,
either by the information in the ontology or by instance-based analysis.

Table 7.1 represents the matches resulted from the similarity-measuring phase whose
value is above certain predefined global threshold.

5m and 8m compose the knot for the O1: name and O2:surname ontology entities.

Multi-Dimensional Service-Oriented Architecture

182

Table 7.1 – Example of matches resulting from the similarity measuring phase

ID Source entity Target entity Matcher Similarity
value Justifications

m1 Individual Individual Resnik-like 0.95 []
m2 Individual Man Resnik-like 0.86 []
m3 Individual Woman Resnik-like 0.86 []
m4 name given_name Resnik-like 0.82 []
m5 name surname Resnik-like 0.82 []
m6 spouseIn noMarriages Resnik-like 0.66 []
m7 name given_name MOMIS-like 0.81 []
m8 name surname MOMIS-like 0.85 []
m9 Individual Individual MOMIS-like 0.78 []
m10 Individual Man MOMIS-like 0.78 []
m11 Individual Woman MOMIS-like 0.78 []

Notice that at similarity measuring stage, ontology entities are treated independently of their type,

permitting matches between concepts and properties and vice-versa. This situation is not illustrated

in previous example.

In addition to the matches proposed by (automatic) matchers, other entities in the system, like the

domain expert, can provide their own matches. The matcher identification in such matches is set

according to the identity of the entity. For instance, the matcher element in the matches defined by

the domain-expert (the user) will be fulfilled with “user”. Other entities will propose matchers, as it

will be referred in next sections.

7.3.3.2 Cluster and Clustering

Clustering is the process that groups together a set of matches into an entity named Cluster. The

source entities defined in these matches are semantically related to the target entities defined in the

same matches. The output of the clustering process is a set of clusters, each being characterized

according to the type of related entities and its cardinality. Cluster cardinality refers to the number

of distinct source ontology entities and the number of distinct target ontology entities correlated in

the cluster.

Example 7.5 – Matches forming a cluster
From the set of matches presented in Table 7.1, a common-sense meaningful cluster is
composed by the matches relating “name” to “given_name” and “surname” (Table 7.2).
The cardinality of this cluster is 1:2 (1:n generically).

Multi-Dimensional Service-Oriented Ontology Mapping

183

Table 7.2 – Matches forming a cluster

ID Source entity Target entity Matcher Similarity
value Justifications

m4 name given_name Resnik-like 0.82 []
m5 name surname Resnik-like 0.82 []
m7 name given_name MOMIS-like 1 []
m8 name surname MOMIS-like 1 []

MOMIS [Beneventano et al., 2001] and SKAT [Mitra et al., 1999] are the few known systems

claiming the capability to group matches together. While SKAT clustering capabilities are rather

simple, MOMIS can effectively group together semantically related entities based on the WordNet

lexical relations between entities labels. A “global as view” approach is used, in which mapping

rules, derived manually by the designer (expert), relates the ontology entities to the global entity.

However, no transformation function is explicitly defined between entities, but instead logical

operators are used, leaving the semantic relation extremely ambiguous.

Example 7.6 – MOMIS generated cluster
The next piece of code represents a mapping rule derived between ID ontology
(Intensive Care Department) and the CD ontology (Cardiology Department).

attribute name
mapping_rule

(ID.Patient.first_name and ID.Patient.last_name),
CD.Patient.name

According to the nomenclature used during this thesis, the previous mapping rules would
correspond to the PropertyBridge between the set of source entities
ID:Patient/first_name/Literal and ID:Patient/last_name/Literal, and the target entity
CD:Patient/name/Literal. No Service is explicitly stated (the “and” operator is used),
Even if for a human it is obvious that the Concatenation Service should be applied
instead of “and”, a multitude of other transformations are possible in the scope of the
ontology mapping system.

Yet, it is of fundamental importance to ontology mapping system that the transformation function

operating between ontology entities instances is explicitly defined instead of other possibilities.

Consequently, Cluster should be further characterized with the Service capable to transform

instances in the ontologies entities. A cluster is then a structure in the form of:

: ,Cluster Service Matches=

where:

• Service is the name of the Service capable to transform the instances of the ontologies entities

defined in Matches ;

• Matches is a set of matches.

Multi-Dimensional Service-Oriented Architecture

184

Example 7.7 – Service-Cluster association
Consider that the Split Service would be adequate to process the entities referred in the
matches represented in Table 7.2. The resulting cluster (cl) would be represented as:

{ }4 5 7 8, , , ,cl Split m m m m=

7.3.4 Reducing combinatorial space by Service-based clustering

This section describes the research work developed in the scope of this thesis concerning the

reduction of the combinatorial space of the semantic bridging process. The described method does

not intend to define the correct SemanticBridges, but instead to define all possible SemanticBridges.

Applying a simple definition process permits to focus efforts in better judge the suitability of the

Service in relating the set of ontologies entities.

The proposed method is based on clustering matches according to Services interface. In special two

characteristics are useful:

• Cardinality. Cardinality of the match should match the Service cardinality. In case they do not

match, the Service is considered unable to semantically relate the cluster;

Example 7.8 – Clustering constrained by the Service cardinality
It makes no sense to try to associate the CopyAttribute Service to the cluster specified in
Table 7.2. In fact, the CopyAttribute Service is a 1:1 cardinality Service, while the cluster
is 1:2 (1:n, generically). Instead, the Split Service (1:n cardinality) is not disregarded
immediately.

• Types of the arguments, constrain the type of entities semantically related in the cluster.

Example 7.9 – Clustering constrained by the type of arguments of Service
Consider the set of matches presented in Table 7.1. According to m1 and m9 matches,
O1:Individual is semantically related to O2:Individual. Because both CopyAttribute and
CopyInstance Services have 1:1 cardinality, both could be applied in an eventual
SemanticBridge between these two entities. However, the CopyAttribute Service
arguments do not support concepts, but attributes. Instead, CopyInstance Service
arguments are of type concept. Thus, while the CopyAttribute Service would be
considered unable, the CopyInstance Service would prevail as a possibility.

The primary constraint the system must respect to is the Service interface. In fact, each Service is

characterized by a number and type of arguments, which must be respected when applied in a

specific SemanticBridge. Driving the clustering process according to the Services interface will

reduce easily and efficiently the combinatorial space. Such approach is commonly adopted in other

disciplines such in software engineering in which the interface of a procedure or function is used to

(limitedly) determine the program correction (compilation) and generate the assemble code

(linkage).

Despite clustering process is dependent on each Service, a common approach has been

systematized respecting the implementation of this method. The derived approach suggests that

Multi-Dimensional Service-Oriented Ontology Mapping

185

every match evaluated by matchers is pushed to every Service in the system, which decides what to

do according to its own interface. This situation is metaphorically represented in Figure 7.3, in

which a part of the Multi-dimensional Service-oriented Architecture is represented. According to

the Services decisions, clusters (e.g. cl1, cl2, cl3) are created and associated with the Service that

created it.

Matches

cl1

cl3

cl4

cl12

cl8

cl10

cl9

cl15

cl6

match

cl2

MAFRA Service Interface

Sp
lit

C
op

y
In

st
an

ce

C
op

y
R

el
at

io
n

C
op

y
At

tri
bu

te

C
on

ca
te

na
tio

n

C
ur

re
nc

y
C

on
ve

rte
r

S
er

vi
ce

 X

At
tri

bu
te

Ta
bl

e
Tr

an
sl

at
io

n

Automatic
Bridging

S
er

vi
ce

 Y

cl7

Figure 7.3 – Service-based clustering for reduce combinatorial space

Essentially, the derived approach states that in every Service the match motivates one of the

following judgments:

1. The match provokes the creation of a new cluster, in which case a new cluster is created and the

Service associated with it;

2. The match makes sense in the scope of an already existent cluster, in which case the match is

added to that cluster;

3. The match produces the removal of an existent cluster, in which case the cluster is removed;

4. The match is useless in the scope of the Service and is therefore disregarded.

While conceptually corresponding to these four judgments, the process is implemented slightly

different. Basically, the implemented process verifies for every Service if there is a set of matches

whose (source and target) entities had no further matches and fit the interface of the Service. As

consequence, once a cluster is created, no match can motivate its removal.

Considering a repository of matches M , the process corresponds to the following steps:

1. For every Service available in the system, fill in ServiceM with all the matches from M whose

entities conform the types of the Service arguments;

Multi-Dimensional Service-Oriented Architecture

186

2. For every Service, subtract44 from ServiceM a match m and the matches from its knot into mk .

Evaluate:

• se
ServiceM as the set of all matches subtracted from ServiceM , in which the source entity of m is

referred;

• seM as the set of all matches retrieved45 from M , in which the source entity of m is referred

and are not present in se
ServiceM . Contrary to se

ServiceM , seM may contain matches whose types

do not conform to the interface;

• te
ServiceM as the set of all matches subtracted from ServiceM , in which the target entity of m is

referred;

• teM as the set of all matches retrieved from M , in which the target entity of m is referred

and are not present in te
ServiceM . Contrary to te

ServiceM , teM may contain matches whose type

do not conform to the interface;

3. According to the Service cardinality (i.e. 1:1, 1:n and n:1), three situations are possible:

3.1 Cardinality 1:1. If se
ServiceM , seM , te

ServiceM and teM are empty, it means that both source and

target entities of m are matched together and uniquely. As consequence:

• All matches from mk give raise to a new cluster and are associated with it;

3.2 Cardinality 1:n. Three situations may occur:

3.2.1 If se
ServiceM is empty it means that 1:n cardinality for the source entity will never be

achieved and therefore m should be discarded and proceed to the next match (step 2);

3.2.2 If se
ServiceM is not empty and seM , te

ServiceM teM are empty, it means that source entity

of m is related with more than one target entity, which fits the Service interface.

However, it is necessary to check if such target entities match with this source entity

only. To check this situation the process evaluates 'teM , which corresponds to all

matches subtracted from ServiceM and retrieved from M whose target entities are

referred in matches from se
ServiceM . If 'teM is empty, it means that no target entity is

related to more than the source entity. Therefore:

• All matches from mk and se
ServiceM give raise to a new cluster and are associated

with it;

3.2.3 In any other circumstances an n:m relation exists, which is not supported by the

proposed method. Accordingly all matches from se
ServiceM are discarded and the

44 In this context, to subtract means to fill in a set by removing the elements from initial set.
45 In this context, to retrieve means to fill in a set by copying the elements from the initial set.

Multi-Dimensional Service-Oriented Ontology Mapping

187

process continues to the next match (step 2);

3.3 Cardinality n:1. three situations may occur:

3.3.1 If te
ServiceM is empty, it means that the n:1 cardinality for the target entity will never be

achieved and therefore m should be discarded and proceed to the next match (step 2);

3.3.2 If te
ServiceM is not empty and se

ServiceM , seM and teM are empty, it means that the target

entity is related to more than one source entity, which fits the Service interface.

However, it is necessary to verify if those source entities are related to the target entity

only. For that, the process evaluates 'seM , which corresponds to all matches

subtracted from ServiceM and retrieved from M whose source entities are referred in

the matches from te
ServiceM . If 'seM is empty it means that those source entities relate

only to the target entity, thus:

• All matches from mk and te
ServiceM give raise to a new cluster and are associated

with it;

3.3.3 In any other circumstances an n:m relation exists which is not supported by the

method. The process proceeds to the next match (step 2).

Step 2 and step 3 are executed until no more matches exist in ServiceM .

As noticed from previous description, only Services with cardinality 1:1, 1:n and n:1 are supported.

In fact, on one hand, n:m Services are currently considered unnecessary (5.2.3), and on the other

hand Services with cardinality 0:n and n:0 are naturally unsupported by this method since at least

one pair of ontologies entities is considered in matches, which collides with the Service interface.

Additionally, notice that only the arguments whose type concerns the ontologies entities are

addressed by this method. In fact, the presented method does not try to discover the contents of

the arguments whose type is Literal or ArrayOfLiterals since these elements can not be provided by

currently envisaged matchers.

The result of this process is a set of clusters, created and validated under the point of view of the

interface of the associated Service. Only these clusters and the associated matches are considered

for further stages of the automatic bridging process.

7.3.4.1 Example 7.10 – Service-based clustering annotated example

Consider the matches of Table 7.3, previously presented in Table 7.1.

Multi-Dimensional Service-Oriented Architecture

188

Table 7.3 – Set of matches automatically proposed by matchers

ID Source entity Target entity Matcher Similarity
value Justifications

m1 Individual Individual Resnik-like 0.95 []
m2 Individual Man Resnik-like 0.86 []
m3 Individual Woman Resnik-like 0.86 []
m4 name given_name Resnik-like 0.82 []
m5 name surname Resnik-like 0.82 []
m6 spouseIn noMarriages Resnik-like 0.66 []
m7 name given_name MOMIS-like 1 []
m8 name surname MOMIS-like 1 []
m9 Individual Individual MOMIS-like 0.78 []
m10 Individual Man MOMIS-like 0.78 []
m11 Individual Woman MOMIS-like 0.78 []

Consider also a subset of the Services described in 6.2.3, whose interfaces are briefly described in

Table 7.4:

Table 7.4 - Some Services: short description and interface

Argument ID Type Semantics

CopyInstance Creates target concept instances for each source concept instance. This is the
service implicitly associated with ConceptBridges.

Source Concept Concept Source ontology concept whose instances will be
transformed.

Target Concept Concept Target ontology concept to create.
CopyRelation Creates a relation between target concepts instances.

Source Path Path Source ontology path for each path the bridge will
be executed.

Target Path RelationPath Target ontology path to create.
CopyAttribute Copies (no changes) the source property value to the target property instance.

Source Attribute AttributePath Source ontology attribute whose instances will be
copied.

Target Attribute AttributePath Target ontology attribute to copy to.

CountProperties Counts the number of instances of a property and creates the target property
attribute with that value.

Source Path Path Source ontology path to count.
Target Attribute AttributePath Target ontology attribute to create.

Split Splits by the separators, the source attribute instance into many target attribute
instances.

Source Attribute AttributePath Source ontology attribute whose instances will be
splited.

Separators ArrayOfLiterals Literals or regular expressions to split by.
Target Attributes ArrayOfAttributePaths List of attributes to instantiate with splited values.

Multi-Dimensional Service-Oriented Ontology Mapping

189

Concatenation Concatenate several source attribute instances into the target attribute
instance, each one separated by a literal.

Source Attributes ArrayOfAttributePath List of source attributes whose instances will be
concatenated.

Separators ArrayOfLiterals Literals to concatenate between attribute values.

Target Attribute AttributePaths Target attributes to instantiate with concatenated
values.

The process runs in the scope of every Service of the system, and will generate a set of clusters

1 2O OCL − . Next sections present the clustering process based on this set of matches and Services.

Because the description follows step by step the described process, next sections are numbered

according to the steps followed during the execution.

7.3.4.1.1 CopyInstance

1. { }1 2 3 9 10 11, , , , ,CopyInstanceM m m m m m m=

2. 1m is the first match to be processed and the respective knot is { }
1 1 9,mk m m= . CopyInstanceM

becomes { }2 3 10 11, , ,m m m m . { }1:O Individual
CopyInstanceM = , { }2:O Individual

CopyInstanceM = , { }1:O IndividualM = and

{ }2:O IndividualM =

3. Because the cardinality of CopyInstance is 1:1:

3.1 Because previous sets are all empty, it means that a cluster exists between these two

ontologies, and that the CopyInstance Service supports an eventual transformation. In that

sense, a new cluster is created ({ }1 1 9, ,cl CopyInstance m m=).

The process proceeds to the next match from CopyInstanceM , which corresponds to execute step 2 of

the process. Because processing matches 2m and 3m is similar to that of match 1m , no further

description is presented. Yet, the resulting clusters are { }2 2 10, ,cl CopyInstance m m= and

{ }3 3 11, ,cl CopyInstance m m= . Thus, the so far generated clusters are:

{ }1 2 1 2 3, ,O OCL cl cl cl− =

7.3.4.1.2 CopyRelation

1. { }CopyRelationM = ;

2. Because no match conforms to the type of arguments of the CopyRelation Service, no process

will further occur, and therefore no clusters will be generated.

7.3.4.1.3 CopyAttribute

1. { }4 5 7 8, , ,CopyAttributeM m m m m=

Multi-Dimensional Service-Oriented Architecture

190

2. 4m is the first match to be processed in the scope the CopyAttribute Service. Its knot is

{ }
4 4 7,mk m m= thus { }5 8,CopyAttributeM m m= . Furthermore, { }1:

5 8,O name
CopyAttributeM m m= ,

{ }1:O nameM = , { }2: _O given name
CopyAttributeM = and { }2: _O given nameM = . Consequently, { }CopyAttributeM = ;

3. Because the cardinality of the CopyAttribute is 1:1:

3.1 Because 1:O name
CopyAttributeM is not empty, it means no cluster exists that the CopyAttribute Service

is capable to process.

Because CopyInstanceM is empty, no further process will occur in the scope of this Service.

7.3.4.1.4 CountProperties

1. { }6CountPropertiesM m=

2. 6m is the first and unique match in CountPropertiesM and its knot is { }
6 6mk m= . Furthermore,

{ }1:O spouseIn
CountPropertiesM = , { }1:O spouseInM = , { }2:O noMarriages

CountPropertiesM = and { }2: _O given nameM = .

Accordingly, { }CountPropertiesM = ;

3. Because the CountProperties Service cardinality is 1:1:

3.1 Because all previous sets are empty, an independent cluster exist that can be processed by the

CountProperties Service. A new cluster is then created ({ }4 6,cl CountProperties m=)

Because no more matches exist in CountPropertiesM , no further processing occurs in the scope of this

Service. Consequently, the generated clusters correspond now to:

{ }1 2 1 2 3 4, , ,O OCL cl cl cl cl− =

7.3.4.1.5 Split

1. { }4 5 7 8, , ,SplitM m m m m= ;

2. 4m is the first step to be processed thus, { }
4 4 7,mk m m= and { }5 8,SplitM m m= . Furthermore,

{ }1:
5 8,O name

SplitM m m= , { }1:O nameM = , { }2: _O given name
SplitM = and { }2: _O given nameM = .

Consequently, { }SplitM = ;

3. Because the cardinality of the Split Service is 1:n:

3.2 Because 1:O name
SplitM is not empty and the other sets are empty:

3.2.2 Because { }'teM = , a new cluster is created ({ }5 4 5 7 8, , , ,cl Split m m m m=).

Because no further matches exist in SplitM no further process will occur for this Service.

Multi-Dimensional Service-Oriented Ontology Mapping

191

7.3.4.1.6 Concatenation

1. { }4 5 7 8, , ,ConcatenationM m m m m= ;

2. 4m is the first match to be processed thus { }
4 4 7,mk m m= and { }5 8,ConcatenationM m m= .

Additionally, { }1:
5 8,O name

ConcatenationM m m= , { }1:O nameM = , { }2: _O given name
ConcatenationM = and

{ }2: _O given nameM = . As consequence, { }ConcatenationM = ;

3. Because the cardinality of the Concatenation Service is n:1:

3.3 Because 1:O name
ConcatenationM is not empty and the other sets are empty, no cluster exists that can be

processed by the Concatenation Service.

Because ConcatenationM is empty, no further process occurs in the scope of this Service.

7.3.4.1.7 Example overview

The result of the example is therefore a set of five clusters:

{ }1 2 1 2 3 4 5, , , ,O OCL cl cl cl cl cl− =

Despite the fact the example concerns a very simple case it presents many of the situations arising

in more complex scenarios.

7.3.4.2 Service interface conforming vs. non-conforming matches

One of the situations not described in this example concerns the case of entities belonging to some

matches that conform to the Service interface, and to others matches that do not conform such

interface. The matches between at least one of the entities of m that do not conform to the Service

interface are evaluated into seM and teM . According to the described method, the cluster is

refused in case seM and teM are not empty. This decision is based on the rationale followed in the

rest of the cases that determines that no cluster will be created if no independent set of matches

exists. However, another rationale can be followed in this situation, based on the idea that matchers

may provide false matches that will distort the process. Following this rationale, such matches

should be disregarded.

Because both approaches are justifiable depending on the specific mapping scenario, and because

the method is easily configurable, the decision to adopt one or the other approach is up to the user.

The only difference in the description presented above concerns the evaluation of seM and teM ,

and the evaluation of 'seM and 'teM . In case the second behavior is chosen, seM and teM will not

be evaluated nor applied during the process. Furthermore, 'seM and 'teM will be evaluated without

retrieving elements from M . The rest of the process is maintained.

Multi-Dimensional Service-Oriented Architecture

192

7.3.4.3 CopyInstance specificity

This section addresses some particularities in applying proposed method to the CopyInstance

Service.

As described in previous chapters, ConceptBridge and CopyInstance Service are responsible for the

creation of target concept instances from either source concept or property. While concept to

concept semantic relation poses no problem, the property to concept semantic relation requires

some extra attention.

However, when defining a property to concept semantic relation in SBO, the source concept is still

mandatory, while the property specification is done through the extensional specification (6.3). This

type of semantic relation is not supported by the interface of the CopyInstance Service specified

above. As consequence, even in case matches suggest a property to concept semantic relation, no

cluster will be generated. Thus, the CopyInstance Services interface must be expanded in order to

support this type of semantic relation too.

However, experiences showed that matchers often provide matches between:

• Source concept and target concept;

• Source property and target concept.

Yet, matchers seldom suggest both matches.

In order to support this observation, a disjunctive operator may be stated between the arguments

responsible for the inclusion of the source concept and the property into the cluster. However, the

disjunctive operator is not provided in the Service specification and therefore it cannot be applied.

Due to the CopyInstance Service specific competencies in the system, it has been decide to provide

a special implementation of this method for this Service. Therefore, the Service interface in the

scope of the clustering process is defined in three different combinations of arguments (Table 7.6,

Table 7.7 and Table 7.8):

Table 7.5 – Initial interface of the CopyInstance Service

Argument ID Type Semantics
CopyInstance Creates target concept instances for each source concept instance.

Source Concept Concept Source ontology concept whose instances will be
transformed.

Target Concept Concept Target ontology concept to create.

Multi-Dimensional Service-Oriented Ontology Mapping

193

Table 7.6 – CopyInstance Service property to concept interface

Argument ID Type Semantics
CopyInstance Creates target concept instances for each source property instance.

Source Path Path Source ontology concept whose instances will be
transformed.

Target Concept Concept Target ontology concept to create.

