
Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 1

• Berkeley sockets API, C and Java.
• Address families and address storing.
• Basic functions/methods for UDP applications.
• UDP client and server.
• Setting a receive timeout.
• Using broadcast.

RCOMP - Redes de Computadores
(Computer Networks)

2023/2024

Theoretical-practical lesson 08

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 2

Socket types

Even though other types of socket exist, typical network applications use
datagram sockets for UDP and stream sockets for TCP.

In C language a socket is an integer
number, created by calling the
socket function.

In Java language a socket is an object,
created by instantiating the Socket class.

For a datagram (UDP) socket:

int socket(…, SOCK_DGRAM, …);

For a stream (TCP) socket:

int socket(…, SOCK_STREAM, …);

For a datagram (UDP) socket:

DatagramSocket DatagramSocket(…);

For a stream (TCP) socket:

Socket Socket(…);

Socket ServerSocket(…);

When a socket is no longer needed it ought to be closed by calling the close()
function in C and the close() method in Java.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 3

IPv4 or IPv6

Most network applications use UDP or TCP, however the packets of both these
protocols may be transported either by IPv4 or IPv6. Moreover, nowadays,
most network nodes are dual stack, this means they have both IPv4 and IPv6
working in parallel. Therefore, from the network application’s point of view,
there are several alternatives to identify a remote node’s address:

- Use the IPv4 node addresses

- Use the IPv6 node addresses

- Use the DNS node name (resulting in either an IPv4 or IPv6 node address)

In Java, a single socket instance can be used with both IPv4 and IPv6 at the
same time, for instance when a DatagramSocket is bound to a local UDP port
number it will receive UDP datagrams sent to that port whether they arrive
through the IPv4 stack or through the IPv6 stack.

When the same DatagramSocket is used to send packets, the stack used
depends on the destination address, if it’s an IPv4 address, then the IPv4 layer
will be used, if it’s an IPv6 address, then the IPv6 layer is used.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 4

InetAddress.getByName in Java

In Java, the InetAddress class is used to store and handle IP node addresses,
the getByName method parses a string and determines if it’s an IPv4 address,
an IPv6 address or a DNS domain name. In the latter case, the local resolver is
called to resolve the name and get the corresponding IPv4 or IPv6 address.

InetAddress InetAddress.getByName(String name);

A point can be made that, when DNS names are used, there’s no direct control
over whether IPv4 or IPv6 will be applied. This is relevant because, in the
present, DNS node names usually have both an A and an AAAA record,
therefore when a node name is resolved two records are retrieved, an IPv4
address and an IPv6 address.

In some operating systems, it’s possible to configure the local resolver (at the
operating system level) to use preferably either an IPv4 or an IPv6 address,
when both are returned by DNS.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 5

Address families in C

In C language the approach is a little different. Unlike with Java, in C each
socket belongs to an address family, AF_INET for IPv4 or AF_INET6 for IPv6.
Moreover, when a socket is created, the family it belongs to must be specified:

For a datagram socket (UDP) over IPv4:

int socket(AF_INET, SOCK_DGRAM, …);

For a datagram socket (UDP) over IPv6:

int socket(AF_INET6, SOCK_DGRAM, …);

For a stream socket (TCP) over IPv4:

int socket(AF_INET, SOCK_STREAM, …);

For a stream socket (TCP) over IPv6:

int socket(AF_INET6, SOCK_STREAM, …);

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 6

Address families in C

An AF_INET address family socket uses only the IPv4 stack, whereas an
AF_INET6 address family socket is somewhat similar to a socket in Java, it can
use both IPv4 and IPv6 stacks.

Mind however than AF_INET6 address family sockets are not available in a
single stack IPv4 node, in that case, an AF_INET address family socket is the
only available option.

Unlike with Java, where socket addresses are handled through the InetAddress
class that supports both IPv4 and IPv6 addresses, in C, AF_INET6 sockets can
handle IPv6 addresses only, and likewise, AF_INET sockets can handle IPv4
addresses only.

