Distributed Systems
Development

Paulo Gandra de Sousa, PhD
psousa@dei.isep.ipp.pt

§> DEI/ISEP

MSc in Computer Engineering

mailto:psousa@dei.isep.ipp.pt

%\\ Programacao de

Sistemas
Distribuidos

Paulo Gandra de Sousa
psousa@dei.isep.ipp-pt

Mestrado em Engenharia Informatica
DEI/ISEP

mailto:psousa@dei.isep.ipp.pt

Disclaimer

e Parts of this presentation are from:
e Tannembaum
e Coulouris
e Doug Terry (CS 294)
e Miguel Losa (ARQSI)

!

2
ISEP/IPP

Today’s lesson

e Communication
e APIs
e \Web services

!

3
ISEP/IPP

COMMUNICATION

PPPPPPPP

Communication APIls

e Sockets
e MPI
o RPC

e Remote objects
e CORBA, DCOM
e Java RMI, .net remoting

e SOAP and Web services

!

5
ISEP/IPP

Web
Objects j services

An Example Client and
Server (1)

/* Definitions needed by clients and servers. b
#define TRUE 1
#define MAX_PATH 255 /* maximum length of file name

#define BUF _SIZE
#define FILE_SERVER 243

1024 /* how much data to transfer at once

/* file server's network address

/* Definitions of the allowed operations */

#define CREATE - 1
#define READ 2
#define WRITE 3
#define DELETE 4

/* Error codes. */

#define OK 0
#define E_BAD_OPCODE -1
#define E_BAD_PARAM -2
#define E_I1O -3

/* Definition of the message format.

struct message {
long source;
long dest;
long opcode;
long count;
long offset;
long result;
char name[MAX_PATH];
char data[BUF _SIZE];

>

/* create a new file

/* read data from a file and return it

/* write data to a file
/* delete an existing file

/* operation performed correctly
/* unknown operation requested
/* error in a parameter

/* disk error or other I/O error

*/

/* sender’s identity

/* receiver’s identity

/* requested operation

/* number of bytes to transfer

/* position in file to start /O

/* result of the operation

/* name of file being operated on
/* data to be read or written

9
K
g

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

Header file

used both by

server and
client

\

J

An Example Client and
Server (2)

#include <header.h>
void main(void) {
struct message mi, mz;

/* incoming and outgoing messages

intr; /* result code
while(TRUE) { /* server runs forever
receive(FILE_SERVER, &mi); /* block waiting for a message
switch(ml.opcode) { /* dispatch on type of request
case CREATE: r=do_create(&ml, &m2); break;
case READ: r = do_read(&ml, &m2); break;
case WRITE: r = do_write(&ml, &m2); break;
case DELETE: r = do_delete(&mi, &m2); break;
default: r= E_BAD_OPCODE;
}
m2.result =r; /* return result to client

}

send(ml.source, &m2);

/* send reply

A sample server

*/
g |
i |

*/
i |

*/
g

An Example Client and
Server (3)

#include <header.h>)
int copy(ciiar *src, char *dst){ /* procedure to copy file using the server */

struct message mi; [message buffer */

long position; /* current file position */

long client = 110; /* client’s address */

initialize(); /* prepare for execution */

position = 0;

do {
ml.opcode = READ; /* operation is a read */
ml.offset = position; /* current position in the file */
ml.count = BUF_SIZE; /* how many bytes to read”/
strcpy(&ml.name, src); I* copy name-of file to be read to message */
send(FILESERVER, &mi); /* send the message to the file server */
receive(client, &ml); /* block waiting for the reply */
/* Write the data just received to the destination file. */ (A client
ml.opcode = WRITE; /* operation is a write */ i
ml.offset = position; /* current position in the file “ using the
ml.count = ml.result; /* how many bytes to write */
strcpy(&ml.name, dst); /* copy name of file to be written to buf ¥ | server to
send(FILE_SERVER, &ml); /* send the message to the file server ;i copy a file.
receive(client, &ml); /* block waiting for the reply */
position += ml.result; /* ml.result is number of bytes written ¥

} while(ml.result > 0); " iterate until done " J

return(ml.result >= 0 ? OK : ml result); /* return OK or error code */

sockets

e Originally in BSD unix (1983)

e Adopted as de facto standard for TCP/IP
communications

e Windows
e Several unix OS

§> e IBM OS/400

10
ISEP/IPP

Sockets and ports

agreed port C

socket D/ any port \| socket
@ t message 8

client |2\ /E' server
), |

nternet address = 138.37.94.248 Internet address = 138.37.88.249

other ports

Berkeley Sockets (1)

e Socket primitives for TCP/IP.