Table 7.7 – CopyInstance Service property to concept interface

Argument ID Type Semantics

CopyInstance Creates target concept instances for each source property instance of the
source concept.

Source Concept Concept Source ontology concept whose instances will be
transformed.

Source Path Path Source ontology concept whose instances will be
transformed.

Target Concept Concept Target ontology concept to create.

Because the Service aims to maximize the association of matches, and because the interfaces should

be mutually exclusive, the order in which the interfaces are applied is not arbitrary. In particular, the

last presented interface (Table 7.7) should be applied first. This interface will be used if matches

support the semantic relation between the two pairs of entities. In case this interface does not

succeed, it is sure that at maximum one of the others interfaces will succeed. In that sense, the

order of application of the other two interfaces (Table 7.5 and Table 7.6) is arbitrary.

Unlike the other Services, whose interface conforms the standard specifications and are therefore

automatically supported by the default method (implementation), the CopyInstance Service should

provide its own implementation to support the three distinct interfaces.

7.3.4.4 Outlook of the method

The method described in this section aims to reduce the search space of the automatic bridging

process by exploiting the interface specification of the available Services. The method is based on

four possible types of judgment when processing the matches proposed by matchers. Despite its

simplicity, the process can effectively and accurately reduce the set of possible semantic relations

(clusters) according to the set of matches.

These clusters will be used in next phases of the automatic bridging process, providing the

reasoning elements so the Service can further judge the cluster semantic relevance to the mapping.

This is the subject of next section.

Once the relevance is stated, the remaining clusters will give rise to SemanticBridges which will be

interrelated to form a valid SBO document. This is the subject of the Section 7.3.6.

Multi-Dimensional Service-Oriented Architecture

194

7.3.5 Improving Services judgment capabilities

In some circumstances the number of clusters generated for the same set of matches is still very

large. These circumstances arise due to the existence of multiple Services with the same interface.

When this happens, multiple clusters with exactly the same set of matches will be generated in the

scope of different Services. While some SemanticBridges (derived from clusters) may apply the

same set of entities, this is not very common and tend to be considered ambiguous. In this sense,

new capabilities should be included in Services so they can better judge about the relevance of the

SemanticBridge they are proposing.

Semantic bridging is a highly subjective task, demanding extensive domain expertise. Because the

goal is to reduce the user participation in the process, user-based domain expertise should be

disregarded and substituted by other means. Such expertise is in some extent provided by the

matchers and their outcome: the matches. Like any other expertise, it should be adequately applied

or it becomes useless.

The goal is therefore to develop a system that combines the Services and Matchers expertise in

defining better clusters. Once again, the proposed approach suggests the exploitation of the multi-

dimensional service-oriented architecture to this problem, by centering in Services the

competencies to better exploit the expertise provided by the matches.

As previously referred, each type of matcher assesses a specific type of similarity between two

ontologies entities. Thus, two distinct types of matches between the same pair of entities provide

different meanings of the entities relationship and may be applied in distinct circumstances more

appropriately than interpreting it equally in all circumstances, as adopted for most of the mapping

projects (e.g. [Bergamaschi et al., 1999; Doan et al., 2002; Madhavan et al., 2001; Miller et al., 2000;

Mitra et al., 1999]).

Accordingly, it is our conviction that adopting correctly and precisely the meaning of the matches

to each circumstance would provide good disambiguation results, reducing even more the

combinatorial space in order to propose relevant SemanticBridges.

7.3.5.1 Proposed approach

Services must therefore determine the conditions in which the entities seem to form a relevant

SemanticBridge. In particular, Services are requested to specify the following parameters:

• The types of matches exploited by the Service;

• The maximum and minimum admissible values (thresholds) for the match values. Thresholds

can be defined in respect to each specific type of match or generically;

• The elements that should be provided through the justification element of matches;

Multi-Dimensional Service-Oriented Ontology Mapping

195

• The mathematical expression to combine the matches values, into a judgment value;

• A decision expression capable to decide about the accuracy of the cluster.

Example 7.11 – Improving Services judgment capabilities
Table 7.8 presents the simple parameterization of seven Services. In this
parameterization, the three matchers presented in 7.3.3.1 are applied.

Table 7.8 – Automatic semantic bridging Services requirements

Service Considered
Matchers Threshold Justifications Combination and

Decision expression
Resnik-like 0.7<X≤1

CopyInstance
MOMIS-like 0.7<X≤1

average of matches
values>0.8

Resnik-like 0.5<X≤1
CopyRelations

MOMIS-like 0.7<X≤1
average of matches

values>0.7
Resnik-like 0.8<X≤1

CopyAttribute
MOMIS-like 0.8<X≤1

average of matches
values>0.85

Resnik-like 0.5<X≤1
MOMIS-like 0.7<X≤1 Split
Type-checker 1≤X≤1 [type==”string”]

average of matches
values>0.7

Resnik-like 0.5<X≤1
MOMIS-like 0.7<X≤1 Concatenation
Type-checker 1≤X≤1 [type==”string”]

average of matches
values>0,.75

Resnik-like 0.6<X≤1
MOMIS-like 0.8<X≤1 CountProperties
Type-checker 1≤X≤1 [type==”property-number”]

average of matches
values>0.7

Resnik-like 0.3≤X≤0.5 Currency
Converter Type-checker 1≤X≤1 [type==“currency”]

average of matches
values>0.3

The simplest parameterization of Services states that for every pair of ontologies entities, one match

of every defined type conforming to the threshold values should exist.

Example 7.12 – Confirming a cluster according to the Service requirements
Consider the following cluster, already suggested in 0:

{ }1 1 9, ,cl CopyInstance m m=

According to previous table, every pair of entity adopted in the cluster with the
CopyInstance Service, should be supported by two distinct matches:

• Resnik-like matches, whose similarity value (X) should conform to the expression
0.7<X≤1;

• MOMIS-like matches, whose similarity value (X) should conform to the expression
0.7<X≤1.

Because the 1cl cluster relates O1:Individual to O2:Individual entities, it means that one
match of each of previous types should exist. Cluster 1cl associates two matches, which
are the only matches to consider now. These matches are represented again in Table 7.9.

Multi-Dimensional Service-Oriented Architecture

196

Table 7.9 – O1:Individual-O2:Individual matches

ID Source entity Target entity Matcher Similarity
value Justifications

m1 Individual Individual Resnik-like 0.95 []
m9 Individual Individual MOMIS-like 0.78 []

In fact, the matches in cluster 1cl fulfill the Service requirements concerning the type and
value. The mathematical expression is evaluated, resulting in the value 0.865. This value is
further applied in the decision expression, which determines that the cluster is relevant
(0.865>0.8) and is therefore maintained in the clusters list.

Example 7.13 – Dismissing a cluster according to the Service requirements

Unlike previous cluster, when processing cluster { }4 6,cl CountProperties m= , the
CountProperties requirements are not fulfilled. In particular, no match of Type-checker
type exists in the cluster, but is required by the Service. In that sense, the cluster is
discarded from the list.

Instead of obliging that every pair of entities is supported by all specified matches, the Service

parameterization can be improved by defining less restrictive conditions in the form of logical

operations.

Example 7.14 – Refining Service requirements
The CountProperties Service can be re-parameterized such the MOMIS-like and Resnik-
like matches are disjunctive with respect to the Type-checker matches:

()(), - , -or Type checker and MOMIS like Resnik like−

Nevertheless, even with this parameterization, the process described in Example 7.13
would fail. In fact, two matches (MOMIS and Resnik-like) are necessary while the cluster
provides only one (6m) of the Resnik-like type.

7.3.5.2 Outlook of the proposed approach

Despite the reduced number of performed experiences, the developed method indeed reduces

ambiguity of the proposed clusters, motivating further experiences in order to clearly determine

potentialities and limitations. However, it is already noticeable the limitations arising from the

subjective nature of the matches. In fact, matches are calculated according to and based in statistical

and often subjective information. In particular, WordNet-based matchers (e.g. [Resnik, 1999]) often

exploit subjectively annotated corpus and apply statistic-oriented inferences, leading to intrinsically

subjective matches. In that respect, matchers based in formal information should be applied (and

eventually developed) into the system, providing more deterministic matches, leading therefore to

more accurate results.

Multi-Dimensional Service-Oriented Ontology Mapping

197

7.3.6 Automatic definition of the ontology mapping document

Despite the possibility to improve decision capabilities of Services, at some point it is necessary to

transform clusters into a valid and meaningful ontology mapping document.

The methodology presented in this section aims to transform the clusters remaining from the

clustering phases into a valid ontology mapping document defined according to the Semantic

Bridging Ontology (SBO). Therefore, the automatic bridging process should follow an object-

oriented, property-centric methodology, as promoted by ontologies and SBO. Yet, the process is

not unique and therefore some heuristics are applied during the process.

The process concerns with the definition of five distinct elements:

1. Definition of ConceptBridges;

2. Definition of relationships between ConceptBridges (≺ -relation);

3. Definition of PropertyBridges;

4. Definition of relationships between ConceptBridges and PropertyBridges (◊ -relation);

5. Definition of AlternativeBridges and their relations with ConceptBridges and PropertyBridges.

The process runs in this order and is therefore task oriented instead of cluster-oriented, as would

suggest the presence of the clusters.

7.3.6.1 Definition of ConceptBridges

The process defines ConceptBridges according to the clusters with the CopyInstance Service

associated. For every of such clusters, one of three distinct processes will be executed, depending

on the interface of the Service (refer to 7.3.4.3).

1. In case the cluster relates two concepts, the process is rather simples. A ConceptBridge should

be created between the source and target concepts;

2. In case the cluster relates a property to a target concept, it is necessary to find (decide) which

source concept is semantically related to the target concept. Currently, the decision is taken

depending on two situations:

2.1 If at least one of the domain concepts of the property is already semantically bridged, one is

chosen arbitrarily;

2.2 If none of the property domain concepts is semantically bridged, one of its domain concepts

is arbitrarily chosen.

In future research and development of the method, other heuristic rules may be applied. For

example, it is envisaged the exploitation of the MOMIS (matcher) information about the

analysis of the relations between ontologies entities, which might provide useful hints;

3. In case the cluster relates a concept and property to a target concept, the process creates a

ConceptBridge that, besides the definition of the source and target concepts, defines an

Multi-Dimensional Service-Oriented Architecture

198

extensional specification element based on the source property. The definition of the

extensional specification elements poses some difficulties due to the fact that matches refer to

properties independently of their domain and range (e.g. O1:name instead of

O1:Individual/name/Literal). However, because properties are always applied in

SemanticBridges through Paths, it is necessary to calculate the Path such:

• The last property of the Path is the source property specified in the cluster;

• The root concept of the Path is the source concept specified in the cluster.

Because in “typical” ontologies properties do not have a large number of domain concepts, the

Path definition is performed exhaustively with fair performance. However, this process applies

some heuristics and is therefore subject of improvements in future stages of research.

7.3.6.2 Definition of ≺ -relationships

Once ConceptBridges are completely defined according to previous rules, it is time to define the

≺ -relationships. The definition of ≺ -relationships follows the rule/constraint about this relation

specified in 5.4.7.4:

()

() () () ()
() ()() ()() () ()()

1 2

2 1

1 1 1 1 2 2 2 2

2 1 2 1 2 1 1 2 1 2 2 1

,
,

sConcept , tConcept , sConcept , tConcept ,

_ , _ , _ , _ ,

s t s t

s s t t s s t t s s t t

cb cb
cb cb

cb c cb c cb c cb c

is a c c is a c c is a c c c c c c is a c c

∀ ∈

⇒
∧ ∧ ∧ ∧

∧ ∨ ∧ == ∨ == ∧

CB

≺

If the evaluation of the right part of the rule to two ConceptBridges holds true, the left side

conclusion is drawn and the ≺ -relationships is established between the two ConceptBridges.

The relationship defined in this phase is exploited in next phases of the process, especially to better:

• Calculate the Paths in PropertyBridges;

• Determine the ◊ -relationships (between ConceptBridges and PropertyBridges).

7.3.6.3 Definition of PropertyBridges

The main problem in defining PropertyBridges from clusters concerns the calculation of the Paths

according to the properties defined in clusters. The adopted process is similar to that described for

the extensional specification element of the ConceptBridges. However, the process is constrained

by other facts, namely the existence of ≺ -relationships and the need to define ◊ -relationships. In

this sense, the definition of PropertyBridges and the definition of ◊ -relationships cannot be

dissociated from each other.

Multi-Dimensional Service-Oriented Ontology Mapping

199

The adopted approach is based on the fact that the target properties should be applied through a

one-step Path (5.4.7.3). In result of this constraint, it is mandatory that the domain concept of the

target properties is semantically related to one source concept. In case target properties do not have

the same domain concept the cluster is discarded since it is not supported as it is suggested by the

cluster. Otherwise, two situations may occur:

1. If the target concept is already semantically related (to a source concept 1c), then the source

Paths should all have 1c as root concept. In case multiple SemanticBridges exists to target

concept, it is chosen the one that provides the shortest Paths to the properties;

2. If the target concept is not yet semantically related, then a ConceptBridge is inferred between

the target concept and the domain concept of the source properties. Besides the generation of

the inferred ConceptBridge, in order to maintain the automatic bridging system coherent, the

following elements are also generated and inserted in their respective repositories:

• , , ,1,[]imatch sourceconcept target concept inferred=

• { },i icl CopyInstance match=

Example 7.15 – Inferring matches between concepts based on PropertyBridges
Consider the abstract ontology mapping scenario presented in Figure 7.4. Each one of
the two represented attributes of source ontology (SO namespace) matches the same
attribute of the target ontology (TO namespace). Yet, matchers did not provide matches
between concepts or between property and concept.

SO:C1

R1

-attrib4
TO:C4

inferred match

R2

R3

-attrib2
SO:C4

SO:C2

match1
-attrib1

SO:C3
match2

Figure 7.4 – Abstract scenario representing an inferred match

In this particular case there is only one concept providing a common root for the Paths:
SO:C1. Accordingly, a new match between SO:C1 and TO:C5 is inferred, and a new
cluster is generated. Thus, the calculated Paths are:

Multi-Dimensional Service-Oriented Architecture

200

1

2

4

: 1/ 1/ 3 / 1/

: 1/ 2 / 2 / 3 / 4 / 2 /

: 5 / 4 /

s
attrib
s

attrib
t
attrib

W SO C R C attrib Literal

W SO C R C R C attrib Literal

W TO C attrib Literal

=

=

=

Despite the uncommon situation, it may happen that not all source properties defined in the cluster

have the same domain concept. In such circumstances it is necessary to search for a concept from

which it is possible to reach all the source properties (i.e. the common root concept for all Paths).

In case multiple root concepts exist, it is selected the one that provides the shortest Paths to the

properties.

Notice that due to this constraint, a common concept may not exist. In such cases the proposed

clusters are not transformed into SemanticBridges and are instead discarded46.

7.3.6.4 Definition of ◊ -relationships

Once the PropertyBridges are specified, the specification of ◊ -relationships is quite necessary.

Basically it consists in ◊ -relate every PropertyBridge (1pb) with the ConceptBridge (1cb) whose

concepts are the root concepts (source and target concept) of the Paths (source and target Paths

respectively) of 1pb .

Yet, a complementary task is performed at this stage. It concerns the use and promotion of the

features provided by the ≺ -relation. Basically, it concerns the modification of the PropertyBridges

Paths so the root concepts of the Paths are substituted by their super-concepts. This modification

is performed according to the constraint presented in 5.4.7.4 and re-presented in 7.3.6.2.

Thus, if none of the source or target Paths is modified previous solution prevails. However, even if

only one of the Paths is modified, some actions are performed:

• The modified Paths are applied;

• The PropertyBridge is re- ◊ -related with the ConceptBridge 2cb , such ()1 2,cb cb≺ .

It might occur though, that 2cb does not exist so far. In such case, the ConceptBridge is created

(inferred) and the corresponding match and cluster are derived from it and pushed into the

respective repositories.

Example 7.16 – Definition of ◊ -relationships
Consider the matches presented in Table 7.10 respecting the scenario of Figure 7.2. This
set of matches is a subset of those presented in Table 7.1 in order to demonstrate
previous process. The proposed matches ignores the similarities between O1:Individual
and O2:Individual and between O1:spouseIn and O2:noMarriages.

46 In current implementation of the method, no backward Paths are calculated, but they may be useful in

cases no common root concept is found in forward Paths.

Multi-Dimensional Service-Oriented Ontology Mapping

201

Table 7.10 – Limited set of matches for the ontology mapping scenario of Figure 7.2

ID Source entity Target entity Matcher Similarity
value Justifications

m2 Individual Man Resnik-like 0.86 []
m3 Individual Woman Resnik-like 0.86 []
m4 name given_name Resnik-like 0.82 []
m5 name surname Resnik-like 0.82 []
m7 name given_name MOMIS-like 0.81 []
m8 name surname MOMIS-like 0.85 []
m10 Individual Man MOMIS-like 0.78 []
m11 Individual Woman MOMIS-like 0.78 []

In case the last proposed process is not executed, the proposed matches would result in
the ontology mapping document represented in Figure 7.547.

-name
-gender

O1:Individual

O1:Family

-given_name
-surname
-noMarriages

O2:Individual

-given_name^
-surname^
-noMarriages^

O2:Man

O2:Woman
spouseIn

CB2 : ConceptBridge

PB1 : PropertyBridge

CB0 : ConceptBridge

◊

Figure 7.5 – Automatic semantic bridging without exploiting the properties inheritance

Instead, if the proposed process is performed, the resulting ontology mapping document
would be that represented in Figure 7.6.

Notice that in first solution only O2:Man instances will be filled in with the given_name
and surname attribute values. In the second solution instead, because the PropertyBridge
is ◊ -related with the super ConceptBridge, both O2:Woman and O2:Man will profit
from the PropertyBridge.

47 Notice that the ^ symbol has been appended to the inherited properties in order to stress the inherited

relation. While not correct UML notation, it is considered beneficial to the comprehension of the

example)

Multi-Dimensional Service-Oriented Architecture

202

-name
-gender

O1:Individual

O1:Family

-given_name
-surname
-noMarriages

O2:Individual

-given_name^
-surname^
-noMarriages^

O2:Man

O2:Woman
spouseIn

CB1 : ConceptBridge

PB1 : PropertyBridge

CB0 : ConceptBridge

◊

CB2 : ConceptBridge

Figure 7.6 – Automatic semantic bridging when exploiting the properties inheritance

7.3.6.5 Definition of AlternativeBridges

The definition of AlternativeBridges is limited to AlternativeBridges-of-PropertyBridges. Their

definition is not mandatory but it promotes expressiveness and clarity of the proposed ontology

mapping document.

In particular, PropertyBridges are defined alternatives in the scope of an AlternativeBridge-of-

PropertyBridges (⊥
PB) in case the properties (Paths) of two or more PropertyBridges are exactly

the same. In such circumstances it is assumed that the Services that suggested such PropertyBridges

are very similar and are commonly applied one instead of the other.

Example 7.17 – Services commonly used alternatively
Both the Split and the Split-By-Regular-Expression Services divide an attribute instances
into multiple fragments. However, while the first divides the string by constant literals,
the second makes use of a regular expression.

This decision is based on the evidences arising from experiences performed in various ontology

mapping scenarios. Still, it is just a heuristic rule that might be modified or improved.

7.3.6.6 Outlook of the automatic definition of the ontology mapping document

The automatic definition of the ontology mapping document is based on the automatically

proposed clusters, which in turn are calculated mostly according to automatically generated

matches.

A set of competencies gained from the manual, user-based experiences have been systematized into

a whole coherent process. Yet, these competencies are fundamentally heuristic-based which has

considerable benefices when ontology mapping scenarios do not diverge significantly from those

done manually.

Multi-Dimensional Service-Oriented Ontology Mapping

203

7.3.7 Outlook of the automatic bridging process

This section described the automatic bridging system researched and developed as a case test of the

proposed and described Multi-Dimensional Service-oriented Architecture.

In the scope of this thesis, matches are understood as rudimentary expert opinions about the

semantic relation between a source ontology entity and a target ontology entity. In the lack of better

opinions, instead of adopting a single type of match or a set of type of matches, the proposed

approach promotes the application of multiple distinct types of matches, which can be included

into and exploited by the system as required.

Because distinct types of matches provide different expertise opinions, in order to capture

maximum benefices from each type, Services define their own constraint requirements according to

matches types, values and their combination. Due to the Services features, respecting competencies

and independence preconized through the multi-dimensional service-oriented architecture, Services

are able to customize their requirements independently of the others and in a more versatile

manner.

The process itself comprehends three distinct phases:

• The Service-interface clustering phase, provides a fast and reliable association of matches with

Services (clusters);

• The Service-constraints re-clustering phase, exploits the Service-defined matches constraints to

judge upon the semantic relevance of the clusters suggested from previous phase. The result is a

set of fully qualified clusters;

• The cluster-based automatic definition of the ontology mapping document phase transforms

clusters into SemanticBridges and create relationships between them. During the Path

calculation and the relationships specification, new semantic relations are inferred and

transformed into ontology mapping document elements. For backward compatibility, matches

and clusters are generated from these inferred elements, promoting feedback and coherency

between ontology mapping process phases.

In all the phases though, the proposed approach is strongly influenced by heuristic rules gained and

systematized from the manual bridging experiences performed during this research. The ontology

mapping document is therefore the result of a set of judgments and decisions, which like any others

are fallible and arguable. Yet, even if at small scale, any automation or driving support of the

semantic bridging process is of great help for the domain expert. Moreover, the domain-expert has

the ultimate decision about the contents and semantic correctness of the ontology mapping

document.

Multi-Dimensional Service-Oriented Architecture

204

7.4 Summary

The Multi-dimensional Service-oriented Architecture advocates that ontology mapping system

capabilities and its supported semantic relations are ultimately dependent on the type of

transformations allowed/available in the system. Services represent the transformation capabilities

in SBO, in semantic bridging and in the execution system, but the proposed architecture suggests

that their capabilities should be expanded to support the requirements of other phases of the

process.

Accordingly, Services embody useful and eventually fundamental competencies for distinct phases

of the process, that were originally an exclusive competence of the domain expert. The domain

expert know-how is therefore acquired and integrated into the system. Yet, instead of a monolithic

structure representing such knowledge, multiple independent and dynamically evolving modules are

used. These modules however, instead of adopting a task-oriented structure, are orthogonal to

multiple phases of the ontology mapping process providing different functionalities depending on

the requesting phase. This coincides with the MAFRA ideas presented in Chapter 4. In fact,

Services represent some of the entities composing the Domain Knowledge & Constraints module,

which are potentially inter-related with all core phases of the ontology mapping process (Figure

7.7).