Even though supporting IPv6 addresses only, an AF_INET6 socket is yet able to
handle IPv4 addresses, as well. This is achieved by using IPv4-mapped
addresses.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 7

IPv4-mapped addresses

IPv4-mapped addresses are a convenient way to represent an IPv4 address in
the IPv6 format. This is very useful in dual-stack nodes allowing a network
application using an AF_INET6 socket to send and receive data using IPv4.

An IPv4-mapped IPv6 address is composed by 80 zero bits, followed by 16 one
bits and the remaining 32 bit are the IPv4 address, moreover, the IPv4 address
part may be represented in the usual IPv4 dot-decimal notation.

The IPv4 address A.B.C.D can therefore be represented by the IPv4-mapped
addresses ::ffff:A.B.C.D, for instance 10.8.0.80 is ::ffff:10.8.0.80.

Like with Java sockets, when an AF_INET6 socket is used, data incoming
through either the IPv4 stack or the IPv6 stack will be received, in the first case
the IPv4 source address will appear like IPv4-mapped, in the second case the
source address is going to be a normal IPv6 address.

When sending data through an AF_INET6 socket, it all depends on the
destination address provided. If it's an IPv4-mapped address, then the IPv4
stack is used, otherwise, the IPv6 stack is used.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 8

getaddrinfo() in C

These days most nodes are IPv4/IPv6 dual stack, but maybe in the future, they
will be mostly IPv6 single stack, so there’s no point in developing applications
that work only with IPv4 and not IPv6

In Java the same socket can use both stacks, likewise, methods can handle
both IPv4 addresses and IPv6 addresses (though IPv4-mapped can also be
used).

In C, the getaddrinfo() function can perform a similar task to the one
performed through the getByName method in Java. That is, receiving a string
argument with either an IPv4 address representation, an IPv6 address
representation or a DNS name.

If successful, getaddrinfo() return zero, and gives the caller access to a linked
list of network node address structures that represent the supplied string
argument.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 9

struct addrinfo in C
The getaddrinfo() function uses the struct addrinfo:

struct addrinfo {
int ai_flags; // AI_PASSIVE means local address
int ai_family; // AF_INET or AF_INET6
int ai_socktype; // SOCK_DGRAM or SOCK_STREAM
int ai_protocol; // IPPROTO_UDP or IPPROTO_TCP
socklen_t ai_addrlen; // the address structure size
struct sockaddr *ai_addr; // the address structure
char *ai_canonname; // optional
struct addrinfo *ai_next; // next element on the list or NULL

};

, this structure is used for two purposes by getaddrinfo():

1st – it may be provided by the caller as hints, for instance if we want to be
sure an IPv6 address is obtained, then the provided hints should have
ai_family=AF_INET6.

2nd – a linked list of these structures is provided after successfully calling the
function, the ai_addr will hold a pointer to the list.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 10

getaddrinfo() in C
int getaddrinfo(char *node, char *service, struct addrinfo *hints, struct addrinfo **res);

node – a caller provided string, containing an IPv4 address representation, or an IPv6
address representation or a DNS hostname, may be NULL, this means the local address.

service – a caller provided string, containing a port number text representation or a service
name (/etc/services).

hints – the pointer to a caller pre-initialized structure, with desired features and flags. May
be NULL, meaning any kind of address will do for the caller.

res – the address of a caller provided pointer; on successful completion the function will
have this pointing to the first element of a linked list of addrinfo structures. This list is
allocated in dynamic memory. When the caller doesn’t need the list anymore,
freeaddrinfo() should be called to free the memory space.

The struct sockaddr provided in the ai_addr field, among other data, contains an IPv4 or
IPv6 address and a port number, they will be required later when calling functions that
actually send and receive data.