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
ccept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection

Berkeley Sockets (2)

e Connection-oriented communication pattern using

sockets.

Server //—\’)
socket F 9 bind ¥ listen @—Kﬁ rjad —»_wiite ~— | close |
Synchronization point —Pi :’ Communication 1”1

Y ; A
socket connectH-M™ write ——™ read - close

Client L—/_/)

Bit stream oriented

e Ssize t send(int socket, const void *buffer,
size t length, int flags);

e Ssize trecv(int socket, void *buffer, size t
length, int flags);

Must care for
e Buffer handling (overflow, memory allocation, ...)

e Internal representation of data when connecting
two different hardware nodes

14
ISEP/IPP

The Message-Passing
Interface (MPI)

e Some of the most intuitive message-passing primitives of MPI.

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
“ﬁﬁl_sendrecv Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI issend SP:\asrstsreference to outgoing message, and wait until receipt
MPI_recv Receive a message; block if there are none
MPI_irecv Check if there is an incoming message, but do not block

RPC

Client Server

| §

result = proc(args) — e—————- recerve call

bl&k result execute
resume e send reply

|)

17
ISEP/IPP

Client and Server Stubs

e Principle of RPC between a client and server
program.

Wait for result

7

Client

®

Call remote Return
procedure from call
Request Reply

Call local procedure Time ——»
and return results

Steps of a Remote
Procedure Call

C

C
C

lent procedure calls client stub in normal

way

lent stub builds message, calls local OS
lent's OS sends message to remote OS

Remote OS gives message to server stub
Server stub unpacks parameters, calls server
Server does work, returns result to the stub

gesrver stub packs it in message, calls local

Server's OS sends message to client's OS
Client's OS gives message to client stub
Stub unpacks result, returns to client

Writing a Client and a
Server

e The steps Iin writing a client and a server in DCE

Uuidgen |

Interface
definition file

IDL compiler

Client code Client stub Header Server stub Server code
#Hinclude #include
Client Client stub Server stub Server
object file object file object file object file
\ 4 . . Y
- Runtime Runtime T
Linker library library L|nuer

) 4

A4
Client Server
binary binary

Distributed objects

e Component based / Object Oriented on
the network

e Handles object activation and access
transparently

e Mascarades error handling
§> e Hides latency issues

22
ISEP/IPP

Distributed Objects

e Common organization of a remote object with client-side

proxy.
Client machine Server machine
Object
Client Server A7
E{ State
‘ Same
Client interface D D D< Method
invokes »l P as object
a method |
?p/ seeor e T e
Proxy same method ‘ Skeleton
at object A
Client OS Server OS
e J
Network \

Marshalled invocation

is passed across network

A remote object and its
remote interface

remoteobject

Data
remote

interface

ml
{ m?2
m3

implementatiop___ m4

of methods [m6

Instructor’s Guide for Coulouris, Dollimore
and Kindberg Distributed Systems:
Concepts and Design Edn. 4
© Pear<con Fdiuication 2005

Remote and local method
invocations

remote
e invocation invocation
invocation invocation =
A local
invocation \UJ R

Instructor’s Guide for Coulouris,
Dollimore and Kindberg Distributed
Systems: Concepts and Design Edn. 4
© Pear<on Fducation 2005

=Y/

Instantiation of remote
objects

L
/$6«\
: LN
Instantiate instantiate

» N
NG

B m

_ remote'
Invocation

_ remote_
Invocation

Instructor’s Guide for Coulouris, Dollimore
and Kindberg Distributed Systems:
Concepts and Design Edn. 4
© Pear<on Fdiucation 2005

P

t

Parameter Passing

or by value.
Machine A
Local object
Local 0O
reference L1 “\4
. .
\ -
Client code with
RMI to server at C
(proxy)
Remote
invocation with
L1 and R1 as
parameters

New local
reference

Remote
reference R1

Machine B

e The situation when passing an object by reference

|

02

Remote objectJ

[Copy of O1 J ,:'f

\r‘

ﬁo

Machine C

Copy of R1 1o O2

Server code

(method implementation)

Distributed objects

CORBA

e OMG

e Based on the concept of Object Request Broker
DCOM

e Microsoft

e Binary based interface compatibility

Java RMI

e SunJava

e Allows access to remote Java objects

.Net Remoting

e Microsoft

e Allows access to remote .net objects

EJB

e SunJava

e Enterprise components for the Java platform
> e .net enterprise services

e Microsoft

e Enterprise components for the .net platform

30
ISEP/IPP

Web services

e What happened circa 19907

The Internet

internet. What were the problems?