Lift & Normalization

Similarity Measurement

Ev
ol

ut
io

n

Semantic Bridging

Execution

Post-processing

C
oo

pe
ra

tiv
e

C
on

se
ns

us
 B

ui
ld

in
g

D
om

ai
n

Kn
ow

le
dg

e
&

 C
on

st
ra

in
ts

G
ra

ph
ic

al
 U

se
r I

nt
er

fa
ce

Figure 7.7 – MAFRA emphasis on Domain Knowledge & Constraints module relations

Multi-Dimensional Service-Oriented Ontology Mapping

205

While the proposed architecture is generically applicable in all ontology mapping process phases,

the preconized ideas have been adopted and exploited in the automation of the semantic bridging

phase as a case test.

The proposed automatic bridging process suggest that every Service defines the conditions in which

certain set of source and target ontology entities have good probability to be semantically related

through the Service. Combining the information resulting from general, wide purpose matchers

with a set of heuristic-based rules, the system is able to propose a coherent and valid ontology

mapping document.

The main lack in the research and development of the automatic semantic bridging process is the

lack of formal and reported experiences. This is especially due to the three following facts:

• Inexistence of a battery of ontology mapping tests commonly used by the research community;

• Inexistence of similar reports by other research teams, which in turn is due to the;

• Inexistence of similar systems or approaches.

Yet, the system implemented according to the proposed process performs well and provides the

user with a good starting ontology mapping document for further improvements.

207

Chapter 8

DEVELOPMENT AND EXPERIENCES

This chapter describes pragmatic issues concerning the development of the proposed research ideas

into a usable and useful ontology mapping system tool. The work described in this chapter has been

previously described, namely in [Silva et al., 2003; Silva & Rocha, 2003c; Silva & Rocha, 2003e; Silva

& Rocha, 2004a; Silva & Rocha, 2004b].

The resulting tool is being applied in a variety of third party research projects, which provide

valuable feedback on the relevance and usability of the research ideas presented in previous

chapters. Later on, a simple evaluation and comparison of performance is described.

8.1 Development

In order to test and validate the research proposals of previous chapters, it has been decided to

develop a tool that implements such ideas. The implemented tool, named MAFRA Toolkit, is one

of the major outcomes of this thesis and is publicly available at [MAFRA Toolkit].

Development and Experiences

208

Due to the multiple heterogeneous phases encompassed in the ontology mapping process, multiple

technologies are required and have been used. In order to systematize the implementation process,

four subjects are fundamental:

• Ontology and Knowledge-base manipulation, that describes the analysis and decision process

concerning the adoption of the technology to manipulate ontologies and knowledge bases;

• The semantic bridging implementation, that concerns with the definition and validation of the

ontology mapping document according to the Semantic Bridging Ontology constraints;

• The execution process implementation, concerning with the execution process and the

transformation Services;

• The Graphical User Interface implementation, which describes not only the interface but the

different stages it passed through.

Next sections address each of these subjects.

8.1.1 Ontology and Knowledge Base manipulation

One of the most important decisions respecting the implementation concerns with the adoption of

the language for representation and further manipulation of ontologies and knowledge bases.

Multiple languages are nowadays available, which motivated a careful analysis of features/

requirements and technological support. The analysis, comparison and conclusions are available in

the SANSKI Project Report 1.1 [Silva, 2002a]. Pragmatically, several statements have been drawn:

• No standard representation language existed in the early stages of the thesis. RDFS

representation framework is the basic representation mechanisms for the Semantic Web to

which all Semantic Web ontology representation languages should ground (Figure 8.1).

Figure 8.1 – Semantic Web technological layers according to Berners-Lee

Multi-Dimensional Service-Oriented Ontology Mapping

209

Currently, the World Wide Web Consortium48 (W3C) recommended OWL (Ontology Web

Language) for the ontology representation language in the Semantic Web. OWL is very similar

to the DAML+OIL representation language, which grounds on the RDFS representation

framework and in Description Logics (DL) theory [Silva, 2003];

• Lack of tools for the manipulation of ontologies and knowledge bases. Most of the tools (e.g.

parsers and inference engines) support RDFS but not any further improvements concerning

with the ontology model;

• Description Logics has been adopted in most of the ontology representation languages for the

Semantic Web (e.g. OIL, DAML, DAML+OIL and OWL). DL is associated with great

demands for computational power which is unfeasible in current stage of Semantic Web. OWL

Lite has been suggested to overcome such constraints by discarding the Description Logic

features. However, OWL Lite is less more than RDFS, to which some cardinality constraints

and semantics have been added;

• Ontologies currently available in the Web are mostly developed and specified by exploiting

RDFS features only. In fact, nowadays ontologies are typically very simple, based on hierarchy

of classes, their attributes and inter-relations between classes. A few of them constrain the

cardinality of properties but even this characteristic is poorly exploited.

Accordingly, it became clear that RDFS should be considered the minimum common element of

the ontology and knowledge base representation languages.

First development efforts should focus in choosing the technological support, such that it:

• Supports RDFS representation language;

• Abstract RDFS or/and other representation languages into a common and generic manipulation

interface;

• Is based in widely spread, open-source code so it is possible to change it according to

requirements, namely respecting the ontology and knowledge based formalization presented in

Chapter 3;

• Is aware of the ontology and knowledge base representation languages and eventually other

Semantic Web technological standards.

Several open source Java-based solutions exist respecting previous requirements (e.g. JENA49, ICS-

FORTH RDFSuite50, or the RDF API from Sergey Melnik51). Yet, those solutions correspond

48 The World Wide Web Consortium is the international organisation responsible for the recommendation

and promotion of technology for the Word Wide Web in which the Semantic Web is included.
49 http://jena.sourceforge.net/
50 http://139.91.183.30:9090/RDF/

Development and Experiences

210

more to a library of competencies to manipulate RDFS documents than ontologies. In first stages

of development, adaptation of JENA package has been envisaged, but in meantime it has been

realized that a more ontology oriented solution is preferable.

The KAON Workbench [KAON] had risen as the most complete solution found at that time,

encompassing not only the ontology and KB manipulation requirements described above, but other

very interesting features:

• Stable and efficient ontology manipulation API, wrapping RDFS or any other ontology

representation language supported;

• Well established semantics of ontology representation elements [Motik et al., 2003];

• Multi-lingual support layer on top of RDFS;

• OWL Lite like cardinality capabilities;

• Inverse, transitive and cardinality constraints [Motik et al., 2003];

• Ontology development tools, including a graph-based user interface;

• Generic graphic-based entities manipulation library;

• Support for very large ontologies and knowledge bases due to the well established relational data

base technology adopted;

• Database to ontology conversion tool;

• Tools for ontology acquisition from text.

KAON is therefore a very powerful solution for ontology manipulation, both in research

experience-oriented projects and in the scope of very demanding enterprise driven projects. What is

more, KAON is being developed by a very motivated competent research team with direct

application in (and feedback from) commercial applications. Deeper details about KAON can be

found in [Motik et al., 2003], while the KAON framework is publicly available at [KAON].

8.1.2 Semantic bridging

Once the representation language and supporting tools were selected, the semantic bridging phase

implementation corresponds to two distinct tasks:

• The user interface, which is responsible for the definition of the ontology mapping document,

described in section 8.1.4;

• Verification of the mapping document, during both the loading and specification processes.

Verification of the mapping corresponds to check the constraints holding between SBO entities as

been specified in 5.4. Because KAON is a Java-based system without support for constraint-based

51 http://www-db.stanford.edu/~melnik/rdf/api.html

Multi-Dimensional Service-Oriented Ontology Mapping

211

programming, previously defined constraints have been explicitly and procedurally coded into a

hierarchy of Java classes, wrapping not only the SBO concept and its properties, but also their

constraints.

Basically, every SBO concept is an implementation of the SBOEntity interface, which define,

between others, the method “public void verification() throws Exception” responsible for the

verification of the entity contents, relationships and respective constraints.

When loading an existent mapping file, the validation process is triggered by the mapping object

(instance of the Mapping class, corresponding to the M SBO concept) as soon as the file is

loaded. The verification method is called for every object in the mapping (e.g. ConceptBridges,

PropertyBridges, Services), followed by the verification of relationships.

The verification process during the semantic bridging specification is performed in three situations:

• Creation of a new instance of an SBO entity;

• Definition of an attribute for an SBO entity instance;

• Definition of a relationship between two instances of two SBO entities.

The user interface procedure, supporting the change, is responsible for calling the verification

method of the instance experiencing or triggering the changes. The verification process, as

previously described, is performed in the scope of such instance.

In third situation, changed instance is additionally responsible for calling the verification method of

the other instance in the relationship, so it can also verify its changes.

Example 8.1 – Verification process when ◊ -relating two SemanticBridges

When ◊ -relating a PropertyBridge to a ConceptBridge, the PropertyBridge instance is
considered the one triggering the changes. Thus, its verification method is called by the
user interface responsible method, but the verification method of the PropertyBridge
instance is also responsible for calling the verification method of the ConceptBridge
instance.

A simple flag mechanism is used to prevent circular callings of verification procedures between

entities.

8.1.3 Execution engine

The execution engine is the core element on the MAFRA Toolkit. In fact, while the semantic

bridging process can eventually be performed using a simple text editor and user-based verification,

the automation of the execution process is the ultimate goal of the ontology mapping process.

Mapping document encompasses all the necessary information to transform instances of source

knowledge base into target knowledge base instances. However, unlike other approaches that use

generic rules and reasoning engines, SBO is not defined in any rule based language nor is directly

Development and Experiences

212

understood by any generic reasoning engine. In that sense, a specific execution engine is necessary

to interpret and run the described semantic relations.

As referred in 6.2 the execution process comprehends three phases: query, filtering and

transformation and instantiation, which have distinct requirements and demand distinct efforts.

8.1.3.1 Tree-based query

One of the most important limitations of KAON is the inexistence of an ontology query language,

which is of fundamental importance in the implementation of the query and filtering phases. In

fact, as presented in 6.2.1, the developed process makes extensive use of query language

functionalities.

Unfortunately, no filtering, selection, projection, Cartesian product or Join operations are directly

supported by KAON. Querying capabilities of KAON are rather limited, allowing only simple

questions upon concept and properties instances. Basically, KAON query capabilities can be

synthesized into:

• Query a concept instance for all it properties instances, which results into a table-based

representation of the concept instance;

• Query the concept instance for the instances of a specific property, which corresponds to a

specific column of previous table.

Another very important feature missing in KAON is the multi-step Path support. In fact, because

the Path concept is not a basic element in RDF(S), it was not expected to be supported in KAON.

Because a Path instance reflects a specific view of the knowledge base, it is directly dependent on

the query language, which turns to be considerable difficult to implement due KAON limited query

capabilities.

Fortunately, the “backward” query of single Step Paths is directly supported by KAON. Thus, it

has been necessary only to adapt it to multi-Step backward Paths.

Therefore, most of the required query operations, including the primitive relational operations, had

to be implemented in the scope of this thesis. These operations provide the basic constructs for the

implementation of the tree-based representation of Paths and respective knowledge base query,

which correspond to one of the most important contributions of this thesis and of MAFRA

Toolkit.

8.1.3.2 Filtering

As referred, the filtering operation is not directly support by KAON which compel to its

implementation during this thesis.

Multi-Dimensional Service-Oriented Ontology Mapping

213

The filtering process runs for every row of the query table, and concerns with the application of the

ConditionExpressions. This corresponds to:

• Instantiate the ConditionExpression with the table values corresponding to the Paths in the

ConditionExpression;

• Evaluate every comparison, which results in an instantiated Boolean expression;

• Draw a conclusion (Boolean value) from the instantiated Boolean expression.

The operation is rather simple, but depends both on the comparison and Boolean operators. While

Boolean operators are predefined and fixed, comparison operators might vary substantially. A few

comparison operators have been defined since the early phases of the project but more comparison

operators could be necessary or advisable during the life-cycle of the system.

In that sense, comparison operators should be implemented using the same modular, open

approach suggested for SBO and MAFRA, but specially used in Services. Operators are therefore

implemented as distinct classes of the engine, characterized and made available to the system

through a simple description mechanism, much like Services (7.2).

Example 8.2 – RDF definitions of the Equal and Less Operators
The following RDF code describes two instances of the Operator concept: the Equal and
Less:
<SBO:Operator rdf:ID="==">

 <rdfs:label>==</rdfs:label>

 <rdfs:comment="are two operands equal"/>

 <SBO:location="pt.ipp.isep.gecad.mafra.engine.operators.Equal"/
>

</SBO:Operator>

<SBO:Operator rdf:ID="Less">

 <rdfs:label><</rdfs:label>

 <rdfs:comment="is first operand less than second operand"/>

 <SBO:location="pt.ipp.isep.gecad.mafra.engine.operators.Less"/>

</SBO:Operator>

The name of the Operator is denoted by the value of the rdfs:label property. This corresponds to a

string that will be used in the user interface. The Equal operator is denoted by the “==” string, and

the Less operator is denoted by “<”.

A description and competency of the Operator is optionally associated through the rdfs:comment

property.

Finally the class implementing the comparison is specified through the SBO:location property,

providing the necessary information for the comparison engine to locate and access it.

Development and Experiences

214

Both query and filtering processes are implemented in the context of transformation Services, as

described in Chapter 6.

8.1.3.3 Transformation engine

The transformation engine is responsible for the core logic of the transformation process. It is

implemented in the Engine class of the pt.ipp.isep.gecad.mafra.engine package. It is a rather simple

process, described by the following Java code:

public transformation(Mapping m_mapping)

{

// read source and target ontologies

readOntologies(m_mapping);

// checks mapping correctness

m_mapping.verification();

// load source knowledge base instances

readKnowledgeBases(m_mapping);

// open target knowledge base for writing

openKnowledgeBases(m_mapping);

// initializes TI^2 table

TransformationInformationTable TI2 = initializesTI2(m_mapping);

// open the log file for writing

openLogFile(m_mapping);

// creates target concept instances

runConceptBridges(m_mapping, TI2);

// create target properties values

runPropertyBridges(TI2);

// save target instances in target KB

saveTargetInstances(TI2);

}

Despite the self-describing code just presented, the runConceptBridges and runPropertyBridges

procedures deserve a closer description.

The runConceptBridges procedure corresponds to the following Java code:

Multi-Dimensional Service-Oriented Ontology Mapping

215

private void runConceptBridges(

 Mapping m_mapping,

 TransformationInformationTable TI2) throws Exception

{

 Set setConcepts = m_mapping.getAllSourceConcepts();

 Iterator it = setConcepts.iterator();

 for(; it.hasNext();) {

 Concept concept = (Concept) it.next();

 createTargetInstancesOf(concept, TI2);

 }

}

private void createTargetInstancesOf(

 Concept concept,

 TransformationInformationTable TI2) throws Exception

{

 Set setInstances = concept.getInstances();

 Iterator it = setInstances.iterator();

 for(; it.hasNext();) {

 Instance instance = (Instance) it.next();

 Set setCBs = m_mapping.getCBsForSourceConcept(concept);

 Iterator itCBs = setCBs.iterator();

 for(; itCBs.hasNext();) {

 ConceptBridge CB = (ConceptBridge) itCBs.next();

 CB.createTargetInstance(instance, TI2);

 }

 }

}

Every concept instance of the source knowledge base is dispatched to every ConceptBridge that

semantically relates the concept of the instance. Every ConceptBridge will call the CopyInstance

Service, which will be responsible for the query, filtering and transformation phases according to

the argument values of the ConceptBridge. This includes the association of extensional

specification information in 2TI .

The runPropertyBridges procedure is responsible for the execution of all PropertyBridges ◊ -related

with the ConceptBridge that created the target concept instance, as stored in the 2TI . The

ConceptBridge is responsible for determine such PropertyBridges, which includes not only those

Development and Experiences

216

that are directly ◊ -related with the ConceptBridge but also those that are ◊ -related with its super

ConceptBridges. The following code represents this process:

private void runPropertyBridges(

 TransformationInfromationTable TI2) throws Exception

{

 Iterator it = TI2.iterator();

 // for every target instance created previously

 for(; it.hasNext();) {

 TransformationInformation TI =

 (TransformationInformation) it.next();

 ConceptBridge CB =

 m_mapping.getConceptBridge(TI.getConceptBridge());

 CB.runPropertyBridges(TI);

 }

}

Because the ConceptBridge implementation assumes a special relevance, it deserves a closer insight,

especially the createTargetInstance and the runPropertyBridges methods.

The createTargetInstance method corresponds to the following code:

public boolean createTargetInstance(

 TransformationInformationTable TI2,

 Instance instance) throws Exception

{

CopyInstance mafraService = new CopyInstance();

mafraService.transformation(TI2, instance, getArgumentValues());

}

It creates an object of the CopyInstance Service and calls its transformation method, which is

responsible for the query-filtering-transformation-filtering-instantiation process, according to the

input instance and the arguments of the ConceptBridge, including cardinality and extensional

specification information. Change will be reported in the transformation information table.

The runPropertyBridges method corresponds to the following Java code:

public boolean runPropertyBridges(

 Engine engine,

 TransformationInformation TI) throws Exception

{

 Set setAllPropertyBridges = getAllPropertyBridges();

 Iterator it = setAllPropertyBridges.iterator();

Multi-Dimensional Service-Oriented Ontology Mapping

217

 for(; it.hasNext();) {

 PropertyBridge pb = (PropertyBridge) it.next();

 pb.transformation(ti);

 }

 Set setAllAlternativeBridges =

 getAllAlternativeBridgesOfPropertyBridges();

 Iterator it = setAllAlternativeBridges.iterator();

 for(; it.hasNext();) {

 AlternativeBridgeOfPropertyBridges altPBs =

 (AlternativeBridgeOfPropertyBridges) it.next();

 altPBs.runUntilSuccessfull(ti)

 }

}

The runUntilSuccessful method of the AlternativeBridgeOfPropertyBridges class will call the

transformation method of every PropertyBridges until one is successfully executed.

The transformation method of the PropertyBridge class is similar to the createTargetInstance

method of the ConceptBridge class. It is defined as follows:

public boolean transformation(TransformationInformation ti)

{

 Class mafraServiceClass = Class.forName(getServiceLocation());

 Class[] args = new Class[] {};

 Constructor constructor = mafraServiceClass.getConstructor(args);

 mafraService = (MAFRAService)constructor.newInstance();

 mafraService.transformation(ti,getArgumentValues());

}

The four first lines of previous function are responsible for the creation of an object of the

PropertyBridge Service. This is different from the CopyInstance Service call because these are not

built-in Services as CopyInstance is. Therefore, it is necessary to locate and load the code before

operation. The last line calls the transformation method mandatorilly existent in every Service.

8.1.3.4 Services

Services are responsible for the transformation of source ontology instances into target ontology

instances. As proposed in Chapter 7, Services are independent, pluggable transformation modules.

It means, Services do not belong to a specific MAFRA module, but provides services to many of

these modules, depending on the interface defined by the MAFRA module and those implemented

by the Service.

Development and Experiences

218

Services are intended to be added, changed or removed from the system easily and efficiently. In

the scope of MAFRA Toolkit, both the object-oriented and the interface constructs available in the

Java programming language have been exploited to support the intended functioning. Moreover,

these two modeling constructs (i.e. object and interface oriented programming) provide the basics

elements to support a fast and reliable deployment of Services.

The functionalities required by MAFRA core modules from Services are specified through the

MAFRAService interface. Every Service intending to provide transformation, automatic bridging or

any other functionality to the MAFRA Toolkit system must implement this interface.

MAFRA Toolkit implementation provides basic functionalities for the most of the methods

defined in MAFRAService interface. In most of the cases, abstract methods are implemented in the

MAFRAAbstractService, from which all specific Services can derive from, thus profiting from

elementary functionalities already implemented.

Figure 8.2 represents the most important classes and interfaces of the MAFRA Toolkit Service-

oriented Architecture.

+transformation(in query : Table)
+bridging(in clusters : Set) : Set
+rebridging(in bridges : Set, in clusters : Set) : Set
+clustering(in matches : Set) : Set
+reclustering(in clusters : Set, in matches : Set) : Set
+evolution(in changes : Set)

«interface»
MAFRAService

#generatePathTree(in paths : Set) : PathTree
#queryKB(in pathsTree : PathTree) : Table
#filter(in query : Table) : Table
-run(in FQTable : Table) : Table

-m_instance

«implementation class»
MAFRAAbstractService

-label
-comment
-location

Service

* 1

implements

-label
-comment
-type

Argument

*

*

arguments

CopyRelationCopyInstance SplitCopyAttribute Concatenation CountProperties

...

SemanticBridge

1

*

appliedIn

1

*
argumentValues

*

1

aplies

Figure 8.2 – UML representation of core classes and interfaces of MAFRA Toolkit

Multi-Dimensional Service-Oriented Ontology Mapping

219

In particular, to support the Execution phase, any specific Service (e.g. CopyInstance, CopyRelation

and Concatenation) is implemented by sub-classing the MAFRAAbstractService class, and

implementing run method. The run method receives the FQ table and returns a table

corresponding to the target entities instances to create (the last FQ table). The transformation

method implementation provided by the MAFRAAbstractService provides the necessary

functionalities in generating the FQ table from source knowledge base. The run method,

implemented in each specific Service, provides only the specific know how in transforming the FQ

table rows into the target instances table, whose columns reflect the name of the target entities. The

MAFRAAbstractService is thereafter responsible for filtering the target instances according to the

target ConditionExpressions and instantiate the remaining instances in the target knowledge base.

It is therefore considerably simple to define, implement and plug in new Services into MAFRA

Toolkit.

8.1.4 Graphical User Interface

The user interface provides the representation and the manipulation facilities of the ontology and

of the ontology mapping entities. Generically, ontologies and SBO mapping document can be very

difficult to understand and manipulate by non-expert users.

8.1.4.1 Tree-based user interface

The representation and exploration of ontologies has been, either directly or indirectly, the focus of

many research projects such as Protégé [Noy et al., 2000], OntoEdit [Sure et al., 2002], OilEd

[Bechhofer et al., 2001], WebODE [Arpírez et al., 2001] and KAON [Motik et al., 2003], for several

years.

Figure 8.3 presents a screenshot of the KAON SOEP tree-based interface for ontology

representation and development. In this figure, two ontologies are being manipulated at same time.