Any network application must handle with two addresses: the local address, the
socket is bound to, and the remote address, belonging to the remote application
it’s talking with. Both may be obtained by using this function.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 11

Creating and binding a UDP socket

Just creating the UDP socket is not enough to start sending and receiving
data, the socket must be bound to a local address. To achieve that, a data
structure with the local address must be prepared in the first place by using
getaddrinfo().

Some details are relevant depending on the purpose for the socket:

In the case of a server: usually, supporting incoming client requests from
both IPv4 and IPv6 is desired, thus an AF_INET6 socket should be hinted to
getaddrinfo(). Also, clients must know in advance the server’s local port
number, so a fixed port number must be requested.

In the case of a client: the use of IPv4 or IPv6 depends on the address of the
server to be reached. The strategy is using first getaddrinfo() to process the
server’s address, and then a conforming local socket is requested. If the
server address is AF_INET, an AF_INET socket is requested, if the server
address is AF_INET6, then an AF_INET6 socket is requested. Regarding the
local port number, for a client it can be any available local port, binding to
port number zero will automatically assign a free port number.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 12

Example creation of a UDP socket for a server in
C language

int sock;
struct addrinfo req, *list;

bzero((char *)&req, sizeof(req));
req.ai_family = AF_INET6; // will be available to both IPv4 and IPv6
req.ai_socktype = SOCK_DGRAM;
req.ai_flags = AI_PASSIVE; // flag for local addresses
getaddrinfo(NULL, “9999” , &req, &list); // local address, fixed port number
sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
bind(sock,(struct sockaddr *)list->ai_addr, list->ai_addrlen);
freeaddrinfo(list);

As hints (req), an IPv6 (AF_INET6) address for UDP (SOCK_DGRAM) is
requested, the AI_PASSIVE flag means it’s a local address for receiving data.
On calling getaddrinfo, a NULL node is provided, because again, it’s a local
address, the local port number (9999) is fixed. Data provided by getaddrinfo
(the first element on the list) is then used to create the appropriate socket
and bind it to the defined local address (including port number).

All these functions (getaddrinfo, socket, bind) can return an error, on a real
application that must be checked on every call.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 13

Creating a UDP socket for a client

To be able to reach the server application, the client application needs to
know a couple of things, more precisely:

- the node address of the host where the server application is running,
this may be an IPv4 address, an IPv6 address or a DNS host name that will
ultimately be resolved to one of the first two. Usually, this information is
manually provided by the end user (e.g., at the command line when
calling the client application).

- the local port number the server application is receiving at, it’s the local
port the server application has bound its socket to. The port number is
part of the application protocol specification, for each application
protocol there’s a pre-settled port number for the server, thus it is usually
hard coded both on the client and server applications. As an example, for
the HTTP application protocol, the port number 80 should be used by the
server.

In relation to the server’s node address, the best strategy for the client is
using the appropriate socket address family depending on the server
address being an IPv4 or an IPv6 address.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 14

Example creation of a UDP socket for a client in
C language

int sock;
struct addrinfo req, *localList, *serverList;
char *host=“host.dei.isep.ipp.pt”;

bzero((char *)&req, sizeof(req));
req.ai_family = AF_UNSPEC; // may be IPv4 or IPv6
req.ai_socktype = SOCK_DGRAM;
getaddrinfo(host, “9999” , &req, &serverList); // the server node and port

bzero((char *)&req, sizeof(req));
req.ai_family = serverList->ai_family; // we want the same family
req.ai_socktype = SOCK_DGRAM;
req.ai_flags = AI_PASSIVE; // flag for local address
getaddrinfo(NULL, “0” , &req, &localList); // port 0 = auto assign on bind

sock=socket(localList->ai_family, localList->ai_socktype, localList->ai_protocol);
bind(sock,(struct sockaddr *)localList->ai_addr, localList->ai_addrlen);

First, the server address (host.dei.isep.ipp.pt) is analysed and resolved by
getaddrinfo(), this function will set the corresponding address family, next,
when requesting the local address, the very same family is requested.