§> e Everybody wanted to make RPC over the
e Firewalls, ...

31
ISEP/IPP

SOAP

e XML-RPC sucessor
e Independet of transport protocol (binding)

e Most common binding: HTTP
e Thru firewalls

Concept of Envelope
e Header + payload

!

32
ISEP/IPP

Web services

e Three key standards:

e Universal Description, Discovery, and
Integration (UDDI)

e \Web Services Description Language (WSDL)

e Simple Object Access Protocol (SOAP)
e RPC based on XML and HTTP
§} e extended by other WS-standards

e Supported by IBM, SUN, Microsoft, ...

33
ISEP/IPP

Web Services

Discovery
Agency

Find

UDDI find =xx

Publish

UbDI save XXX

Web Services

e A Web service is a software system designed to
support interoperable machine-to-machine
Interaction over a network. It has an interface
described in a machine-processable format
(specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its
description using SOAP messages, typically
conveyed using HTTP with an XML serialization
In conjunction with other Web-related
standards.

e http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211

36

Web Services

it | Applcation |

......

Imwentory

AL requast:
“Wihat Js the ok oy orders”

XML response:

‘Imrﬁlgrhamehmﬂ' m?-Frn. rn'du;;” :

Wek server

37

Sample scenario

Web Client
Application

Travel
Service

Credit Card
Service

e Interoperability

e Diferent implementation
technologies/vendors

e Diferent data types

e Aditional funcionalities
e Security

e Reliability
' ° ...

38
ISEP/IPP

WS-*

e WS-Addressing (W3C)

e Allows routing of messages based on header metadata
and not TCP/IP endpoints

WS-Security (OASIS)

e Cyphered messages and headers, signed messages
e WS-Trust

WS-ReliableMessaging (OASIS)

e Message delivery guarantee

e WS-Reliability

WS-Policy (W3C)

e WS-Coordination

e WS-Transaction, WS-AtomicTransaction

39
ISEP/IPP

e Web Services Interoperability
e WWW.WS-I.0rg

e Suported by major vendors

e Uses open standards

Defines profiles for interoprabllity

e Basic
e SOAP, WSDL, UDDI, attachments, WS-Addressing

. e Security
e Reliable secure

40
ISEP/IPP

http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/

Exercise

e Remember the
example DS you
provided in the last
session.

e \What kind of
communication API
(do you think) it
uses?

Would there be

§> advantages in using
another kind?

41
ISEP/IPP

Exercise

e Can you imagine a
scenario with mixed
communication
API1?

e What would be the
advantages opf
such scenario?

e \What kind of
. problems would
rise?

42
ISEP/IPP

Bibliography

Chapter 2 Tanenbaum
Chapter 2 & 4 Coulouris

http://en.wikipedia.org/wiki/Inter-
process communication

http://en.wikipedia.org/wiki/Distributed object

http://en.wikipedia.org/wiki/Web service
http://en.wikipedia.org/wiki/Enterprise service bus

§> e hitp://en.wikipedia.org/wiki/Loose_coupling

43
ISEP/IPP

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Distributed_object
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Loose_coupling

Suggested readings

e hitp://en.wikipedia.org/wi

KIISOAP

e hitp://en.wikipedia.org/wi

KI/Distributed C

omponent Object Mode

e hitp://en.wikipedia.org/wi

KIICORBA

http://en.wikipedia.org/wi

KI/.NET Remotl

ng

e http://en.wikipedia.org/wiki/Java RMI

!

e http://en.wikipedia.org/wiki/ XML-RPC

44
ISEP/IPP

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Distributed_Component_Object_Model
http://en.wikipedia.org/wiki/Distributed_Component_Object_Model
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/.NET_Remoting
http://en.wikipedia.org/wiki/.NET_Remoting
http://en.wikipedia.org/wiki/Java_RMI
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/XML-RPC