The lowest part of each internal frame is used to represent the details of the entity selected in the

upper parts. In the left ontology, properties values of the Bruce_Croft instance are being presented

while in the right ontology, the attributes of the Mitarbeiter concept are presented.

Implementation of the MAFRA Toolkit user interface started under the scope of this

representation paradigm. First MAFRA Toolkit GUI adopted the tree-based representation of

ontologies, but developed a new interface system where two ontologies are loaded into the same

frame, separated by the representation and manipulator of the ontology mapping document.

Development and Experiences

220

Figure 8.3 – Screenshot of the KAON SOEP tree-based interface

Moreover, all ontology deployment functionalities have been discarded and the interface focused in

those of the ontology mapping process. Figure 8.4 presents a screenshot of the first implemented

interface.

Figure 8.4 – MAFRA Toolkit UI: first tree-based implemented interface

Multi-Dimensional Service-Oriented Ontology Mapping

221

As the ontology representation, SemanticBridges are also represented as tree-based structures, in

which every branch (or sub-branch) reflects a distinct component or set of components of the

SemanticBridge. In order to apply ontology entities (Concepts and Paths) the user selects the

ontology entities, drags and drops them into the intended SemanticBridge argument.

As in any tree-based representation, in order to represent multiple relationships for the same entity,

the entity must be represented more than once, causing ambiguity in the interface. Moreover, this

type of representation of the mapping document becomes too extensive and thus hard to

understand and manipulate. In order to cope with this problem, a simple evolution was made in the

GUI such the central frame represents only the SemanticBridges and their inter-relations (i.e. ≺

relation between ConceptBridges, the ◊ relation between ConceptBridges and PropertyBridges,

⊥
CB relation between ConceptBridges and AlternativeBridges-of-ConceptBridges and ⊥

PB

relation between PropertyBridges and AlternativeBridges-of-PropertyBridges).

The other SemanticBridges properties are represented and manipulated in a new frame of the GUI,

referred as Details Panel. This frame is presented in the lower part of the user interface. The

information presented in the Details Panel comes from the SBO entity instance selected in the

upper central panel. Figure 8.5 corresponds to a screenshot of MAFRA Toolkit user interface

conforming to the described stage of evolution.

Figure 8.5 – MAFRA Toolkit UI: distinct panels for SemanticBridges and their parameters

Development and Experiences

222

Tree-based interfaces have been used to represent the hierarchical structure of ontologies for some

time, but it became clear that such representation did fit neither the property-centric modeling

approach nor the network structure resulting from it. Moreover, tree-based interfaces were far from

good ontology manipulation tools, especially when dealing with large ontologies, which starts to be

frequent nowadays.

8.1.4.2 Net-based user interface

KAON infrastructure and its ontology development editor evolved in a way that ontologies are no

longer represented as tree-based structures but as a network of multi-inter-related entities. This new

representation approach allows the representation of multiple relations types for the same entity

with no need for multiple representations of the entity. While this new representation approach has

been applied to the ontology editor, functionalities were made available as a library of classes to

other (eventual) KAON components. This library has been exploited in the development of a new,

more usable and flexible ontology mapping editor. Figure 8.6 represents a screenshot of the user

interface of MAFRA Toolkit comprehending these last changes.

Figure 8.6 – MAFRA Toolkit UI: net-based representation of entities

The result is a new interface in which entities could be selected, hide, deleted, moved, drag and

dropped, related and unrelated in a very versatile and rather intuitive fashion.

Multi-Dimensional Service-Oriented Ontology Mapping

223

In this new representation approach, two basic types of entities exist:

• The node, which typically represents the ontology or mapping entities and their instances;

• The edge, which typically represents the ontological and mapping relations between their

entities.

For every type of ontology, mapping entity or instance, a distinct shape and color representation

can be used, providing a very perceptible representation of the mapping scenario. Distinct shapes

and color are also used in edges according to the relationship it represents. Table 8.1 presents some

of the most used entities according to their shape and color:

Table 8.1 – Shape-color characterization of mapping entities

Entity Shape Color Example

Ontology small circle dark green/maroon52

Concept rectangle dark green/maroon

Property irregular hexagon dark green/maroon

ConceptBridge rectangle yellow

PropertyBridge rectangle light green

AlternativeBridge rectangle light blue
Matches small square dark blue

Domain/range relation line with arrow light green

Entity to ontology relation pointed line gray

Concept to ConceptBridge relation pointed line light green

Path to PropertyBridge relation pointed line gray

≺ (subBridgeOf) relation pointed line gray

All manipulated entities can be simultaneously represented in the user interface, which represents

an important improvement comparing to the tree-based user-interface. For example, even if

Matches and SemanticBridges are entities associated with distinct stages of the ontology mapping

process, in some moment their manipulation occurs at the same time, and should therefore be

represented and manipulated simultaneously.

52 The source ontology is represented in dark green and target ontology is represented in maroon. The same

colors are applied in representing either source or target ontologies’ entities.

Development and Experiences

224

Figure 8.7 is a screenshot of the MAFRA Toolkit, in which many types of entities are represented,

including a set of Matches and the SemanticBridges automatically generated from them.

Figure 8.7 – MAFRA Toolkit UI: simultaneous representation of all types of entities

Besides the entity actions accessed through the context menu, most of the node-represented

entities are also manipulated through the node-represented buttons. Like any interface button, these

are also a two state buttons. In these cases, buttons correspond to collapse and expand of relations

of a certain type (e.g. subBridgeOf relation between ConceptBridges). Table 8.2 represents the

semantics of each button in context of each node-represented entity:

Table 8.2 – Semantics of every button available in node-represented entities

Button Node Semantics
Concept Expand/collapse properties that have this concept as range.

 Property Expand /collapse domain concepts of this property.
Concept Expand/collapse properties that have this concept as domain.
Property Expand/collapse range concepts.

ConceptBridge Expand/collapse ◊ -related PropertyBridges or
AlternativeBridges-of-PropertyBridge.

AlternativeBridge Expand/collapse ⊥
CB or ⊥

PB -related Concept or Property
Bridges.

Concept Expand/collapse sub-concepts.
 ConceptBridge Expand/collapse ≺ -related ConceptBridges (sub-bridges).

Concept Expand/collapse sub-concepts.
 ConceptBridge Expand/collapse ≺ -related ConceptBridges (super-bridges).

Multi-Dimensional Service-Oriented Ontology Mapping

225

 ConceptBridge
Expand/collapse AlternativeBridges-of-ConceptBridges to which
this ConceptBridge is ⊥

CB -related.
Concept Expand/collapse Matches to which this Concept is related.

 Property Expand/collapse Matches to which this Property is related.
 Concept Expand/collapse ConceptBridge to which this Concept is related.
 ConceptBridge Expand/collapse Concepts that this ConceptBridge relates.

Every button represents their expanded/collapsed state by changing its dark color (when collapsed)

to a light color (when expanded). However, the state of the button does not guarantee the state of

the entity/relation. This is due to the fact that the relations can be manipulated in both sides of the

edge.

Example 8.3 – Ambiguous appearance of graphical buttons

Expanding the button of a Concept, all properties of that Concept are shown and an
edge is created between the Concept and every Property. The button color changes to
gray (). If the button of Properties is pushed, the previously expanded edges are
collapsed, but the button of the Concept is maintained gray ().

A few other features provide interesting and useful functionalities to the user:

• Selecting an entity changes its color to a lighter color (e.g. Matches change from dark blue to

light blue), and triggers the presentation of other characteristics of the entity in the lower frame

of the user interface. In Figure 8.6, the ic2c PropertyBridge is currently selected;

• Context menu is available for every entity, varying according to the selected entity and allowed

commands. In Figure 8.7, the context menu is presented for the Match between

price_for_double_room and EuroMaximum;

• Zoom in/out permits to enlarge/reduce the representation of the entities. This functionality is

important especially dealing with large ontologies, allowing focusing or generalizing the view

upon the entities;

• Versatile positioning of the entities in the graphic. Three types of positioning are available:

• Automatic positioning, in which the positioning system is completely responsible for the

location of every entity, and for the relative relations between entities;

• User defined positioning allows user to move the entity to any location, which in turn moves

other entities as well, due to their relationships and location constraints;

• Fixed positioning allows user to define the position of the entity, which will be kept

independently of the changes in the graphic (add, remove, move, etc. of entities). The

PinDown command accessible from the context menu (Figure 8.7) permits to fix or unfix

the entity location;

Development and Experiences

226

• Hide feature permits to remove certain entity from the interface, while maintaining it in the

ontology or mapping. While possible, this feature is unpractical and inefficient when using the

tree-based representation.

The presented net-based user interface represents a great improvement to the user-based Semantic

Bridging phase in comparison to the tree-based representation. In particular, it became possible to

define and manipulate backward Paths; something that was almost impossible with the tree-based

representation of ontologies.

8.1.5 Outlook

While its implementation is currently and continuously running, MAFRA Toolkit is already an

effective tool supporting the lift & normalization, similarity measuring, (automatic) semantic

bridging and execution phases of the ontology mapping process, as have been described in prior

chapters. Yet, many improvements are currently being pursued as described in Chapter 10.

8.2 Application experiences

While MAFRA Toolkit implements a set of new research ideas, its application in several third-part

research projects and academic curricula demonstrates, to some extent, its pragmatic merit, along

with the scientific relevance.

The work described in this thesis has been developed firstly in the scope of the SANSKI - Semi-

Automatic Negotiation Service for Knowledge Interoperability project [SANSKI]. SANKSI is

funded by the Portuguese Technology and Science Foundation (Fundação para a Ciência e

Tecnologia) (reference POCTI/GES/41830/2001) and runs from January 2002 to January of 2005.

SANKSI aims to research and develop solutions on supporting proactive interoperability between

socio-economic entities represented by agent-based systems, especially in the application domains

of manufacturing systems and virtual enterprises. With the increased weight of Semantic Web as

application domain and technology repository, SANSKI research evolved into this domain too, and

adopted some of the provided technology.

Because the SANKSI proposal suggested development of experiences and tests in real-world

scenarios, a considerable effort has been putted in pursuing these goals. However, as often referred

during the thesis, due to the intrinsically ambiguous nature of the problem, the solution apparently

suited for a set of specific interoperability scenarios is not recommended for others. Due to the

diversity of scenarios required, it has been considered unfeasible to develop in-house sufficient

experiences to demonstrate the validity and usefulness of the research ideas proposed.

Multi-Dimensional Service-Oriented Ontology Mapping

227

In response to this problem, a set of research policies have been setup that strongly contributed to

the results of this thesis:

• Publicize research in high-ranked research events and publications from distinct domains of

research and application;

• Develop a network of research collaboration that could provide valuable and specialized

suggestions in different areas of research and application;

• Set the developed software packages publicly available, and promote its application on third-part

projects and research institutions;

• Use of standard but specialized software components in MAFRA Toolkit.

As a result of these policies, the research ideas and MAFRA Toolkit have been extensively

requested for application and further development by EU-funded projects and business

organizations. Notice however that despite the application of MAFRA research and MAFRA

Toolkit as has been supported and promoted by the author, no official or institutional relation

exists between author and research groups responsible for the application in mentioned projects.

Thus, the application of MAFRA Toolkit has been an exclusive decision of the research groups

involved in these projects. Some of these applications and experiences are described in next

sections.

8.2.1 Harmonise and Harmo-TEN

The MAFRA Toolkit has been adopted as the specification, representation and transformation

mechanism in the EU-funded Harmonise project (IST 2000-29329) [Harmonise]. The Harmonise

project intends to overcome the interoperability problems occurring between major tourism

operators in Europe. Problems arise due to the use of distinct information representation languages

like XML and RDF, and different business and information data models, like those provided by

MEK [MEK], WhatsOnWhen (WoW)53 [WoW], TIS54 [TIS], SIGRT [SIGRT] and TourinFrance

[TourinFrance]. Harmonise adopted a mediation approach based on the so called Interoperability

Minimum Harmonisation Ontology (IMHO) which serves as lingua franca between entities. Every

entity in the system however, does not directly interoperate with business partner, but with the

mediator who transforms messages according to the predefined ontology mapping documents

between IMHO and each of the entities ontologies. Contents of the messages are then wrapped

and forwarded to the respective business partners conforming to the format and semantics of the

receiver.

53 WhatsOnWhen is an English company expert in providing event information and ticketing.
54 tiscover A.G. is an Austrian company and the major European tourism information system provider that

maintains a database of tourism data of several countries.

Development and Experiences

228

The IMHO describes the Accommodation and Event partitions of the tourism domain only.

Despite IMHO reflects extensive efforts in modeling those partitions considering the existent

ontologies, they differ very much. In fact, each of them differ so much from all the others that it

would be impossible to create an ontology that resembles simultaneously some of them. Based on

the type and number of entities defined in ontologies, Table 8.3 depicts the schematic differences

between IMHO and other ontologies applied in Harmonise, according to the domain of

knowledge.

Table 8.3 – Comparison between ontologies according to domain of knowledge

Accommodation Event
Properties Properties Ontology

Concepts
Attributes Relations

Concepts
Attributes Relations

IMHO 136 340 543 86 174 328
WoW - - - 20 40 20
MEK 2 104 1 1 47 0
TIS 26 57 26 38 41 38

The differences between ontologies are evident, but in most cases IMHO always represents a

superset of the knowledge represented in the other ontologies or it applies a finer grained

conceptualization, which motivates the substantial use of the extensional specification mechanism.

These enormous differences have consequences at ontology mapping document. In fact, in most of

the ontology mapping scenarios presented in Table 8.4 and Table 8.5, only a small subset of the

ontologies entities are semantically related.

Table 8.4 – Ontology mapping experiences in the Event domain

Source Ontology Target Ontology ConceptBridges PropertyBridges
IMHO WoW 12 33
WoW IMHO 26 64
IMHO MEK 1 39
MEK IMHO 28 70
TIS IMHO 23 46

Table 8.5 – Ontology mapping experiences in the Accommodation domain

Source Ontology Target Ontology ConceptBridges PropertyBridges
MEK IMHO 26 74

IMHO TIS 11 45

However, as referred by the research team responsible for the ontology mapping specification, this

fact was only a concern of ontology mapping decisions and not a limitation of the ontology

mapping tool. In fact, no conceptual limitations have been detected in MAFRA Toolkit, and only a

Multi-Dimensional Service-Oriented Ontology Mapping

229

few Services have been developed as refinement of the initially provided Services (e.g. Split by

regular expression Service has been developed from the original Split Service).

Harmonise is a successfully completed research project that formally ended in July 2003. Yet, a

follow-up has been recently approved by the European Commission’s eTEN-Programme (eTEN

C510828) under the name of Harmo-TEN [Harmo-TEN]. In this new stage, the goal of the project

is the market validation of the business concept and services of the Tourism Harmonisation

Network (THN), created by Harmonise. MAFRA Toolkit has already been adopted as background

solution in the project, which means that it will be applied as the specification, representation and

transformation component of the mediation system. Due to this fact, it can be easily inferred that

MAFRA Toolkit and especially the research ideas it implements fulfilled requirements found in

previous stage, and it is envisaged as solution in this new, more demanding stage.

8.2.2 Artemis and Satine

Currently, MAFRA Toolkit is being applied in the Artemis (IST-1-002103-STP) [Artemis] and

Satine (IST-2104) [Harmo-TEN; Satine] EU-funded projects.

On one hand, Artemis aims to develop a system that allows and promotes the discovery and

exchange of healthcare information existent in repositories conforming to distinct representation

standards [Harmo-TEN; Laleci et al., 2004].

Satine, on the other hand, aims to develop a system that promotes interoperability of small and

medium enterprises in the tourism domain [Sinir et al., 2004].

Although very different in application domains, both projects adopt a very similar technological

approach:

• Both rely on Web Services to provide the interoperability process;

• Both envisage the combination of Web Services of different granularities to provide a general-

purpose information interoperability system;

• Both rely on ontologies derived from information standards used in healthcare and tourism

domains to classify and publish the competencies of web services;

• Both rely on ontology mapping process, and in particular in MAFRA Toolkit to transform

documents represented in distinct information standards.

According to authors, four characteristics have been considered for the application of MAFRA

Toolkit in both projects:

• Ability to manage ontologies as ontologies and not as tree-based documents;

• Easy specification, definition and representation of semantic relations;

Development and Experiences

230

• Extensibility of the system, namely respecting the fact that Services are easily developed and

pluggable into the system;

• Open code and publicly available.

While none of the projects have made public any ontology mapping document yet, it is possible to

envisage many ontology mapping scenarios. In the healthcare domain for example, multiple

information standards are used upon the same domain (e.g. HL755, CEN TC25156 , ISO TC21557

and GEHR58), motivating the specification of semantic relations between them, in order to

promote interoperability between repositories.

The healthcare domain is particularly attractive for the MAFRA Toolkit, especially due to the

required level of accuracy in the manipulation of medical information. In fact, MAFRA Toolkit has

not been applied in scenarios where such level of accuracy is so important and decisive for the

adoption of the system itself.

8.2.3 BRIDGE-IT

Probably the most interesting and extensive third-part reference to this research has been done in

the scope of the EU-funded project BRIDGE-IT (IST-2001-34386). The BRIDGE-IT (Brindging

Innovative Developments for Geographic Information Technology) aims to close the gap between

research products and ready-to-use products in the field of the GIS. In its Technology Watch

Report 4 [Janowicz & Riedman, 2004], the team from University of Munster, Germany, overviews,

analyzes and comments this research work as “a very good example for the ongoing work done in

the area of ontology mapping”. Authors defend the relevance and usefulness of MAFRA Toolkit

and the research it proposes but, at same time, probably because of the scope of the BRIDGE-IT

project (to promote research into ready-to-use products), authors suggest the need for a more

definitive implementation.

55 Health Level 7 (HL7), http://www.hl7.org
56 CEN TC/251 (European Standardization of Health Informatics) ENV 13606, Electronic Health Record

Communication, http://www.centc251.org/
57 ISO TC/215, International Organization for Standardization, Health Informatics Technical Committee,

http://www.iso.ch/iso/en/stdsdevelopmenttc/tclist/TechnicalCommitteeDetailPage.TechnicalCommitte

eDetail?COMMID=4720
58 The Good Electronic Health Record, http://www.gehr.org

Multi-Dimensional Service-Oriented Ontology Mapping

231

8.2.4 Outlook

Several applications of MAFRA Toolkit have been referred in this section. While the decision on

applying MAFRA Toolkit is exclusive of the research team involved in the project, technological

support has been provided by the author.

This is especially true concerning the application of MAFRA Toolkit in Harmonise project. In fact,

due to the fact that MAFRA Toolkit has been adopted in early phases of its own development, in

many periods of development, the feedback and requests for functionalities was very large, which

could have motivated some development dependency. However, since then, many other projects

start applying MAFRA Toolkit and the research ideas it preconizes, which is understood as sign

that the co-operation with Harmonise did not affected the general-purpose and advanced semantic

bridging capabilities envisaged for this research work. This sign is further confirmed with the use of

MAFRA Toolkit in academic contexts. It seams therefore that the benefices of co-operation with

third-part projects are larger than the disadvantages.

8.3 Performance and comparison experiences

Performance is often an important topic when describing research ideas in this research field. In the

case of ontology mapping systems and especially concerning the MAFRA Toolkit, performance

may be related to at least two components of the system:

• Execution process, concerning the number of instances transformation per unit of time;

• Automatic semantic bridging process, concerning the time necessary to create the

SemanticBridges according to the number of the entities of the ontologies.

Concerning the automatic semantic bridging process, no performance experiences have been

carried out. This is especially due to the fact that in current stage of the research ideas and

developed system, reduction of ambiguity and improvement of accuracy of the automatically

proposed SemanticBridges are the fundamental subjects the research is concerned with.

Consequently, it makes no sense for the moment to carry out performance experience upon this

process.

On the other hand, some experiences have been carried out concerning the performance of the

execution process. These experiences though, have been strongly influenced by the nature of the

problem and research context. Formal performance experiences are normally carried out through

the execution of a battery of tests that is used by the research community. The comparison tests

serve often not only to judge the performance capabilities of the system but also other dimensions

of the problem, namely the quality of the results.

Development and Experiences

232

Yet, in current research context, such experiences are unable to be performed. In fact, the research

community concerned about the ontology mapping problem is recent and insipidly established,

thus lacking some fundamental research elements such is the battery of case tests and comparison

reports.

Considering the lack of comparison reports between ontology mapping tools, the performance

experience reported by Dou and colleagues, first in [Dou et al., 2002] and later in [Dou et al., 2003]

constitute a simple but valuable piece of work. The ontology mapping system applied in these

report is OntoMerge, which has been described in 5.3.4. OntoMerge and MAFRA Toolkit are very

different as is demonstrated in Table 8.6:

Table 8.6 – Some differences between OntoMerge and MAFRA Toolkit

Characteristics OntoMerge MAFRA Toolkit
Semantic bridging strategy mapping through merging (pure) mapping

Execution strategy inference-based functional
Semantic relations representation axioms in Web-PDDL RDF instances of SBO

Ontology representation Web-PDDL RDFS with lexical extensions
KBs representation Web-PDDL RDF

Input RDF file in the Web RDF file
Output RDF file in the Web RDF file

Execution environment through the Web Java virtual machine
Development availability private public

The difference between the report in [Dou et al., 2002] and that presented in [Dou et al., 2003]

concern the time required in different stages of development of the OntoMerge system to perform

the same knowledge base transformation, and according to the same bridging axioms.

In both publications authors report the experience in mapping two ontologies about genealogy:

• The Gedcom ontology [Gedcom];

• The Gentology ontology [Gentology].

Because these are very similar ontologies, the resulting ontology mapping scenario requires only

simple semantic relations. In this sense, the comparisons presented so forth should be understood

as performance tests and not evaluation of semantic bridging capabilities. Concerning this last issue,

the experiences made in third-part projects are more informative and relevant.

Because OntoMerge and MAFRA Toolkit are very different, it has been necessary to specify in the

MAFRA Toolkit the semantic bridges of the bridging axioms of OntoMerge. The specified

ontology mapping document using MAFRA Toolkit specifies the semantic relations presented in

the previously mentioned reports and from examples found in the OntoMerge web pages.

Multi-Dimensional Service-Oriented Ontology Mapping

233

Once the ontology mapping document is finished, the execution experiences took place. The

knowledge base applied in the reported transformation experiences is composed of 21164 instances

(facts) about the European royalty. No differences have been detected between the target instances

resulted from transformations executed by OntoMerge and MAFRA Toolkit.