Again, these functions (getaddrinfo, socket, bind) can return an error, in a real
application that must be checked.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 15

Sending a UDP datagram in C language

int sendto(int sock, void *buff, int len, int flg, struct sockaddr *dest, uint addrlen);

sock – the socket to use, previously opened and bound to a local address.

buff – a pointer to the data to be carried by the datagram (payload).

len – the number of bytes (in buff) to be sent.

flg – a set of flags, if not required, the zero value should be supplied.

dest – a pointer to a structure holding the destination address (previously created, for
instance, by calling the getaddrinfo() function).

addrlen – the size in bytes of the structure holding the destination address.

All arguments must be initialized by the caller. This function returns the number of bytes
sent, or -1 in case of error.

We must remember UDP is unreliable, the absence of error doesn’t
mean data was actually received by anyone, just that it was sent.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 16

Receiving a UDP datagram in C language

int recvfrom(int sock, void *buff, int len, int flg, struct sockaddr *src, uint *addrlen);

sock – the socket to use, previously opened and bound to a local address.

buff – a pointer to a buffer, where to place the data carried by the datagram to be received.

len – the buffer size, if the datagram is larger data will be truncated.

flg – a set of flags, if not required, the zero value should be supplied.

src – a pointer to a structure where to place the source address of the received datagram,
this doesn’t need to be initialized by the caller. If NULL, the source address won’t be stored.
If unsure about the structure required to store the source address, a struct sockaddr_store
type can be used and the corresponding size in addrlen. The only relevant field in struct
sockaddr_store is ss_family, however in can store any type of address.

addrlen – a pointer to an unsigned integer, initialized by the caller with the size in bytes of
the structure to place the source address. The value may be changed by the function
conforming the real address structure length.

All arguments, except buff and src, must be initialized by the caller. This function returns
the number of bytes received and actually placed in buff, or -1 in case of error.

This is a blocking function, if when called, no datagram has yet been received it
will stop the process/thread until one arrives.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 17

UDP datagrams in Java language

In Java there’s a specific object class to store UDP datagrams, the DatagramPacket
class object is used both for sending and receiving UDP datagrams. This class has
several attributes that can be handled using the appropriate methods.

The associated buffer: if the datagram is to be sent, the payload to be transported
is the data stored in this buffer. If it’s to be received, the payload will be stored in
this buffer.

void setData(byte[] buf, int offset, int length); byte[] getData();

The associated buffer size: if the datagram is to be sent, this specifies the payload
size (number of bytes stored in the buffer that are to be sent). If it’s to be
received, this specifies the buffer size (if the received datagram payload is larger,
data will get truncated), also after receiving the datagram this will have the
number of bytes actually received.

void setLength(int length); int getLength();

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 18

The DatagramPacket class

The remote IP address: if the datagram is to be sent, it will be sent to this
destination node address, if it has been received, this represents the source node
address from where it came.

void setAddress(InetAddress addr); InetAddress getAddress();

The remote port number: if the datagram is to be sent, it will be sent to this
destination port number, if has been received, this will represent the source port
number.

void setPort(int port); int getPort();

Among the constructors available, two are most often used:

DatagramPacket(byte[] buf, int length);

DatagramPacket(byte[] buf, int length, InetAddress address, int port);

The first only sets the buffer and the buffer length, so the datagram object will be
ready for receiving. The second also sets the remote node address and remote
port number, so the datagram object is then ready for sending.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 19

DatagramSocket class

In Java there is a specific Socket subclass for UDP, it’s the DatagramSocket class.
Unlike with C language, where once created, the socket is associated to a local
port number by calling an independent function (bind), in Java the local port
number may be settled on creation.