The experiences with OntoMerge have been reported in two distinct publications, in which two

completely distinct execution times have been referred:

• According to [Dou et al., 2002], OntoMerge requires 22 minutes execution time in a Pentium III

at 800MHz;

• Later, in [Dou et al., 2003], after non-described improvements, it has been reported that

OntoMerge executed the same transformation in 59 seconds.

Unlike experiences with OntoMerge, MAFRA Toolkit experiences have been performed for the

same publication [Silva & Rocha, 2003e], and the same original implementation of MAFRA Toolkit

has been used. Instead, the tests ran in two distinct machines, achieving distinct results:

• In a Pentium II at 350 MHz the MAFRA Toolkit took less than 2 minutes;

• In Pentium 4M at 2.0Mhz the MAFRA Toolkit required less than 77 seconds.

During the tests performed with MAFRA Toolkit it has been impossible to determine an exact

duration of the transformation process. In the last scenario, the minimum time necessary has been

64 seconds while the maximum has been 77 seconds. Similar behavior has been observed when

using the Pentium II-based machine. Table 8.7 summarizes both experiences.

Table 8.7 – Comparison summary of performance experiences

OntoMerge MAFRA Toolkit
Pentium III 800 MHz Pentium II Pentium 4M

2002 experience 2003 experience 2003 experiences
1320 seconds 59 seconds < 120 seconds < 77 seconds

Even if only a small difference exists between best performances of both systems, the fact is that

according to these experiences OntoMerge system performs better than MAFRA Toolkit.

Although no definite reason can explain these results, there are a few facts that should be referred:

• No performance concerns have been considered when developing MAFRA Toolkit;

• No query optimized libraries or methods have been adopted in MAFRA Toolkit. Instead, only

the original KAON API provided for the (simple) access of ontologies and knowledge bases has

been used. As consequence, all query and filtering methods described in Chapter 6 have been

implemented recurring to general-purpose data structures;

• No re-engineering of code has ever been done. This is particular relevant because:

• The implementation of the execution process has occurred during the specification phase,

Development and Experiences

234

which typically motivates bugs and performance problems;

• OntoMerge suffered modifications that resulted in a performance improvement of 2600%.

Even if it is not plausible that such improvement can occur in MAFRA Toolkit, it is

expectable that some improvement can be achieved;

Yet, the achieved results are satisfactory enough in current research context, especially because

focus has been set on the semantic bridging and execution capabilities of the research/system and

not in performance issues.

8.4 Conclusion

In this chapter, the development, application and comparison of MAFRA Toolkit have been

described. Due to MAFRA Toolkit, the research ideas presented in this thesis have been exposed to

a large community of researchers, academics and business enterprises as would not be possible

otherwise.

According to the applications and experiences made by third-part projects and taking in

consideration their opinions, MAFRA Toolkit is:

• Useful, because it has been applied by many third-part projects;

• General-purpose, since it has been applied in very distinct application scenarios;

• Valid, because it has been successfully applied in those projects and scenarios;

• Scientifically relevant, due to its application and development by third-part research groups.

However, despite the visibility it provided, MAFRA Toolkit permitted to receive feedback that will

be helpful in future research and development stages. Some of the most relevant suggestions

received by the practitioners are presented in Chapter 10.

However, it is already clear that one of the most sensitive components of the work executed during

this thesis is the MAFRA Toolkit. In fact, performance, code structure, GUI functionalities and

stability may be largely improved by re-engineering MAFRA Toolkit code.

THIRD PART

237

Chapter 9

CONCLUSION

This chapter presents an overview of the research and development work described in this thesis.

Due to the intrinsically subjective nature of the ontology mapping problem, a formal conclusion on

the applicability of the proposed research ideas cannot be drawn. Yet, the application of the

MAFRA Toolkit by many third-part projects worldwide provided a useful and supposedly correct

impression on the competencies and limitations of the proposed research ideas and of MAFRA

Toolkit itself.

Thus, even if a formal conclusion is conceptually difficult in this context, it is possible to enumerate

the main contributions of this thesis followed by an enumeration of the most relevant achievements

of this thesis according to the research community.

Conclusion

238

9.1 Outlook of the thesis

The work described in this thesis has four main components:

• The contextualization and motivations for the research presented in this thesis have been

described in Chapter 1, Chapter 2 and Chapter 3;

• The theoretical research part, in which the most relevant research ideas and approaches

proposed in the scope of this thesis have been extensively presented and analyzed, corresponds

to Chapter 4 through Chapter 7;

• The implementation and application experiences, in which the MAFRA Toolkit and its

applications have been described corresponds to Chapter 8;

• Conclusion and future research are described in Chapter 9 and Chapter 10.

Next sections summarize each of these components.

9.1.1 Contextualization and motivations

First chapter of this thesis described the background research context of this thesis. Previous work

in the area of agent-based manufacturing systems demonstrated the need to provide the agent-

based entities (i.e. cooperative, proactive) with the abilities to engage in conversations with other

entities from distinct information communities. Knowledge-based interoperability between entities

arises as one of the main requirements of socio-organizational systems, since it permits the dynamic

and emerging configuration of conversations and business processes. In this context, the ontology-

based representation of interoperability information and its exploitation by the ontology mapping

process had risen as one of the most promising solutions to overcome the interoperability gap

between information communities.

In Chapter 2, a set of similar problems have been identified in different technological domains, in

which the same potential solution would be advantageous and applicable. Describing and analyzing

such scenarios, a set of common relevant requirements have been systematized. These requirements

have been further applied as research goals throughout the research and development work.

Finally in Chapter 3 the notion of ontology has been described and analyzed according to a

commonly referred set of meaningful characteristics. This analysis has been further applied in the

comparison of ontology with the concept of database model. Later, the concept of ontology has

been formally defined, serving as the central and univocal notion of ontology during the rest of the

thesis.

Multi-Dimensional Service-Oriented Ontology Mapping

239

9.1.2 Theoretical research

Once contextualized and several constraints defined, the research efforts started. In Chapter 4 the

MAFRA – MApping FRAmework has been presented. MAFRA is the first and only known analysis

and systematization of the ontology mapping problem. It represents a generic but rather complete

perspective of the overall ontology mapping process, not only under the point of view of the

fundamental process phases, but also considering the complementary tasks and components.

The two fundamental phases of the ontology mapping process have been described in Chapter 5

and Chapter 6.

The semantic bridging phase, described in Chapter 4, consists in the specification of semantic

relations between source and target ontologies entities. Because no sufficiently featured

representation language was found, a specific semantic relation representation language has been

specified and developed: SBO. SBO is an ontology of the semantic relations as perceived in the

ontology mapping domain of knowledge. An SBO instantiation represents the semantic relations

holding between two ontologies under the perspective of a specific user/domain expert.

SBO has been extensively and formally described, providing a univocal understanding of the

semantic relations and of their inter-relations, which permitted the partial automation of the

semantic bridging process, as described in Chapter 7. Due to its formal specification, multiple

notations and syntaxes can be used to represent ontology mapping documents. However, in the

scope of this thesis SBO has been only partially specified in ontology representation languages. This

is due to the limited expressive power of the Semantic Web aware ontology representation

languages which are clearly insufficient to represent all rules and constraints defined for SBO. Yet,

SBO has been programmatically represented in MAFRA Toolkit, in which an interpreter and

validator of SBO have been implemented.

The Semantic Bridging Ontology and consequently the execution process (described in Chapter 6)

adopted a new ontology mapping strategy, by combining rule-based transformation with

Description Logic-like specification of semantic relations. The rule-based approach allows the

declarative specification of semantic relations, providing an intuitive and immediate mapping

specification. The DL specification is applied to overcome conceptual mismatches between

ontologies, namely concerning the heterogeneity produced by distinct granularity. Furthermore, the

modular structure of SBO, in which each ontology concept is semantically bridged independently

of others concepts, is perfectly suited to facilitate the evolution of the ontology mapping document

according to ontologies changes.

Besides its importance on the process, the specification and representation of semantic relations is

inconsequent if no transformation process occurs from source to target ontologies entities. This

Conclusion

240

transformation is accomplished on the execution phase of MAFRA – MApping FRAmework. The

research concerning with this phase has been described in Chapter 6.

The proposed execution process is based on five distinct phases:

• Query the source knowledge base for the instances that are addressed in the Semantic Bridge;

• Filtering the source instances according to specified source conditions;

• Transformation of the source instances resulting form previous phase into target instances;

• Filtering the resulting target instances according to specified target conditions;

• Instantiation of target instance in the target knowledge base.

The query and filtering phases have been described based on the relational algebra operators,

providing an explicit, formal and compact specification of the method. The deeper difficulties

found concerned with the need to query the source knowledge base semantically coherent with

multiple Paths. For that, a tree-based representation of the Paths has been developed, supplying the

driving mechanisms for partial and incremental query of Paths. The result is a relation (table) whose

attributes are the Paths specified in the SemanticBridges and the values are the instances of the

knowledge base, providing the direct access to all source instances to transform before the

transformation initiation. Once the query phase is finished, the filtering phase takes place according

to the source ConditionExpressions defined in the SemanticBridge.

The transformation of instances is performed by special entities called Services, as generically

introduced in the SBO specification. In this context, Services are responsible for receiving the

source instances from the execution engine and transform them into target instances according to

the specific transformation each Service represents/implements. The resulting target instances are

stored in a new table such the next phase can filter them according to the target

ConditionExpressions. In the fifth phase, the remaining target instances are effectively created in

the target knowledge base.

The system architecture described in Chapter 7 extrapolates the notion of Service into an external,

pluggable entity, competent not only in the transformation of instances, but also in other tasks

related to the overall process. Due to its multiple featured nature, Services are referred as Multi-

dimensional Services and are one of the main components of the proposed Multi-dimension

Service-Oriented Architecture. In this architecture, Services acquire, represent and provide

competencies commonly associated with domain expertise to MAFRA modules. Due to their

modularity, domain expertise is modeled as multiple modules evolving and adapting independently

of each others, which is apparently more suited to adapt to and support the distributed and highly

dynamic paradigm of Semantic Web. Evolution, common-consensus building, validation and

automatic semantic bridging are envisaged as processes benefiting from the proposed architecture.

Multi-Dimensional Service-Oriented Ontology Mapping

241

In order to analyze and test the actual and potential contributions of the multi-dimensional service-

oriented architecture, it has been decided to research and develop an automatic semantic bridging

process that would apply and exploits the ideas proposed by the architecture. In fact, besides

adopting the architecture proposals, the automatic semantic bridging process extrapolates the ideas

to other dimensions of the MAFRA – MApping FRAmework. In particular, the process suggests

that matchers providing the similarity measures between ontologies entities are modeled as external,

pluggable entities, as suggested for Service concept, by the architecture. The outcome of the

matches is then used by the automatic semantic bridging process. This process pushes the similarity

measures into Services, by requesting special-purpose competencies of Services, as suggested by the

architecture.

9.1.3 Development and experiences

While the theoretical part of the work has the most considerable substance of this thesis, the

development and experimental aspects were also very effort-demanding and time-consuming. In

fact, development efforts ran parallel during most of the theoretical development time. This close

relation is considered beneficial for both components. In particular it helped to:

• Prove the feasibility and usefulness of the proposed research ideas;

• Provide feedback on competencies and limitations of the research ideas;

• Promote the ideas into a larger scientific community and business audience;

• Provide a running tool to be used by third-part projects, which in turn provided a larger and

consistent feedback based on experiences in a broader set of applications scenarios.

The MAFRA Toolkit is the main outcome of this part of the work. While most of the implemented

functionalities concerns the ideas proposed at the theoretical part, some functionalities have not

been the focus of systematized research but a matter of pragmatism. This is especially true for the

GUI, in which the diverse types of ontology and ontology mapping representations developed,

demonstrates this experimental pragmatism.

Yet, the implementation efforts have been strongly influenced by the decision to use the KAON

Workbench as background technology for the manipulation of ontologies. Despite its competent

API for ontology manipulation, KAON provides other competencies such as the ontology editor

and the set of ontology evolution strategies and GUI libraries.

However, probably the most relevant limitation of KAON Workbench concerns its lack of support

of an ontology-based query language. In fact, all the query and filtering processes described during

Chapter 6 have been all implemented in the scope of this work, constituting a considerable work

load in the development part of the thesis. Additionally, due to the considerable experience-based

research adopted after a certain stage of the research, prototyping the changes in the execution

Conclusion

242

engine have been considerable difficult and time-consuming. However, the execution engine and

Services are now stable and efficiently running.

9.2 Summary of research achievements

While formal conclusions cannot be drawn upon the work described in this thesis, this section aims

to systematize its main contributions:

• The MAFRA - MApping FRAmework:

• MAFRA systematizes and organizes the phases of the ontology mapping process;

• Represents the advocated ontology mapping process;

• MAFRA claims that the ontology mapping process, like a typical system or product is ruled

according to a life-cycle perspective;

• MAFRA advocates an iterative, interactive flow of results between phases of the process;

• MAFRA integrates specific but essential modules related to the operationalization of the

process;

• MAFRA provides an efficient framework to classify and characterize related works from

different research fields.

• The Semantic Bridging Ontology (SBO):

• SBO defines a taxonomy of SemanticBridges representing the types of semantic relations

holding between entities of two ontologies;

• SBO defines additional concepts and inter-relations into a general-purpose yet compact and

highly expressive conceptualization of the semantic relations;

• SBO extends the transformation capabilities of the ontology mapping system by

distinguishing between the set of entities semantically related and the transformation

component of the relation (transformation Service);

• SBO provides a declarative mean to specify, represent and convey the semantic relations

holding between two ontologies (ontology mapping document) in a variety of notations and

syntaxes.

• The Execution Process:

• General-purpose transformation process, based on five distinct phases: query, filtering

transformation, filtering and instantiation;

• Supports transformation constraints according to both source instances and target instances

resulting form the transformation;

• Fully formal description of the process, based on the relational data model and in the

relational algebra;

Multi-Dimensional Service-Oriented Ontology Mapping

243

• Functional transformation process, supported through external transformation Services that

can however be easily expanded;

• It does not use the skolem terms theory [Russel & Norvig, 1995] but instead to extensional

specification (DL-based) of instances.

• The Multi-dimensional Service-oriented Architecture:

• The core phases of MAFRA are operationally organized into system components;

• The notion of Service is expanded into the so called Multi-dimensional Service, representing

and embodying other competencies besides transformation;

• Services are specified as independent, auto-characterized, external, pluggable components;

• Services competencies are requested by core modules through the MAFRA Service Interface,

providing functionalities according to each specific process phases.

• The Automatic Semantic Bridging Process:

• Developed as a case test of the Multi-dimensional Service-oriented Architecture;

• Derives a valid ontology mapping document between two ontologies;

• Applies a variety of similarity measures (matches) between ontology entities in the process,

evaluated by a variety of independent, external, pluggable components named Matchers;

• Expand Services competencies useful in the automation of the semantic bridging phase;

• Services define the conditions (based on matches) that must hold in order to be associated in

a semantic relation between a set of source and target ontologies entities;

• Adopts, follows and explores the conceptualization proposed by SBO.

• The MAFRA Toolkit:

• Implements the proposed Multi-dimensional Service-oriented Architecture;

• Implements an interpreter and validator of SBO ontology mapping documents;

• Implements the proposed automatic semantic bridging process;

• Implements the proposed execution process;

• Implements an operational graphical user interface for all previous modules.

Finally, it is relevant to return to the requirements initially defined in 2.5.7. For each of the

requirements a short description is given concerning the support provided by the research of this

thesis:

1. Identification, specification and representation of syntactic, schematic and semantic relations

between distinct information semantics. This requirement is extensively supported by the work

executed in this thesis, and in particular:

• It is supported by the Semantic Bridging phase introduced in MAFRA;

• The SBO permits the specification and representation of syntactic, schematic and semantic

Conclusion

244

relations. While, it is conceptually impossible to determine the degree of support provided by

SBO, it is perceptible by third-part opinions that SBO features are relevant and sufficient for

a large number of application and scenarios;

• The identification of the relations is supported by the automatic semantic bridging process

presented in 7.3. Above all, the proposed process aims to reduce the number of generated

(identified) SemanticBridges, but it is our perception that the solution is not sufficiently

skilled and should be improved (Chapter 10).

2. Transformation of information exchanged among intervenients according to the specified

syntactic, model and semantic relations. This requirement is referred in two research elements:

• In the execution phase of MAFRA;

• In the execution process described in Chapter 6, which fully supports the conceptualization

made by SBO. Therefore, as observed for SBO, the developed transformation process

supports and satisfy a large number of ontology mapping scenarios;

3. Negotiation capabilities to reach consensus is supported by the MAFRA Cooperative

Consensus Building module. However, no consistent research has been done so far, though it

has been referred in 7.2 as it might benefice from the adoption of the multi-dimensional service-

oriented architecture;

4. Maintenance of the syntactic, schematic and semantic relations is supported by the MAFRA

Evolution module, but no further research has been done in this subject;

5. Integrate but minimize the human-being intervention in the mapping process, which suggests

the adoption of a semi-automatic, human-supervised ontology mapping system. This

requirement is only partially supported by the performed research. In particular:

• The Domain Knowledge and Constraints module of MAFRA, which represents all

automatic sources of knowledge and expertise that can be useful for the automation of the

overall process;

• In particular, the adopted notion of Multi-dimensional Service and Matcher are

representations and embody relevant knowledge and expertise about respectively (i) the use

of the transformation capabilities of the Service and (ii) the capability to determine a specific

similarity between ontologies entities;

• The automatic semantic bridging process is however the most relevant research subject

concerning the minimization of the human-being participation in the process, while

accepting and promoting the ultimate decision of the human-being;

• The declarative, simple and compact conceptualization of SBO aims to reduce the human-

being efforts and participation in the specification and representation process of the

semantic relations;

Multi-Dimensional Service-Oriented Ontology Mapping

245

• MAFRA Toolkit GUI, provides an interaction mechanism between the automated support

and the human-being. Yet, at same time, by providing a simple and intuitive interface, it

reduces the human-being efforts in the process.

6. Semantic web awareness. This requirement is widely referred during the thesis:

• SBO has been represented in RDFS and DAML+OIL, two of the most important

representation mechanisms of the Semantic Web;

• Ontology mapping document is represented in RDF (the basic representation model of the

Semantic Web);

• Ontologies are lifted to and manipulated in a RDFS-like representation language;

• Source knowledge base is lifted and manipulated in a RDF representation language;

• The Multi-Dimensional Service-Oriented Architecture, especially respecting the distributed,

independent and pluggable modeling approach of Services. Services are developed, plugged

and involve independently as required by the ontology mapping scenarios.

While the degree of provided support is difficult to determine, on the other hand, all the

requirements have been addressed and most of them are at least partially supported by the work

developed during this thesis.

9.3 Final remarks

Several evidences motivate the perception that a relevant, valid and useful research work has been

done in the scope of this thesis:

• The large number of referred international conferences in which publications derived from this

work have been accepted [Maedche et al., 2002b; Maedche et al., 2002a; Silva et al., 2003; Silva &

Rocha, 2002; Silva & Rocha, 2003a; Silva & Rocha, 2003b; Silva & Rocha, 2003c; Silva & Rocha,

2003d; Silva & Rocha, 2003e; Silva & Rocha, 2004a; Silva & Rocha, 2004b];

• The large number of research publications citing MAFRA, SBO, the execution process and the

MAFRA Toolkit from very different research fields [Bruijn & Polleres, 2004; Ding et al., 2003;

Dou et al., 2002; Janowicz & Riedman, 2004; Laleci et al., 2004; Sinir et al., 2004];

• The good opinions arising from the large number of application (and) experiences achieved with

SBO and the MAFRA Toolkit by third-part research groups and projects;

• The constructive suggestions [Harmo-TEN] to improve research results and the MAFRA

Toolkit.

In addition to the immediate results achieved, the work executed in the scope of this thesis has

profound impact in the way research is now understood and practiced by the author. In particular,

this thesis provided:

Conclusion

246

• Improved capabilities in the analysis and systematization of the research problems;

• Improved capabilities concerning the application of research methodology;

• Improved capabilities to engage and participate in research projects and discussions;

• Improved capability to report research work to the research community.

247

Chapter 10

ONGOING AND FUTURE RESEARCH

Based on the observed limitations raised by experiences and according to the research topics

described during the thesis, this chapter describes current and future research directions in the

ontology engineering domain in general and in ontology mapping in particular.

The following subjects are addressed in this chapter:

• Combination of Services;

• Abstraction of the extensional specification;

• Automatic semantic bridging process;

• Integration with/in other systems;

• Graphical user interface;

• Evolution;

• Negotiation;

• Development and code re-engineering;

Ongoing and Future Research

248

• Standardization;

• Experiences and case tests.

Next sections address each of these topics.

10.1 Combination of Services

While the originally develop Services are sufficient for the majority of the experiences performed so

far, it has been necessary to develop or refine some specific Services. While this is a forseen idea, it

has been noticed that, in some circumstances, the new Services correspond to the combination of

the originals ones.

Combination of Services in the same SemanticBridge permits that a subset of the SemanticBridge

parameters are used to calculate intermediary set of instances that will be applied in another

parameter of the SemanticBridge. From this observation, a solution has been envisaged that

involves a mechanism in which the instances of a particular Service/SemanticBridge parameter are

provided as the outcome of a PropertyBridge. This conceptual solution seems to fulfill the

requirements, yet does not seem very difficult to implement. It is evident that some modifications

should occur:

• In SBO, at least a new type of relation between SemanticBridges should be specified, permitting

the association of PropertyBridge with a specific SemanticBridge parameter. Adopting a generic

parameter-based approach, it permits that even the non-Service-defined parameters (e.g.

Conditions or the Extensional Specification elements) make use of this mechanism;

• In the Execution Engine, every SemanticBridge has a dependency order and an execution order.

The dependency order concerns with the number of SemanticBridges that depend on it. The

execution order defines the order based on which the SemanticBridge is executed in relation to

the others. This situation is graphically represented in Figure 10.1: because PropertyBridge3

provides the input for PropertyBridge2, it should be executed before. In the same sense

PropertyBridge3 is executed before SemanticBridge1.

SemanticBridge 1

Parameter in 1
Parameter in 2

Parameter out 1

PropertyBridge 2

Parameter in 1

Parameter out 1

PropertyBridge 3

Parameter in 1
Parameter in 2

Parameter out 1

Dependency order

Execution order
Figure 10.1 – Execution order between SemanticBridges

Multi-Dimensional Service-Oriented Ontology Mapping

249

The dependency and execution order of the SemanticBridges represented in Figure 10.1 is shown in

Table 10.1:

Table 10.1 – Dependency and execution orders between SemanticBridges

SemanticBridge Dependency order Execution order
SemanticBridge 1 0 3
PropertyBridge 2 1 2
PropertyBridge 3 2 1

Notice however that at least three constraints must hold:

• No cyclic dependencies should exist between any set of SemanticBridges, or a deadlock will

occur at the execution phase;

• The number of output cardinality of the dependable PropertyBridge should conform to the

number of the input cardinality of the dependent SemanticBridge. The possibility to use other

PropertyBridges than 1:1 or n:1 cardinality PropertyBridges depends on the capabilities of the

system concerning the association of output arguments to input arguments;

• Because the same PropertyBridge may be applied in multiple SemanticBridges, the same

PropertyBridge may have multiple dependency and execution orders. In that sense, the

PropertyBridge should be executed only once, and in the lowest execution order observed for

every dependency.

In many aspects, the proposed approach corresponds to transform SBO into a functional language:

• It permits to reduce the development of new Services. Even if the Services development

procedure is rather simple for a programmer, it is nevertheless time-consuming and requires

some knowledge about the subject;

• It permits to improve immediate semantic relation capabilities because it may be possible to

combine competencies from Services instead of developing new ones;

• It potentially reduces the readability and clarity of SemanticBridges in the sense that more

elements are included in the SemanticBridge;

• The automation of the semantic bridging phase is harder to achieve in the sense that multiple

Services will be associated with the same SemanticBridge.

Summarizing, it is important that the original declarative, simple and compact approach provided

by SBO does not turn into a programmatic language.

10.2 Abstraction of the extensional specification elements

It is often necessary to define the same extensional specification element in different

SemanticBridges. The most typical situation requires defining twice the same extensional

Ongoing and Future Research

250

specification, which is not practical nor contributes for the readability, clarity and correction of the

mapping document. In fact, because extensional specification is not an object but a set of

ConditionExpressions in a specific context, the same set of ConditionExpressions are defined in

multiple contexts. It often occurs to update the extensional specification in one SemanticBridges

but not in the other, motivating a semantic mistake or at least a semantic incoherence, which will

provoke execution errors. Therefore, it has been noticed the need to provide more intuitive

representation and manipulation mechanisms of the extensional specification elements.

The envisaged solution suggests the adoption of the so called virtual entity. A virtual entity is a new

type of entity conceptualized through the SBO and instantiated in the scope of the ontology

mapping document. Adopting this approach, ontologies maintain their original content and the

information about the ontology mapping is stored where it is required, i.e. in the ontology mapping

document.

Virtual entity is defined according to the aggregation and combination of distinct ontology-defined

entities. In particular, it is envisaged the specification of the three following kinds:

• Virtual Concept, that broadly corresponds to the idea of class in DL. Virtual Concept is defined

by the combination of a source ontology concept and a set of extensional specifications

constraints. Typically, a virtual concept would be defined in situations where an extensional

specification would be necessary, i.e. when a source ontology concept is more generic than the

most similar concept in the target ontology;

• Virtual Relation is the combination of relations that relate an ontology-defined concept and a

virtual concept, or two virtual concepts. The definition of a virtual relation will occur in

scenarios where the extensional specification is used in PropertyBridges, i.e. when a source

ontology concept is related to an extensionally defined concept;

• Virtual Attribute is the combination of a set of ontology source attributes and a set of

extensional specification elements. The definition of a virtual attribute will occurs when it is

necessary to access an attribute that occurs in the scope of a Virtual Concept.

During the semantic bridging phase, these entities will be treated as any ontology-defined concept,

but at execution process it is necessary to perform the extensional specification query and filtering

processes as referred in 6.3.

Because the instantiation of these entities is made in the scope of the ontology mapping document,

it is necessary to enhance the GUI so these new SBO entities can be represented and manipulated.

While this implementation should not be difficult, it should be combined with the new

characteristics of the GUI (presented at Section 10.4).

Multi-Dimensional Service-Oriented Ontology Mapping

251

10.3 Automatic semantic bridging process

Three main research directions are particularly envisaged in the near future concerning the

improvement of the automatic semantic bridging process/system:

• Improvement of capabilities of Services to choose and decide the SemanticBridges. This may be

achieved by refining the Services constraints, both manually and automatically. The automatic

customization of Services constraints is envisaged as a major research topic in the near future.

For that, the exploitation of machine learning techniques is envisaged. In particular, the

approach would provide Services with the capabilities to observe/analyze the user decisions

about its own proposed clusters and SemanticBridges. According to the changes performed by

the user, the Service would be capable to automatically propose the update of its own conditions

such an eventual re-execution of the process would result in the ontology mapping document

accepted by the user. Yet, this is not an easy task, both because of the intrinsically ambiguous

nature of the problem and because of the limited elements the Service can reason upon and

customize. As a consequence, the Services automatic updates would easily run into

contradiction, which should be avoided;

• Inclusion of new matchers into the system, either by adopting already existent matchers or by

developing new ones. Many of the existent matchers ground on statistical and linguistic

knowledge bases. These intrinsically ambiguous approaches tend to forward ambiguity to other

phases of the process, in particular to clustering and bridging phases.

The research and development of new matchers capable to analyze and exploit the information

resulting from well-specified, formal ontology engineering processes is envisaged as a good

starting point. In particular, processes such as (formal) development, assembling, merging,

evolution and mapping of ontologies provide either implicit or explicit information that can be

useful in the automatic semantic bridging process. New matchers would be responsible for

capturing that information into useful and meaningful means to be used by the Services;

• Specification and execution of a battery of tests and their comparison with the user-defined

document and with other similar systems. This subject is address further in Section 10.7.

This is an on-going research topic, in which the capabilities and information provided by the

FONTE assembling process [Harmo-TEN; Santos & Staab, 2003] is exploited by a specific

matcher [Harmo-TEN; Silva et al., 2004] into the clustering and semantic bridging processes.

10.4 Graphical user interface

The GUI component is currently the most continuously demanding and evolving part of the

MAFRA Toolkit. This development especially occurs in the manipulation capabilities of graphical

entities.

Ongoing and Future Research

252

However, despite current ordinary limitations, other requirements will motivate strong

development efforts of the GUI in the near future. In particular:

• Combination of Services, in case the approach described in 10.1 is adopted;

• Representation and manipulation of the Virtual Concept, Virtual Relation and Virtual Attribute

as described in 10.2;

• GUI improvement so it is possible to automatically and with assisted, constrain the entities

shown in the graph. This is a strong requirement arising in large ontology mapping scenarios.

For the moment the most realistic and promising approach is the seminal work of

Stuckenschmidt and Klein on the field of ontology partition [Stuckenschmidt & Klein, 2004].

Adopting this approach, it would be necessary to research on the ontology partition process,

especially concerning the assisted process of driving the partition according to:

• The content of the other ontology;

• The context defined by the (current) ontology mapping process.

Despite these envisaged improvements of the GUI, the approach must support the user-based

semantic bridging phase and should benefit from the work done so far in the automatic semantic

bridging process.

Yet, it starts to be perceived that the ontology engineering and in particular ontology mapping

graphical user interface requirements form a very special case of research. In that sense, researching

and developing on ontology engineering graphical user interfaces should be the focus of a specific

research work.

Currently however, it is running an effort to combine into the same GUI the ontology assembling

process developed in FONTE [Santos & Staab, 2003] and the ontology mapping process described

in this thesis.

10.5 Evolution

It is not difficult for ontology mapping to become incoherent when a number of changes occur in

the mapped ontologies. The evolution of the ontology mapping document may and should profit

from previous ontology mapping documents and eventually from other information acquired and

stored during the semantic bridging process. Evolution process is therefore substantially different

from semantic bridging process, requiring further research and development.

Besides the literature on ontology evolution [Maedche et al., 2003; Stojanovic et al., 2002a] and

versioning of ontologies [Klein et al., 2002] a very important starting point should be the multi-

dimensional service-oriented architecture, in the sense that, once again, the competence and know-

Multi-Dimensional Service-Oriented Ontology Mapping

253

how to deal with specific changes are forwarded to Services. No research work in this topic is

known or has been done in the scope of this thesis.

10.6 Common Consensus Building

As referred in 4.4.2, only residual research work exists on this topic, which turns this research very

important but also more effort demanding.

Yet, while existent literature should be exploited, the initial research on this topic might focus on

the potentialities of the multi-dimensional service-oriented architecture, as suggested for evolution

and automatic semantic bridging processes.

Communication infrastructure and negotiation protocol are currently being developed in the scope

of MAFRA Toolkit, but more advanced solutions are expected, especially in the field of meaning

negotiation and machine learning, as previously suggested for the automatic semantic bridging

process.

10.7 Integration with/in other systems

The research ideas proposed in this thesis are mostly implemented in the MAFRA Toolkit. While

its application has succeeded in a variety of scenarios, its stand alone nature is not suited for the

application in on-line interoperability scenarios. The problems arise especially due to the fact that in

some ontology mapping scenarios [Laleci et al., 2004; Sinir et al., 2004], semantic bridging and

execution phases are executed in completely distinct contexts. In these scenarios, the semantic

bridging phase is typically an off-line process in which a set of domain experts establish the

ontology mapping documents between two or more ontologies. The execution phase, on the

contrary, is an on-line process in which several (running) entities require the transformation of the

contents of their messages on the fly. In many scenarios, the off-line execution process is not a

feasible solution because entities repositories are too large and change continuously.

In order to answer this requirement, two distinct, non-contradictory conceptual approaches are

envisaged:

• Research on the integration of the proposed ideas into on-line systems/processes. Notice that

this has been set as one the initial research topics of this thesis (Chapter 1), but due to the lack

of ontology mapping research and tools it has been set apart in early stages of work.

However, because new technological paradigms surged meantime, new different approaches and

solutions from those initially motivating this work are necessary. In fact, the Semantic Web and

web services open new perspectives on the interoperability between different kinds of entities,

compelling new approaches and solutions. Still, as stated in [Benjamins et al., 2003], agent-based

Ongoing and Future Research

254

systems and web services are neither contradictory nor incompatibles. Actually, both paradigms

are complementary in many aspects and mutually profit from their combination.

In that sense, the conceptual research goal is to research and develop an intelligent and evolving

interoperability facilitator system, by the combination of the ontology mapping approaches

proposed in this thesis with the Semantic Web, web services and agent-based systems;

• Provide the implementation of the research ideas as reusable software packages instead of a

stand alone application.

Some, more pragmatic ideas on how to provide a short-term prototype of the just described

conceptual solutions are further addressed in 10.8.

10.8 Development and code re-engineering

Most of the research ideas proposed in this thesis have been implemented in MAFRA Toolkit,

which despite the large number of scenarios and experiences it has been applied in, it is not a final

product. On the contrary, it is constantly evolving.

As referred in 10.7, one of the limitations of MAFRA Toolkit is its stand alone, off-line nature.

Pragmatically, in order to overcome this limitation, it is necessary to:

• Develop the functionalities such only parts of the repositories (messages content) are

transformed;

• Develop the functionalities such the execution process can be called arbitrarily in time.

Two main development approaches may be followed, though both are compatible and advisable:

• Provide MAFRA Toolkit functionalities through a wrapping mechanism. In particular this

would be provided by:

• A web service that wraps the MAFRA Toolkit functionalities into an on-line application;

• Generic web services interfaces for entities using MAFRA Toolkit through the web service;

• Develop and re-engineer MAFRA Toolkit code, such the envisaged functionalities are provided

through a well-defined, stable and fully functional Application Program Interface (API).

MAFRA Toolkit functionalities would then be provided as software packages (libraries) whose

functionalities would be applied by software engineers as required by the application scenario.

However, these improvements are just a few of many other necessary or suggested by third-part

research teams. In order to continuously support and improve the research work more generic

development policies are being set with some of the third-part research teams.

These policies, derived from the development experiences had so far, distinguish two main areas of

development:

Multi-Dimensional Service-Oriented Ontology Mapping

255

• Incorporation of new functionalities. This new functionalities correspond to the implementation

of the ideas resulting from the research efforts namely from those proposed in previous

sections;

• Improving software packages, which corresponds to two main efforts:

• Providing reliable, error-prone, stable and better performing solutions;

• Providing implementations such they better conform to the requirements found in specific

application scenarios.

While there is no current task assignment between development team, there are some on-going

development efforts. In particular:

• MAFRA Toolkit code is currently being analyzed and systematized in order to be re-engineered

into a robust and highly performing tool, by the E-Commerce Competence Center (EC3)

research group (Vienna, Austria), in the scope of the Harmo-TEN project;

• MAFRA Toolkit is currently being re-engineered into a set of distinct software packages by

Anna V. Zhdanova from DERI, Innsbruck, Austria;

• New developments in the automatic semantic bridging and negotiation processes are being

currently pursued in the scope of SANSKI [SANSKI] and OntoMapper [OntoMapper] projects,

by the GECAD team, Porto, Portugal.

10.9 Standardization

In early phases of SBO specification there was no concern in creating a representation language of

ontology mapping documents that could be widely used or standardized.

However, currently, there are some efforts attempting to define an ontology mapping language for

the Semantic Web, which are of great interest both personally and institutionally. In fact,

considering the relevance of SBO in literature, it is perceived that it may serve as a good starting

point, as referred in [Bruijn & Polleres, 2004].

In this sense, research contacts should be set with relevant institutions in this subject, such the ideas

preconized in SBO and in this thesis are further applied in larger contexts.

10.10 Experiences and case tests

Some preliminary efforts have been carried out in the later stages of this thesis concerning the

evaluation and comparison of ontology mapping systems and in special concerning SBO semantic

expressivity and execution process performance. However, as referred through the last chapters, no

formal experiences or comparison have been made so far, constraining a more factual and definite

analysis.

Ongoing and Future Research

256

In order to overcome this limitation, a strategy has been delineated based on three complementary

tasks:

Establish a set of ontology mapping scenarios and KB to be used in the evaluation;

• Establish a set of experiences upon previous ontology mapping scenarios and KB;

• Establish a set of comparison functions between ontology mapping tools based on the results

achieved in previous point.

In order to define and establish a wide consensus upon previous elements, some contacts have

already been made with other research teams, namely with the teams.

Yet, more than any experience or comparison, the results should be published and disseminated as

soon and widely as possible in order to promote the evaluation and discussion upon the subject.

10.11 Outlook

The ontology mapping process systematization provided by MAFRA distinguishes and suggests

very important research areas in which considerable efforts should be putted in order to turn

ontology mapping systems into a useful reality. This section systematizes this research areas while

enumerating some others derived from the experiences developed with MAFRA Toolkit and from

the feedback received from third-part research teams.

Besides the achieved results presented in Chapter 9 and the research literature cited during the

thesis, research work on ontology mapping domain and in the context of the Semantic Web is still

in its early phases. In fact, while very important work has been done in recent years, the area of

standardization of technology attained the largest part, while neglecting other very important areas.

It is perceptible that the ontology mapping problem is know acquiring the necessary relevance by

many research groups, which suggests that relevant results will be achieved in the near future.

FOURTH PART

259

Annex 1

RELATIONAL DATA MODEL

This annex describes the relational data model and the relational algebra. A brief comparison with

the ontology data model is also provided. According to the perceived differences a method will be

described concerning the transformation of ontologies and corresponding knowledge bases (as

formalized in 3.3) into relational schemas and relations, respectively. Once knowledge bases can be

treated as relations, the relational algebra will be described, providing a formal mechanism to query

and access knowledge bases.

This annex does not intend to describe or analyze the relational data model, but to present a

perspective that allows the understanding of the approach developed during Chapter 6. For finer

descriptions of the relational data model please refer to [Bruijn & Polleres, 2004; Codd, 1970; Date,

2003], for example.

Relational Data Model

260

A 1.1 Building blocks

Relational data model is based on the notion of n-ary mathematical relation ()1 2, ,..., nR x x x , which

is equivalent to ()1 2, ,..., nx x x R∈ . Formally, an n-ary relation is defined by

()()1 2, , ... ,nR X X X G R , where 1X , 2X and nX are sets, and ()G R is the graph of R . ()G R is

a subset of the Cartesian product of 1X , 2X and nX , which represents the actual set of values in

R . Mathematical background and formalisms have been firstly adopted and applied by Codd in

1970 [Codd, 1970] in the specification of the relational data model, which served the basis for

further formalization of data models, including those that existed prior to the relation data model

(e.g. hierarchical and network data models).

The main concept in the relational data model is the therefore the relation, corresponding to its

homonym mathematical concept, and to the concept of ontology. Informally, a relation is a table

constituted by:

• A header row of attribute names, which corresponds in mathematical notation to the names of

the sets of the relation, and in ontology notation to properties.

• Others rows in the table, called tuples, which corresponds in mathematical notation to elements

in ()G R , and in the knowledge base notation to instances.

Example A 1.1 - Generic transformation of a knowledge base into relations
Consider the following knowledge base (also applied in Chapter 6).

{ }1 1.1 1.2 1.3 1.4 1.5 1.1 1.2 1.3 1.1 1.2 1.3 1.4

1.1 1.2 1.3 1.4

1 1.5 1.1 1.2 1.3

, , , , , , , , , , ,

(), (), (), (),
(), (), (), (),

O

O

i i i i i f f f e e e e

Individual i Individual i Individual i Individual i
inst Individual i Family f Family f Family f

Event

=

=

I

C

1.1 1.2 1.3 1.4 1.5

1.1 1.2 1.3 1.4

1.5 1.1 1.5 1.5

1.1

1

(), (), (), (), ()

(," "), (," "), (," "), (," "),
(," "), (,), (,1769),

(,

O

e Event e Event e Event e Event e

gender i M gender i F gender i F gender i M
gender i F birth i e date e
name i

inst

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

=P

1.2

1.3 1.4

1.5

1.1 1.1 1.1 1.2 1.2 1.1

" "), (," "),
(," "), (," "),
(," "),

(,), (,), (,)

Napoleon Bonapart name i Joséphine de Tasher
name i Marie Louise de Austria name i William Clinton
name i Hillary Rodham
spouseIn i f spouseIn i f spouseIn i f

−

1.3 1.2 1.4 1.3 1.5 1.3

1.1 1.1 1.1 1.2

1.2 1.3 1.3 1.4

1.1 1.2 1.3 1.4

,
(,), (,), (,),
(,), (,),
(,), (,),

(,1796), (,1810), (,1810), (,19

spouseIn i f spouseIn i f spouseIn i f
marriage f e divorce f e
marriage f e marriage f e
date e date e date e date e 75)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

Table A 1.1 represents the Individual relation, whose attributes are ID, name, gender and
spouseIn.

Multi-Dimensional Service-Oriented Ontology Mapping

261

Table A 1.1 - The Individual relation (concept) and some tuples (instances)

ID name gender spouseIn
i1.1 “Napoleon Bonapart” “M” f1.1

i1.1 “Napoleon Bonapart” “M” f1.2

i1.2 “Joséphine de Tasher” “F” f1.1

i1.3 “Marie-Louise de Austria” “F” f1.2

i1.4 “William Clinton” “M” f1.3

i1.5 “Hillary Rodham” “F” f1.3

More formally, relational data model comprehends nine fundamental concepts:

1. Domain, is set of atomic (indivisible) values, corresponding to the 1X , 2X and nX mentioned

in the mathematical description;

2. Attribute, denoted by ia , corresponds to the property element of the ontology definition

introduced in 3.3. Attributes identify and characterize columns of the relation. Each attribute ia ,

has a domain: ()iDom a ;

3. Relation schema, denoted by ()1 2, ,..., nR a a a , where R is the name of the relation, and ia , 2a

and na are the attributes of the relation. Considering relation presented in Table A 1.1, relation

schema would be (), , ,Individual ID name gender spouseIn ;

4. Degree of a relation is the number of the attributes in a relation. For example, the degree of the

Individual relation presented in Table A 1.1 is 4;

5. Relational Database Schema, denoted by { }1 2, , ..., nS R R R= is a set of relation schemas of the

same database;

6. Tuple of a relation, denoted by ()1 2: , , ..., nt v v v= , is an ordered set of values such

()i iv Dom a∈ . For example, ()1 1.1 1.1," "," ",t i Napoleon Bonapart M f= is a tuple of the

Individual relation presented in Table A 1.1;

7. Relation instance is the set of tuples that conform to a certain relation schema, and corresponds

to ()G R in the mathematical notation. From the relation presented in Table A 1.1, relation

instance is the set composed by the tuples representing each row of the table, except the header

row;

8. Primary key is the set of attributes of a relation schema that once instantiated are unique in a

relation and therefore univocally identify the relation tuple in the table. In the case of relation

presented in Table A 1.1, the primary key is either { }ID or { },ID spouseIn ;

9. Foreign key is the set of attributes in certain relation that corresponds to the primary key of

another relation schema.

Relational Data Model

262

Due to its mathematical background, relations are representable as set of tuples. Moreover, as

mathematical relations, database relations are often represented only by the graph of the relation

(i.e. ()G R). For example, the relation presented in Table A 1.1 would be represented in set

nomenclature as:

()
() ()
() ()

1.1

1 1.2 1.3

1.4 1.5

," "," " ,

," "," " , ," "," " ,

," "," " , ," "," "

i Napoleon Bonapart M

R i Joséphine de Tasher F i Marie Louise de Austria F

i William Clinton M i Hillary Rodham F

⎧ ⎫
⎪ ⎪⎪ ⎪= −⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

A 1.2 Relational data model Vs. Ontology data model

This section describes the method used to manage schemas defined using the ontology data model

presented in 3.3, as schemas defined using the relational data model. For finer details on the

relations between both models please refer to literature in the area (e.g. [Motik et al., 2003;

Stojanovic et al., 2002b]).

Despite the terminological differences previously enumerated, the ontology data model and

relational data model are not immediately equivalent or compatible.