Most often, one of two constructors are used, one of them is:

DatagramSocket();

In this constructor’s version, no port number is supplied, as result the socket is
associated to any available local port number. It’s the equivalent to binding to port
number zero in C language. Therefore, it’s suitable for a UDP client, but not for a
server that requires a fixed local port number.

Another often used constructor is:

DatagramSocket(int port);

It creates the socket and binds it to the provided port number; it will raise an
exception if the requested port number is in use. It’s suitable for a UDP server
whose local port number has to be known by clients, so they are able to contact it.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 20

Sending a UDP datagram in Java language

In Java, before sending a datagram, a datagram object must be instantiated, the
data to be sent, the destination node address, and destination port number are
stored in the datagram object itself. As already seen, one of the available
constructors does the whole job:

DatagramPacket(byte[] buf, int length, InetAddress address, int port);

buf – the buffer where to get data to be carried by the datagram (payload).

length – how many bytes within buf are to be sent in the datagram payload.

address – an InetAddress class object holding the IPv4 or IPv6 node destination address for
the datagram.

port – the destination port number for the datagram.

Once created, the datagram may be sent by calling the send(DatagramPacket p)
method of the DatagramSocket class with the created DatagramPacket as
argument.

The send() method may raise an IOException, but the absence of an exception
doesn’t mean the datagram was actually delivered in the destination, just that it
was sent.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 21

Receiving a UDP datagram in Java

Again, a datagram object must be instantiated before receiving, in this case
another constructor should be used:

DatagramPacket(byte[] buf, int length);

buf – the buffer where to place data carried by the datagram (payload).

length – the size of the buffer (maximum payload size).

Once the DatagramPacket object is created, a datagram can be received by calling
the receive(DatagramPacket p) method of the DatagramSocket class with the
created DatagramPacket as argument.

After receiving the datagram, the DatagramPacket holds the received data, the
number of bytes actually received, the source node IP address, and the source
port number.

The receive(DatagramPacket p) is a blocking method. If when called, no
datagram has yet been received, it will stop the thread until one arrives.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 22

UDP clients and servers

Both UDP clients and servers send and receive UDP datagrams. When the client-
server model is applied to UDP, it all starts by the client sending a datagram with a
request to the server, on the server side there must be a corresponding receive.
After receiving the request, the server processes it and sends back a reply that
must be received by the client.

When the server receives a request, it must copy the source node IP address and
source port number to be used later as destination node IP address and
destination port number on the datagram to be sent back as reply.

UDP is unreliable, so either or both the request and the reply may never be
delivered, for the server that’s not much of an issue, for the client however this is
challenging.

After sending the request, a UDP client blocks waiting for a reply, however, it may
never arrive, in such a case, the client application is blocked forever.

Therefore, UDP client applications must set a timeout for the server reply to be
received, otherwise they will be under the risk of getting blocked forever on any
request they make.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 23

Setting a receive timeout

In Java language, the setSoTimeout(int milliseconds) method of the Socket class
can be used to settle the maximum time operations on the socket can block, if an
operation takes longer, a SocketTimeoutException will be raised, usually, when
calling the receive(DatagramPacket p) method.

In C language, the setsockopt() function achieves the same purpose:

int setsockopt(int socket, int level, int optname, void *optval, int optlen);

For setting a receive timeout, level is SOL_SOCKET, optname SO_RCVTIMEO,
optval is a pointer to a caller defined struct timeval and optlen the size of that
structure. The timeval structure has two fields tv_sec and tv_usec, a full example
of use is:

struct timeval to;
to.tv_usec=0; to.tv_sec=5;
setsockopt (s, SOL_SOCKET, SO_RCVTIMEO, (char *)&to, sizeof(to));

This will settle the receiving timeout for socket s to 5 seconds. If the receiving
operation takes longer, an error will result, for instance, recvfrom() will return -1.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 24

Broadcasting

UDP has several disadvantages, namely the lack of reliability. Yet, it has also some
advantages, one being the possibility of sending to a broadcast or multicast
addresses. None are available in connection-oriented protocols like TCP. Also,
broadcast exists only in IPv4, with IPv6 multicast addresses are the only option.