According to the description of relational model made in section A 1.1 and to the ontology

formalization presented in 3.3, a comparison of terminology between both data models results in

Table A 1.2:

Table A 1.2 – Terminological comparison between relational and ontology data models

Ontology data model Relational data model
Ontology Relational database schema

Concept, its Properties and their Instances Relation
Concept and its Properties Relation schema

Knowledge base Union of all relations of a database
Concept Relation name
Property Attribute name
Domain Name of the relation schema of the attribute
Range Domain of an attribute

Concept instance Tuple of a relation
Property instance Value of a tuple of a relation
Concept instances Relation instance

Multi-Dimensional Service-Oriented Ontology Mapping

263

Normally, relational databases are structured according to the third normal form (3NF)59, while

ontologies rarely conform to it. However, relations non-conformant to the 3NF are still valid

relations. The same happens with ontologies.

A 1.3 Translating ontology and knowledge base into relational model

Due to these differences, in order to apply relational algebra to ontology models, three adaptations

have been developed specially in the following processes:

• Translation of ontology entities into relation schema;

• Translating concept instances and its properties into relations;

• Representation of forward and backward Paths in the relation schema.

Each of these processes is described in next sections.

A 1.3.1 Translation of ontology entities into relation schema

A relation schema corresponds to a concept and to the properties whose domain is the concept.

The concept corresponds to the relation name while its properties are translated into the attributes

of the relation schema.

Relation schema attributes do not corresponds to the properties names only, but instead to the

combination of / /Domain Predicate Range , corresponding to the definition of the SBO Step

concept.

Moreover, notice that every concept instance is univocally identified by a name (e.g. i1.1), commonly

referred as identifier, which serves to inter-relate concept instances. This identifier not only

represents the concept instance but also characterizes it. In that sense the identifier is translated

into the relation schema as the ID property whose range is Literal (Table A 1.3).

A 1.3.2 Normalizing concept instances

A source concept instance corresponds to the combination of all values of its properties, i.e. the

Cartesian product of all property values, including its identification.

Example A 1.2 – Normalization of concept instances
Considering the Individual instance i1.1 of the knowledge base, it corresponds to the
table-based representation of Table A 1.3:

59 Despite normal form range from first normal form (1NF) to fifth normal form (5NF), database designers

typically intent to structure databases conforming to the 3NF only. Third normal form is also known as

Boyce-Codd Normal Form (BCNF).

Relational Data Model

264

Table A 1.3 - Table-based representation of i1.1 source concept instance

Individual/ID/
Literal

Individual/name/
Literal

Individual/gender/
Literal

Individual/spouseIn/
Family

i1.1 “Napoleon Bonapart” “M” f1.1
i1.1 “Napoleon Bonapart” “M” f1.2

A relation corresponds to all concept instances and their properties values. To refer to that relation

or concept instances, the name of the ontology concept is used (e.g. Family, or O1:Family).

Example A 1.3 – Table-based representation of concept instances
Considering previously presented KB, the instances of the Family concept and their
properties are represented as Table A 1.4:

Table A 1.4 - Table-based representation of all Family instances (Family relation)

Family/ID/Literal Family/marriage/Event Family/divorce/Event
f1.1 e1.1 e1.2
f1.2 e1.3
f1.3 e1.4

A 1.3.3 Representation of forward and backward Paths in the relation schema

A Path is considered backward if it is composed by at least one Step whose direction attribute is set

to “backward”. In that sense, the intended adaptation concerns to support “backward Steps” and

not backward Paths.

Like forward Steps are represented as attributes of the relation schema, backward Steps are also

represented as attributes of the relation schema, but using the coherent notation:

\ \Domain Predicate Range . Because backward Steps are not a standard relational model issue, a

specific manipulation mechanism has been researched and specified during this thesis. Deeper

details on the manipulation of “backward Steps” can be found in 6.2.

A 1.4 Relational algebra

Relational algebra is the mathematical model that permits reasoning upon schemas respecting the

relational data model. Once ontologies and respective knowledge bases can be grounded to

relational data model, the relational algebra is very useful in formally manipulating them.

The relational algebra is the set of operations on relations (tables) that permits to manipulate

relations (i.e. the relation schema and/or relation tuples). In both cases, the result is again a relation

that can be applied in further operations.

Multi-Dimensional Service-Oriented Ontology Mapping

265

The relation algebra comprehends six fundamental operations:

1. The Selection operation, denoted by cRσ , is a unary operation that corresponds to filter the

tuples of the relation according to the arbitrary Boolean expression c . The result of a selection

does not affect the relation schema (concept) but the tuples (instances).

Example A 1.4 – Selection operation
Consider the relation Individual and their instances presented in Table A 1.1. The
selection / / " "Individual gender Literal F Individualσ ==

60 results in Table A 1.5:

Table A 1.5 - Result of the / / " "Individual gender Literal F Individualσ == operation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Family
i1.2 “Joséphine de Tasher” “F” f1.1

i1.3 “Marie-Louise de Austria” “F” f1.2

i1.5 “Hillary Rodham” “F” f1.3

2. The Projection operation, denoted by
1a ,..., na Rπ is a n-unary operation that results in a new

relation schema (concept) with the attributes 1 , ..., na a from relation R , and the corresponding

tuples.

Example A 1.5 – Projection operation

The operation ,name genderπ Table A 1.1 results in the relation represented in Table A 1.6:

Table A 1.6 – Result of the ,name genderπ Table A 1.1 operation

Individual/name/Literal Individual/gender/Literal
“Napoleon Bonapart” “M”
“Napoleon Bonapart” “M”
 “Joséphine de Tasher” “F”

“Marie-Louise de Austria” “F”
“Hillary Rodham” “F”
“William Clinton” “M”

3. The Cartesian Product operation, denoted by R S× , is a binary operation upon two relations

(R and S), that corresponds to the homonym operation in the set theory. It combines all

tuples in R with all tuples in S . The attributes from R and S must be disjoint (different

names) or fully qualified names in the resulting relation will be used.

60 In order to maintain examples as simple as possible, from now on attributes of relations are referred only

by its name (e.g. " "gender F Individualσ ==) instead of the Domain/Predicate/Object form. However, in

ambiguous situations the fully qualified nomenclature will be used.

Relational Data Model

266

Example A 1.6 – Cartesian Product operation
Consider the Individual relation presented in Table A 1.5 and the Family relation
presented in Table A 1.7:

Table A 1.7 - Family relation

Family/ID/Literal Family/marriage/Event
f1.1 e1.1

f1.2 e1.2

f1.3 e1.4

The operation Table A 1.5×Table A 1.7 will result in the new relation represented in
Table A 1.8:

Table A 1.8 – Result of the Table A 1.1×Table A 1.7 operation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Family

Family/
ID/

Literal

Family/
marriage/

Event
i1.2 “Joséphine de …” “F” f1.1 f1.1 e1.1
i1.2 “Joséphine de …” “F” f1.1 f1.2 e1.2
i1.2 “Joséphine de …” “F” f1.1 f1.3 e1.4
i1.3 “Marie-Louise de ...” “F” f1.2 f1.1 e1.1
i1.3 “Marie-Louise de …” “F” f1.2 f1.2 e1.2
i1.3 “Marie-Louise de …” “F” f1.2 f1.3 e1.4
i1.5 “Hillary …” “F” f1.3 f1.1 e1.1
i1.5 “Hillary …” “F” f1.3 f1.2 e1.2
i1.5 “Hillary …” “F” f1.3 f1.3 e1.4

Semantically, the Cartesian product is normally meaningless, and therefore it is not usually used

directly, but as combination with the Selection operation. This corresponds to the non-standard

Join operation (refer to A 1.5).

4. The Union operation, denoted by R S∪ , is a binary operation upon two relations (R and S),

that corresponds to the union of tuples from both relations, which implies that both relations

have the same attributes. In case repeated tuples are found, only one is copied into the result.

Example A 1.7 – Union operation
Consider the relation represented in Table A 1.1 and the relation presented in Table A
1.9:

Table A 1.9 - Another Individual relation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Family
i1.1 “Napoleon Bonapart” “M” f1.1

i1.6 “Andy Warhol” “M”

Multi-Dimensional Service-Oriented Ontology Mapping

267

The operation Table A 1.1 ∪ Table A 1.9 results in Table A 1.10:

Table A 1.10 – Result of the Table A 1.1∪Table A 1.9 operation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Family
i1.1 “Napoleon Bonapart” “M” f1.1

i1.1 “Napoleon Bonapart” “M” f1.2

i1.2 “Joséphine de Tasher” “F” f1.1

i1.3 “Marie-Louise de Austria” “F” f1.2

i1.4 “William Clinton” “M” f1.3

i1.5 “Hillary Rodham” “F” f1.3

i1.6 “Andy Warhol” “M”

5. The Difference operation, denoted by R S− , is a binary operation that calculates the tuples of

R that are not present in S .

Example A 1.8 – Difference operation
Consider Table A 1.1 and Table A 1.9 upon the Individual relation. The operation
Table A 1.9 − Table A 1.1 would result in Table A 1.11:

Table A 1.11 – Result of the Table A 1.9 −Table A 1.1 operation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Family
i1.6 “Andy Warhol” “M”

6. The Rename operation, denoted by /a bRρ , is a unary operation upon the schema of the relation

and not upon the instances. The result is a relation with the same set of tuples of R whose

attribute b is renamed to a .

Example A 1.9 – Rename operation

Consider the operation /sex gender Individualρ upon Table A 1.11. The result would be
Table A 1.12:

Table A 1.12 – Result of the /sex genderρ Table A 1.11 operation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
sex/

Literal

Individual/
spouseIn/

Family
i1.6 “Andy Warhol” “M”

Other operations are commonly recognized in relational model, even if they can be achieved

through the combination of the six previous operations.

Relational Data Model

268

A 1.5 Complementary operations

Three complementary operations are considered useful for the work described in this thesis:The

Intersection operation, denoted by R S∩ , can be expressed by ()R R S− − , and represents the

set of tuples that are present simultaneously in R and S .

Example A 1.10 – Intersection operation
Consider the relations of Table A 1.9 and Table A 1.11, and the operation Table A
1.9∩Table A 1.11. The result would be the relation in Table A 1.13:

Table A 1.13 – Result of the Table A 1.9∩Table A 1.11

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Family
i1.6 “Andy Warhol” “M”

2. The Theta Join operation, denoted by cR Sθ can be expressed by ()c R Sσ × , and represents

the Cartesian product of the tuples for which condition c holds true.

Example A 1.11 – Theta Join operation

Consider the Individual relation presented in Table A 1.5 and the Family relation
presented in Table A 1.7. Because the attribute Individual/spouseIn/Literal corresponds
to the attribute ID of the Family relation, it is semantically correct to join both tables
when these two attributes are equivalent. The result of operation Table A
1.5 spouseIn IDθ == Table A 1.7 is presented in Table A 1.14:

Table A 1.14 – Result of the Table A 1.5 spouseIn IDθ == Table A 1.7 operation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Family

Family/
ID/

Literal

Family/
marriage/

Literal
i1.2 “Joséphine de …” “F” f1.1 f1.1 e1.1

i1.3 “Marie-Louise de …” “F” f1.2 f1.2 e1.3

i1.5 “Hillary …” “F” f1.3 f1.3 e1.4

3. The Natural Join operation, denoted by (),()* R join attributes S join attributesR S , is similar to Theta Join

except that the join condition is based on equality between columns values of both R and S

expressed in join attributes.

Besides the condition issue, another particularity of the natural join in comparison with theta

join is the fact that the join attributes of second relation are excluded from the resulting relation,

because they are redundant. This is admissible because both columns have the same values.

Multi-Dimensional Service-Oriented Ontology Mapping

269

Example A 1.12 – Natural Join operation

The result of operation Table A 1.10 () (),* spouseIn ID Table A 1.7 is the relation presented in
Table A 1.15:

Table A 1.15 – Result of the Table A 1.10 () (),* spouseIn ID Table A 1.7

Individual/
ID/

Literal
Individual/name/Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Literal

Family/
marriage/

Event
i1.1 “Napoleon Bonapart” “M” f1.1 e1.1

i1.1 “Napoleon Bonapart” “M” f1.2 e1.3

i1.2 “Joséphine de Tasher” “F” f1.1 e1.1

i1.3 “Marie-Louise de Austria” “F” f1.2 e1.2

i1.4 “William Clinton” “M” f1.3 e1.3

i1.5 “Hillary Rodham” “F” f1.3 e1.3

4. The Left and Right Join operations, denoted by | cR S∗ and |cR S∗ respectively, are similar to

the natural join presented previously except that the tuples whose join columns do not match

are kept in resulting relation. If left join is used, all tuples from R are maintained even if no

relation exist between the tuple from R and tuples from S . If right join is used, all tuples from

S are maintained even if no relation exists between the tuple form S and tuples from R .

Example A 1.13 – Left Join operation
Considering previous example, if the left join operation Table A
1.10 () (),| * spouseIn ID Table A 1.7 is used instead of natural join operation, the result would
be the relation presented in Table A 1.16

Table A 1.16 – Result of the Table A 1.10 () (),| * spouseIn ID Table A 1.7 operation

Individual/
ID/

Literal

Individual/
name/
Literal

Individual/
gender/
Literal

Individual/
spouseIn/

Literal

Family/
ID/

Literal

Family/
marriage/

Event
i1.1 “Napoleon …” “M” f1.1 f1.1 e1.1

i1.1 “Napoleon …” “M” f1.2 f1.2 e1.3

i1.2 “Joséphine de …” “F” f1.1 f1.1 e1.1

i1.3 “Marie-Louise de …” “F” f1.2 f1.2 e1.2

i1.4 “William …” “M” f1.3 f1.3 e1.3

i1.5 “Hillary …” “F” f1.3 f1.3 e1.3

i1.6 “Andy …” “M”

Despite this operations are derived from the Natural Join presented above, in the scope of this

work these operators do not exclude the redundant attribute (as illustrated in previous example)

unless they are used between two relations whose relation schemas are exactly the same.

Relational Data Model

270

Other relational operations are commonly recognized and applied in nowadays DBMS, but the

operations described in this annex are sufficient to demonstrate the approach and methods

developed in context of this thesis.

A 1.6 Outlook

In this annex four main issues have been addressed:

• A light introduction to the relational data model, especially its building blocks and core

principles;

• A comparison between the relational data model and the (adopted) ontology data model,

including a method to transform ontology schemas into compliant relational schemas;

• Translation method between ontology and knowledge based entities and the relation model

entities;

• A brief introduction to the relational algebra, that permits to formally manipulate relations and

(from now on) knowledge bases.

271

BIBLIOGRAPHY

Arpírez, J. C.; Corcho, O.; Fernández López, M. and Gómez-Pérez, A. (2001); "WebODE: a
scalable workbench for ontological engineering"; Proceedings of the International Conference on
Knowledge Capture, 6-13; Victoria (BC), Canada.

Artemis; "Artemis: A Semantic Web Service-based P2P Infrastructure for the Interoperability of
Medical Information"; http://www.srdc.metu.edu.tr/webpage/projects/artemis.

Atzeni, P. and Torlone, R. (1995); "Schema translation between heterogeneous data models in a
lattice framework"; Proceedings of the Sixth IFIP TC-2 Working Conference on Data Semantics,
345-364; Atlanta (GA), USA.

Bailin, S. C. and Truszkowski, W. (2001); "Ontology Negotiation between Agents Supporting
Intelligent Information Management"; Proceedings of the Workshop on Ontologies in Agent
Systems at the 5th International Conference on Autonomous Agents, 13-20; Montreal, Canada.

Bayardo, R. J.; Bohrer, W.; Brice, R.; Cichocki, A.; Fowler, A.; Helal, A.; Kashyap, V.; Ksiezyk, T.;
Martin, G.; Nodine, M.; Rashid, M.; Rusinkiewicz, M.; Shea, R.; Unnikrishnan, C.; Unruh, A. and
Woelk, D. (1997); "InfoSleuth: Agent-Based Semantic Integration of Information in Open and
Dynamic Environments"; Proceedings of the ACM SIGMOD International Conference on
Management of Data, 195-206.

Bechhofer, S.; Horrocks, I.; Goble, C. and Stevens, R. (2001); "OILEd: a reason-able ontology
editor for the semantic web"; Proceedings of the Joint German/Austrian conference on Artificial
Intelligence, 396-408; Vienna,Austria.

Beneventano, D.; Bergamaschi, S.; Fergnani, A.; Guerra, F.; Vincini, M. and Montanari, D. (2003);
"A Peer-To-Peer Agent-Based Semantic Search Engine"; Proceedings of the 11th Italian
Symposium on Advanced Database Systems (SEBD 2003), 367-378; Cetraro (CS), Italy.

Beneventano, D.; Bergamaschi, S.; Guerra, F. and Vincini, M. (2001); "The MOMIS Approach to
Information Integration"; Proceedings of the Proceedings of the International Conference on
Enterprise Information Systems, 194-198; Setúbal, Portugal.

Bibliography

272

Benjamins, R.; Contreras, L. and Prieto, J. A. (2003); "Agents and the Semantic Web"; AgentLink
News; 13 10-11; AgentLink.

Benjamins, R.; Fensel, D. and Gómez-Pérez, A. (1998); "Knowledge Management through
Ontologies"; Proceedings of the 2nd International Conference on Practical Aspects of Knowledge
Management (PAKM98); Basel, Switzerland.

Bergamaschi, S.; Castano, S. and Vincini, M. (1999); "Semantic Integration of Semistructured and
Structured Data Sources"; SIGMOD Record; 28(1) 54-59; ACM Press.

Berners-Lee, T. and Fischetti, M. (1999); "Weaving the Web The Original Design and Ultimate
Destiny of the World Wide Web".

Bernstein, P. A. and Rahm, E. (2001); "On Matching Schemas Automatically"; MSR-TR 2001-17;
Microsoft Research.

Broekstra, J.; Kampman, A. and van Harmelen, F. (2002); "Sesame: An Architecture for Storing and
Querying RDF Data and Schema Information" Spinning the Semantic Web; 197-222; MIT Press.

Bruijn, J. and Polleres, A. (2004); "Towards an Ontology Mapping Specification Language for the
Semantic Web"; DERI TR 2004-06-30.

Cattel, R. G.; Barry, D.; Berler, M.; Eastman, J.; Jordan, D.; Russell, C.; Schadow, O.; Stanienda, T.
and Velez, F. (2000); "The Object Database Standard: ODMG 3.0"; Morgan Kaufmann.

Chalupsky, H. (2000); "OntoMorph: A Translation System for Symbolic Knowledge"; Proceedings
of the Seventh International Conference on Principles of Knowledge Representation and
Reasoning, 471-482; Breckenridge (CO), USA.

Codd, E. F. (1970); "A Relational Model of Data for Large Shared Data Banks"; Communications
of the ACM; 13(6) 377-387; ACM.

Coenen, F.; Eaglestone, B. and Ridley, M. (1999); "Validation, Verification, and Integrity in
Knowledge and Database Systems: Future Directions" Validation and Verification of Knowledge-
Based Systems: Theory, Tools and Practice; 297-312; Kluwer.

Cohen, P. R. and Levesque, H. J. (1995); "Communicative Actions for Artificial Agents";
Proceedings of the First International Conference on Multi-Agent Systems, 65-72; San Francisco
(CA), USA.

Critchlow, T.; Ganesh Madhaven and Musick, R. (1998); "Automatic Generation of Warehouse
Mediators Using an Ontology Engine"; Proceedings of the 5th Workshop on Knowledge
Representation meets Databases, 8.1-8.8; Seattle (WA), USA.

Crubézy, M. and Musen, M. A. (2003); "Ontologies in Support of Problem Solving" Handbook on
Ontologies; 321-341; Springer-Verlag.

Crubézy, M.; Pincus, Z. and Musen, M. A. (2003); "Mediating Knowledge between Application
Components"; Proceedings of the Workshop on Semantic Integration of the International
Semantic Web Conference; Sanibel Island (FL), USA.

Date, C. J. (2003); "Introduction to Database Systems"; Addison-Wesley.

Decker, S.; Erdmann, M.; Fensel, D. and Studer, R. (1999); "Ontobroker: Ontology Based Access
to Distributed and Semi-Structured Information"; Proceedings of the 8th Working Conference on
Database Semantics, 351-369; Rotorua, New Zealand.

Ding, Y.; Fensel, D.; Klein, M. and Omelayenko, B. (2002); "The semantic web: yet another hip?";
Data and Knowledge Engineering; 41(2-3) 205-227; Elsevier Science.

Ding, Y.; Fensel, D.; Klein, M.; Omelayenko, B. and Schulten, E. (2003); "The role of ontologies in
eCommerce" Handbook on Ontologies; Springer.

Dionísio, N.; Marshall, I. and Safar, E. (2001); "Using Hyponym Branching Similarity Measures
Comparable to Statistical Alternatives for Word Sense Disambiguation"; Proceedings of the Recent
Advances in Natural Language Processing; Tzigov Chark, Bulgaria.

Multi-Dimensional Service-Oriented Ontology Mapping

273

Doan, A.; Domingos, P. and Halevy, A. (2001); "Reconciling Schemas of Disparate Data Sources:
A Machine-Learning Approach"; Proceedings of the ACM SIGMOD International Conference on
Management of Data, 509-520; Santa Barbara (CA), USA.

Doan, A.; Madhavan, J.; Domingos, P. and Halevy, A. (2002); "Learning to map ontologies on the
Semantic Web"; Proceedings of the World-Wide Web Conference; Honolulu, Hawaii, USA.

Dou, D.; McDermott, D. and Qi, P. (2003); "Ontology translation on the semantic web";
Proceedings of the International Conference on Ontologies, Databases and Applications of
Semantics, 952-969; Catania (Sicily), Italy.

Dou, D.; McDermott, D. and Qi, P. (2002); "Ontology translation by ontology merging and
automated reasoning"; Proceedings of the EKAW Workshop on Ontologies for Multi-Agent
Systems, 3-18; Sigüenza, Spain.

Fensel, D. (2001); "Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce"; Springer-Verlag.

Fensel, D.; Benjamins, R.; Motta, E. and Wielinga, B. (1999); "UPML: A Framework for
Knowledge system reuse"; Proceedings of the International Joint Conference on Artificial
Intelligence, 16-23; Stockholm, Sweden.

Fensel, D.; Horrocks, I.; van Harmelen, F.; Decker, S. and Klein, M. (2000); "OIL in a nutshell";
Proceedings of the 12th European Workshop on Knowledge Acquisition, Modeling, and
Management (EKAW'2000), 1-16.

Fensel, D.; van Harmelen, F.; Ding, Y.; Klein, M.; Akkermans, H.; Broekstra, J.; Kampman, A.; van
der Meer, J.; Sure, Y.; Studer, R.; Krohn, U.; Davies, J.; Engels, R.; Iosif, V.; Kiryakov, A.; Lau, T.;
Reimer, U. and Horrocks, I. (2003); "On-To-Knowledge: Semantic Web Enabled Knowledge
Management".

Fodor, O.; Dell'Erba, M.; Ricci, F.; Spada, A. and Werthner, H. (2002); "Conceptual Normalisation
of XML Data for Interoperability in Tourism"; Proceedings of the Workshop on Knowledge
Transformation for the Semantic Web (KTSW 2002) at ECAI'2002, 69-76.

Fox, M. and Gruninger, M. (1997); "On Ontologies and Enterprise Modelling"; Proceedings of the
International Conference on Enterprise Integration Modelling Technology; Torino, Italy.

Gedcom; "Gedcom ontology"; http://www.daml.org/2001/01/gedcom/gedcom.daml.

Gennari, J. H.; Tu, S. W.; Rothenfluh, T. E. and Musen, M. A. (1994); "Mapping Domains to
Methods in Support of Reuse"; International Journal of Human-Computer Studies;(41) 399-424;
Academic Press.

Gentology; "Gentology ontology";
http://orlando.drc.com/daml/Ontology/Genealogy/3.1/Gentology-ont.daml.

Global Exchange Services (2003); "Web Services White Paper"; Global eXchange Services.

Goh, C. H. (1997); "Representing and Reasoning about Semantic Conflicts in Heterogeneous
Information Sources"; PhD dissertation; MIT.

Gruber, T. R. (1993b); "Towards Principles for the Design of Ontologies Used for Knowledge
Sharing"; Proceedings of the Formal Ontology in Conceptual Analysis and Knowledge
Representation, 907-928; Deventer, Netherlands.

Gruber, T. R. (1993a); "A translation approach to portable ontology specifications"; Journal of
Knowledge Acquisition; 5(2) 199-220; Academic Press.

Gruninger, M. and Fox, M. (1995); "Methodology for the Design and Evaluation of Ontologies";
Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing in IJCAI-95;
Montreal, Canada.

Guarino, N. (1994); "The Ontological Level" Philosophy and the Cognitive Science; 443-456;
Hölder-Pichler-Tempsky.

Bibliography

274

Guarino, N. (1997a); "Semantic Matching: Formal Ontological Distinctions for Information
Organization, Extraction, and Integration"; Proceedings of the International Summer School, 139-
170; Frascati, Italy.

Guarino, N. (1997b); "Understanding, Building and Using Ontologies: A Commentary to Using
Explicit Ontologies in KBS Development by van Heijst, Schreiber, and Wielinga"; International
Journal of Human-Computer Studies; 46(2/3) 293-310; Elsevier.

Guarino, N. and Giaretta, P. (1995); "Ontologies and Knowledge Bases: Towards a Terminological
Clarification" Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing;
25-32; IOS Press.

Guarino, N. and Welty, C. (2000); "Towards a methodology for ontology-based model
engineering"; Proceedings of the Workshop on Model Engineering at ECOOP-2000, 1-6; Cannes,
France.

Hagel, J. (2002); "The strategic value of Web services"; McKinsey.

Halevy, A. (2001); "Answering queries using views: a survey"; The VLDB Journal The International
Journal on Very Large Data Bases; 10(4) 270-294; Springer-Verlag.

Hammer, J. and Medjahed, B. (1993); "An Approach to Resolving Semantic Heterogeneity in a
Federation of Autonomous, Heterogeneous Database Systems"; Journal for Intelligent and
Cooperative Information Systems; 2(1) 51-83; World Scientific.

Handschuh, S.; Staab, S. and Ciravegna, F. (2002); "S-CREAM - Semi-automatic CREAtion of
Metadata"; Proceedings of the 13th International Conference on Knowledge Engineering and
Knowledge Management, 358-372; Siguenza, Spain.

Harmo-TEN; "Harmo-TEN"; http://www.harmo-ten.info.

Harmonise; "IMHO - Interoperable Minimum Harmonization Ontology";
http://www.harmonise.org.

Hefflin, J.; Hendler, J. and Luke, S. (2001); "SHOE: A Prototype Language for the Semantic Web";
Linkoping Electronic Articles in Computer and Information Science; 6(3); Linkoping.

Horrocks, I. (1998); "The FaCT System"; Proceedings of the Automated Reasoning with Analytic
Tableaux and Related Methods (Tableaux'98), 307-312; Oisterwijk, Netherlands.

Janowicz, K. and Riedman, C. (2004); "Bridge-IT Technology Watch Report 4"; D7.2.4; BRIDGE-
IT (IST-2001-34386).

Kahn, L. R. and Hovy, E. H. (1997); "Improving the Precision of Lexicon-to-ontology Alignment
Algorithms"; Proceedings of the AMTA/SIG-IL First Workshop on Interlinguas; San Diego (CA),
USA.

Kalfoglou, Y. and Schorlemmer, M. (2003); "Ontology mapping: the state of the art"; The
Knowledge Engineering Review; 18(1) 1-31; Cambridge University Press.

Kang, J. and Naughton, J. F. (2003); "On schema matching with opaque column names and data
values"; Proceedings of the ACM SIGMOD International Conference on Management of Data,
205-216; San Diego (CA), USA.

KAON; "KAON - Karlsruhe Ontology and Semantic Web Workbench";
http://kaon.semanticweb.net.

Karvounarakis, G.; Alexaki, S.; Christophides, V.; Plexousakis, D. and Scholl, M. (2002); "RQL: A
Declarative Query Language for RDF"; Proceedings of the Eleventh International World Wide
Web Conference, 592-603; Honolulu (HA), USA.

Klein, M.; Kiryakov, A.; Ognyanov, D. and Fensel, D. (2002); "Ontology Versioning and Change
Detection on the Web"; Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management (EKAW02), 197-212; Heidelberg.

Multi-Dimensional Service-Oriented Ontology Mapping

275

Klusch, M. (2001); "Information Agent Technology for the Internet: A Survey"; Data &
Knowledge Engineering; 36(Special Issue on Intelligent Information Integration) 337-372; Elsevier
Science.

Laleci, A.; Kirbas, G.; Kabak, Y.; Sinir, S. and Yildiz A. (2004); "Artemis: Deploying Semantically
Enriched Web Services in the Healthcare Domain"; Submitted to Elsevier Science; Elsevier.

Madhavan, J.; Bernstein, P. A.; Domingos, P. and Halevy, A. (2002); "Representing and Reasoning
about Mappings between Domain Models"; Proceedings of the Eighteenth National Conference on
Artificial Intelligence, 80-86; Edmonton, Canada.

Madhavan, J.; Bernstein, P. A. and Rahm, E. (2001); "Generic Schema Matching with Cupid";
Proceedings of the 27th Very Large Database Conference, 49-58; Rome, Italy.

Maedche, A.; Motik, B.; Silva, N. and Volz, R. (2002a); "MAFRA - A MApping FRAmework for
Distributed Ontologies"; Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management, 235-250; Sigüenza, Spain.

Maedche, A.; Motik, B.; Silva, N. and Volz, R. (2002b); "MAFRA - A MApping FRAmework for
Distributed Ontologies in the Semantic Web"; Proceedings of the Workshop on Knowledge
Transformation for the Semantic Web at ECAI'2002, 60-68; Lyon, France.

Maedche, A.; Motik, B.; Stojanovic, L.; Studer, R. and Volz, R. (2003); "An Infrastructure for
Searching, Reusing and Evolving Distributed Ontologies"; Proceedings of the Proceedings of the
WWW 2003, 439-448; Budapest, Hungary.

MAFRA Toolkit; "MAFRA Toolkit"; http://mafra-toolkit.sourceforge.net.

MEK; "MEK ontology"; http://www.mek.fi.

Miller, G. A.; Beckwith, R.; Fellbaum, C.; Gross, D. and Miller, K. J. (1990); "Introduction to
WordNet: An on-line lexical database"; Journal of Lexicography; 3(4) 235-244; Oxford University
Press.

Miller, R. J.; Haas, L. M. and Hernández, M. A. (2000); "Clio: Schema Mapping as Query
Discovery"; Proceedings of the 26th Very Large Database Conference, 77-88; Cairo, Egypt.

Milo, T. and Zohar, S. (1998); "Using Schema Matching to Simplify Heterogeneous Data
Translation"; Proceedings of the 24th International Conference Very Large Data Bases, 122-133;
New York (NY), USA.

Mitra, P. and Wiederhold, G. (2001); "An Algebra for Semantic Interoperability of Information
Sources"; Proceedings of the 2nd. IEEE Symposium on BioInformatics and Bioengineering, 174-
182; Bethesda (MD), USA.

Mitra, P.; Wiederhold, G. and Jannink, J. (1999); "Semi-automatic Integration of Knowledge
Sources"; Proceedings of the 2nd International Conference on Information Fusion.

Motik, B.; Maedche, A. and Volz, R. (2003); "A Conceptual Modeling Approach for building
semantics-driven enterprise applications"; Proceedings of the First International Conference on
Ontologies, Databases and Application of Semantics, 1082-1099; Irvine (CA), USA.

Neches, R.; Fikes, R.; Finin, T.; Gruber, T. R.; Patil, R.; Senator, T. and Swartout, W. (1991);
"Enabling technology for knowledge sharing"; AI Magazine; 12(3) 36-56; American Association for
Artificial Intelligence.

Nonaka, I. and Takeuchi, H. (1995); "The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation"; Oxford University Press.

Noy, N. F.; Fergerson, R. W. and Musen, M. A. (2000); "The knowledge model of Protege-2000:
Combining interoperability and flexibility"; Proceedings of the 12th International Conference on
Knowledge Engineering and Knowledge Management, 17-32; Juan-les-Pins, France.

Bibliography

276

Noy, N. F. and Musen, M. A. (2000); "PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment"; Proceedings of the 17th National Conference on Artificial Intelligence,
450-455.

Noy, N. F. and Musen, M. A. (2001); "Anchor-PROMPT: Using Non-Local Context for Semantic
Matching"; Proceedings of the Workshop on Ontologies and Information Sharing at IJCAI '01, 63-
70; Seattle (WA), USA.

Omelayenko, B. (2002b); "RDFT: A Mapping Meta-Ontology for Business Integration";
Proceedings of the Workshop on Knowledge Transformation for the Semantic Web at ECAI'2002,
76-83; Lyon, France.

Omelayenko, B. (2002a); "Integrating Vocabularies: Discovering and Representing Vocabulary
Maps"; Proceedings of the First International Semantic Web Conference, 206-220; Sardinia, Italy.

Omelayenko, B. and Fensel, D. (2001); "A Two-Layered Integration Approach for Product
Information in B2B E-commerce"; Proceedings of the Second International Conference on
Electronic Commerce and Web Technologies, 226-239; Munich, Germany.

Ontobroker; "Ontobroker"; http://www.ontoprise.de/products/ontobroker_en.

OntoMapper; "ONTOMAPPER - Ontology Automatic Mapping";
http://www.gecad.isep.ipp.pt/GECAD_EN/projectos/ontomapper.htm.

Pan, J. and Horrocks, I. (2003); "RDFS(FA) and RDF MT: Two Semantics for RDFS"; Proceedings
of the Second International Semantic Web Conference, 30-46; Sanibel Island (FL), USA.

Park, J. Y.; Gennari, J. H. and Musen, M. A. (1998); "Mappings for Reuse in Knowledge-based
Systems"; Proceedings of the 11th Workshop on Knowledge Acquisition, Modeling and
Management; Banff, Canada.

Pinto, H. S.; Gómez-Pérez, A. and Martins, J. P. (1999); "Some issues on ontology integration";
Proceedings of the Workshop on Ontology and Problem-Solving Methods: Lesson learned and
Future Trends at IJCAI'9., 7.1-7.11; Amsterdam, Netherlands.

Planserve (2003); "PLANSERVE: Enabling Technologies for Intelligent Planning Services";
submitted to Sixth Framework Programme as an Integrated Project; waiting for aproaval.

Popa, L.; Velegrakis, Y.; Miller, R. J.; Hernández, M. A. and Fagin, R. (2002); "Translating Web
Data"; Proceedings of the 28th Very Large Data-Base Conference, 598-609.

Rahm, E. and Bernstein, P. A. (2001); "A survey of approaches to automatic schema matching";
The VLDB Journal; 10(4) 334-350; Springer-Verlag.

Resnik, P. (1999); "Semantic Similarity in a Taxonomy: An Information-Based Measure and its
Application to Problems of Ambiguity in Natural Language"; Journal of Artificial Intelligence
Research; 11 95-130; AI Access Foundation/Morgan Kaufman.

Russel, S. and Norvig, P. (1995); "Artificial Intelligence: A Modern Approach"; Prentice-Hall, Inc.

SANSKI; "SANSKI - Semi-automatic Negotiation Service for Knowledge Interoperability";
http://www.gecad.isep.ipp.pt/GECAD_EN/projectos/sanski.htm.

Santos, J. and Staab, S. (2003); "FONTE: Factorizing ontology engineering complexity";
Proceedings of the International Conference On Knowledge Capture , 146-153; Sanibel Island
(FL), USA.

Sarini, M. and Simone, C. (2002); "The Reconciler: supporting actors in meaning negotiation";
Proceedings of the Workshop on Meaning Negotiation (MeaN-02) at AAAI-02; Edmonton
(Alberta), Canada.

Satine; "Satine: Semantic-based Interoperability Infrastructure for Integrating Web Service
Platforms to Peer-to-Peer Networks"; http://www.srdc.metu.edu.tr/webpage/projects/satine.

SBO; "Semantic Bridge Ontology"; http://cvs.sourceforge.net/viewcvs.py/mafra-
toolkit/src/pt/ipp/isep/gecad/mafra/sbo/model/res/bridges.rdfs.

Multi-Dimensional Service-Oriented Ontology Mapping

277

Sheth, S. A. and Larson, J. A. (1990); "Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases"; ACM Computing Surveys; 22(3) 183-236; ACM
Press.

SIGRT; "Sistema de Informação de Gestão de Recursos Turísticos (SIGRT)";
http://www.dgturismo.pt/irt.

Silva, N. (2002b); "Interoperabilidade baseada em conhecimento"; SANSKI-PR-2002-02; GECAD-
ISEP-IPP.

Silva, N. (2002a); "Descrição das evoluções tecnológicas na partilha de conhecimento, e os desafios
colocados na sua introdução"; SANSKI-PR-2002-01; GECAD-ISEP-IPP.

Silva, N. (1998); "Sistemas Holónicos de Produção - Especificação e Desenvolvimento"; Master
dissertation; Faculty of Engineering, University of Porto; Porto, Portugal.

Silva, N. (2003); "Analysis and definition of technological support for ontology mapping";
SANSKI-PR-2003-01; GECAD-ISEP-IPP.

Silva, N. and Ramos, C. (1999); "Holonic Dynamic Scheduling Architecture And Services";
Proceedings of the International Conference on Enterprise Information Systems; Setúbal, Portugal.

Silva, N. and Rocha, J. (2004a); "Multi-Dimensional Service-Oriented Ontology Mapping";
International Journal of Web Engineering and Technology;(accepted for publication); Inderscience
Publishers.

Silva, N. and Rocha, J. (2002); "Merging Ontologies using a Bottom-up Lexical and Structural
Approach" Challenges in Knowledge Representation and Organization for the 21st Century.
Integration of Knowledge across Boundaries. Seventh International ISKO Conference; Ergon
Verlag.

Silva, N. and Rocha, J. (2003a); "MAFRA – An Ontology MApping FRAmework for the Semantic
Web"; Proceedings of the 6th International Conference on Business Information Systems;
Colorado Springs (CO), USA.

Silva, N. and Rocha, J. (2003b); "MAFRA – Semantic Web Ontology MApping FRAmework";
Proceedings of the Seventh Multi-Conference on Systemics, Cybernetics and Informatics; Orlando
(FL), USA.

Silva, N. and Rocha, J. (2003c); "Ontology Mapping for Interoperability in Semantic"; Proceedings
of the International Conference WWW/Internet 2003; Algarve, Portugal.

Silva, N. and Rocha, J. (2003d); "Semantic Web Complex Ontology Mapping"; Proceedings of the
Web Intelligence 2003, 82-88; Halifax, Canada.

Silva, N. and Rocha, J. (2003e); "Service-Oriented Ontology Mapping System"; Proceedings of the
Workshop on Semantic Integration of the International Semantic Web Conference; Sanibel Island
(FL), USA.

Silva, N. and Rocha, J. (2004b); "Semantic Web Complex Ontology Mapping"; Web Intelligence
and Agent Systems Journal; 1(3-4) 235-248; IOS Press.

Silva, N.; Rocha, J. and Cardoso, J. (2003); "E-Business Interoperability through Ontology Semantic
Mapping" Processes and Foundations for Virtual Organizations, IFIP TC5/WG5.5 Fourth
Working Conference on Virtual Enterprises; 315-322; Kluwer.

Silva, N.; Santos, J. and Rocha, J. (2004); "Proposal for the combination of ontology assemble and
ontology mapping processes"; Proceedings of the International Conference on Knowledge
Engineering and Decision Support; Porto, Portugal.

Sinir, S.; Yildiz A.; Kirbas, G. and Gurcan Y. (2004); "Semantically Enriched Web Services for
Travel Industry"; Submitted to SIGMOD Record; ACM.

Sintek, M. and Decker, S. (2002); "TRIPLE - A Query, Inference, and Transformation Language
for the Semantic Web" International Semantic Web Conference (ISWC-2002); 364-378; Springer.

Bibliography

278

Sowa, J. F. (1999); "Knowledge Representation: Logical, Philosophical, and Computational
Foundations"; Brooks Cole Publishing Co.

Stojanovic, L.; Maedche, A.; Motik, B. and Stojanovic, N. (2002a); "User-driven Ontology
Evolution Management"; Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management, 197-212; Heidelberg.

Stojanovic, N.; Stojanovic, L. and Volz, R. (2002b); "A reverse engineering approach for migrating
data-intensive web sites to the Semantic Web"; Proceedings of the Intelligent Information
Processing, World Computer Congress 2002; Montreal, Canada.

Stuckenschmidt, H. and Klein, M. (2004); "Towards Automatic Partitioning of Class Hierarchies";
Proceedings of the International Conference on Knowledge Engineering and Decision Support,
287-294; Porto, Portugal.

Stuckenschmidt, H. and Visser, U. (2000); "Semantic Translation Based on Approximate Re-
Classification"; Proceedings of the Workshop Semantic Approximation, Granularity and Vagueness
at KR 2000; Breckenridge (CO), USA.

Stuckenschmidt, H. and Wache, H. (2000); "Context Modeling and Transformation for Semantic
Interoperability"; Proceedings of the International Workshop Knowledge Representation meets
Databases at ECAI'2000, 115-126; Berlin, Germany.

Stuckenschmidt, H.; Wache, H.; Voegele, T. and Visser, U. (2000); "Enabling technologies for
interoperability"; Proceedings of the Workshop on 14th International Symposium of Computer
Science for Environmental Protection, 35-46; Bonn, Germany.

Studer, R.; Benjamins, R. and Fensel, D. (1998); "Knowledge Engineering: Principles and
Methods"; Data & Knowledge Engineering; 25(1-2) 161-197; Elsevier.

Stumme, G. and Maedche, A. (2001); "Ontology Merging for Federated Ontologies on the
Semantic Web"; Proceedings of the IJCAI'01 Workshop on Ontologies and Information Sharing,
91-99; Seattle (WA), USA.

Sure, Y.; Erdmann, M.; Angele, J.; Staab, S.; Studer, R. and Wenke, D. (2002); "OntoEdit:
Collaborative Ontology Development for the Semantic Web"; Proceedings of the First
International Semantic Web Conference, 221-235; Sardinia, Italia.

Sycara, K.; Lu, J. and Klusch, M. (1998); "Interoperability among Heterogeneous Software Agents
on the Internet"; CMU-RI-TR-98-22; Carnegie Mellon University.

TIS; "tiscover"; http://www.tiscover.com.

TourinFrance; "TourinFrance"; http://www.tourisme.gouv.fr.

UML; "Unified Modeling Language"; http://www.uml.org.

Uschold, M. and Jasper, R. (1999); "A Framework for Understanding and Classifying Ontology
Applications"; Proceedings of the Workshop on Ontologies and Problem-Solving Methods at
IJCAI99; Stockholm, Sweden.

Uschold, M.; King, M.; Moralee, S. and Zorgios, Y. (1998); "The Enterprise Ontology"; The
Knowledge Engineering Review, Special Issue on Putting Ontologies to Use; 13(1) 31-89;
Cambridge University Press.

van Elst, L. and Abecker, A. (2002); "Negotiating Domain Ontologies in Distributed
Organizational Memories"; Proceedings of the AAAI-02 Workshop on Meaning Negotiation
(MeaN-02) held in conjunction with Eighteenth National Conference on Artificial Intelligence, 32-
35.

Visser, P. R. S.; Jones, D. M.; Bench-Capon, T. J. M. and Shave, M. J. R. (1997); "An Analysis of
Ontological Mismatches: Heterogeneity versus Interoperability"; Proceedings of the AAAI Spring
Symposium on Ontological Engineering; Stanford (CA), USA.

Multi-Dimensional Service-Oriented Ontology Mapping

279

Wache, H.; Voegele, T.; Visser, U.; Stuckenschmidt, H.; Schuster, G.; Neumann, H. and Huebner,
S. (2001); "Ontology-based integration of information - a survey of existing approaches.";
Proceedings of the Workshop on Ontologies and Information Sharing of the International Joint
Conference on Artificial Intelligence, 108-117; Seattle (WA), USA.

Webster; "Merriam-Webster Online Dictionary"; http://www.webster.com.

Wiederhold, G. and Genesereth, M. R. (1995); "The Basis for Mediation"; Proceedings of the Third
International Conference on Cooperative Information Systems (CoopIS-95), 140-157; Vienna,
Austria.

Wiig, K. M. (2000); "The Intelligent Enterprise and Knowledge Management" UNESCO's
Encyclopedia of Life Support Systems.

WoW; "WhatsOnWhen"; http://www.whatsonwhen.com.

Xiao, H.; Cruz, I. and Hsu, F. (2004); "Semantic Mappings for the Integration of XML and RDF
Sources"; Proceedings of the Workshop on Information Integration on the Web; Toronto, Canada.

XQuery; "XQuery 1.0: An XML Query Language"; http://www.w3.org/TR/xquery.

XSLT; "XSL Transformations"; http://www.w3.org/TR/xslt.