A broadcast address is a special case of multicast address that represents all nodes
of an IPv4 network, the main use for broadcast/multicast is detecting nodes in a
network. For instance, a UDP client may send the request to the broadcast
address, thus, if there’s a server on the network the client will have a reply, even
without knowing the server’s node address in the first place. In fact, if there are
several servers on the network the client gets several replies, and thus, it will
know then all available servers’ node addresses.

Each IPv4 network has its own specific broadcast address, however, that’s not
appropriate to be hard coded into an application. This is because it’s only valid on
a certain network, instead the generic broadcast address should be used:
255.255.255.255. By using this address, applications can broadcast on the local
network they are connected to, whatever it may be. When using broadcast, we
can't forget it’s limited to the broadcast domain (LAN). When broadcasting in the
local network, nodes in remote networks won’t be reached.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 25

Preparing a socket for broadcast

In principle, sending a UDP datagram to a broadcast address is just a matter of
replacing the IPv4 destination node address by 255.255.255.255. Yet there’s a
detail, the broadcasting permission is disabled by default on sockets, so it must be
explicitly enabled before datagrams are actually sent.

In Java language, the setBroadcast(boolean on) method of the DatagramSocket
class can be used with a true argument to enable it.

In C language, the already mentioned setsockopt() function achieves the same
purpose, in this case optname is SO_BROADCAST, optval a pointer to a caller
defined integer with the value one to enable, and optlen the size of an integer. A
full example of use is:

int val=1;
setsockopt (s, SOL_SOCKET, SO_BROADCAST, (char *)&val, sizeof(val));

This enables sending to broadcast addresses on socket s.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 26

Printing addresses in Java

Often it will be useful, mainly for logging and troubleshooting, to get printable
strings representing the source IP node addresses and source port numbers of the
datagrams received by an application.

In Java language, once a datagram is received, the DatagramPacket object can be
queried. The getAddress() method returns an InetAddress object holding the
source IP node address. In turn the getHostAddress() method (of the InetAddress
class) will return a string containing the corresponding IP address human readable
text representation.

The getPort() method of the DatagramPacket class returns the source port number
as an integer. Example:

DatagramSocket sock = new DatagramSocket(9999);
DatagramPacket packet = new DatagramPacket(data, data.length);
sock.receive(packet);
InetAddress IPorigem = packet.getAddress();
System.out.println(“Source IP = " + IPorigem.getHostAddress())
System.out.println(“Source Port = " + packet.getPort());

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 27

Printing addresses in C

In C language, the getnameinfo() function does the opposite of getaddrinfo(),
meaning, given an address structure, it gets the node’s IPv4, IPv6 or DNS name
and the port number, both in the form of human readable strings.

getnameinfo(struct sockaddr *a, uint al, char *h, uint h, char *s, uint sl, int flags);

a – a pointer to the address structure
al – the size of the address structure
h – a called allocated buffer where the node address representation will be placed
hl – the size of the h buffer
s – a caller allocated buffer where the port number representation will be placed
sl – the size of the s buffer
flags – to get numeric representations: NI_NUMERICHOST|NI_NUMERICSERV, otherwise
the reverse DNS lookup of the IP address will be tried to obtain the DNS node name and
port number will be represented as a service name (if available).
Example:

struct sockaddr_storage cli;
unsigned int adl;
char ip[100], p[20];
recvfrom(sock,linha,BUF_SIZE,0,(struct sockaddr *)&cli,&adl);
getnameinfo((struct sockaddr *)&cli, adl, ip, 100, p, 20, NI_NUMERICHOST|NI_NUMERICSERV);
printf(“Source IP address: %s, source port number: %s\n", ip, p);

	Slide 1
	Slide 2: Socket types
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

