
Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 1

• HTTP, Web services, REST, AJAX and Web UI.
• Analysing a simple HTTP server with AJAX support in C language.

RCOMP - Redes de Computadores
(Computer Networks)

2023/2024

Theoretical-practical lesson 10

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 2

Web Services

The central concept on web services is the use of HTTP for application-to-application

communications without direct human intervention.

One application assumes the HTTP client role (service requestor or consumer)

and the other application the HTTP server role (service provider or publisher). So,

the web service is made available to service requestor applications by the service

provider application. Of course, the same application can be both a consumer and a

provider.

Application A

Consumer

(service requestor)

Application B

Publisher

(service provider)

Consumer

(service requestor)

Application C

Publisher

(service provider)

HTTP Request (URL B)

HTTP Request (URL C)

This is a very wide-ranging concept, and allows programmers to implement it with

high freedom, for instance regarding what HTTP methods are going to be used, how

resources on the provider side are named, and which content types are going to be

used on data transfers between requestors and providers. As far as the HTTP

protocol is respected, everything is possible.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 3

One of these sets of constraints for web services architecture is known as RESTful,

standing for REST compliant.

Web Services - constraints

Application D

HTTP Server

Application B

HTTP Server HTTP Client

Web Browser
(JavaScript/AJAX)

Application C

HTTP Server

HTTP Requests

HTTP Requests

HTTP Client

There’s no obstacle for one application being both a consumer and a provider.

Standard Web Browsers are also encompassed as they may become web services

consumers by using XMLHttpRequest JavaScript objects. Therefore, quite complex

distributed environments can be established through web services.

The general freedom in implementing web services tends to turn things somewhat

chaotic, thus some efforts have been done on instituting some rules and principles,

often referred to as constraints.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 4

RESTful web services’ architectural constraints

REST stands for Representational State Transfer, it’s a constrained, resource-based

design model to implement web services. Main principles (constraints) are:

• Clients request operations over server-side resources (each identified by an URI),

operations over server-side resources are: Create, Read, Update and Delete

(CRUD), each corresponds to a specific HTTP request method.

• Resources contents should be transferred in XML or JSON representations.

Nevertheless, HTML and others might be used if appropriate.

• Servers are stateless in the sense they don’t store information about each client’s

dialogue context. Therefore, on every request clients must provide all required

context data for the operation.

• If the server has a state, then that state context must be represented by an

addressable resource (URI), clients may then refer that state context on requests.

RESTful web services consumer

applications can request the

following four operations over a

resource (URI):

Operation HTTP methods

Create a resource POST; PUT

Read/retrieve a resource GET

Update/Modify a resource PUT

Delete/remove a resource DELETE

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 5

RESTful – resources and collections

The only safe method is GET, meaning it doesn’t change the resource on the server

side. Methods PUT, GET, and DELETE are regarded as idempotent methods; this

means making more than one successive identical request over the same resource

has no additional effects beyond the effect of the first request.

A URI may refer to a single resource or a collection of resources, singular names

are to be used for single resources, plural names for resources collections.

Depending on being a single resource or a resources collection, different HTTP

methods will represent different actions over the target resource (URI):

HTTP method Single resource (singular name URI) Resources collection (plural name URI)

GET Retrieve the resource.
List the of resources items in the collection.
Retrieved data is a list of resources’ URIs
and optionally other resources’ data.

PUT
Replace the resource, if it does not exist,
create it.

Replace the whole collection with another
collection.

POST
Not used because the URI would be
regarded as a collection and a new collection
item would be created within it.

Create a new resource item within the
collection. The new resource URI is
automatically assigned.

DELETE Delete the resource. Delete the entire collection.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 6

RESTful - URI naming (guidelines and best practices)

• A singular name for a single resource or a collection’s item/element.

• A plural name for a collection of resources.

• Verbs for controllers and functions.

• Notice that, excluding the origin (i.e., the server’s DNS name), the URI

is case sensitive.

• Use either camel casing or, preferably, lowercase with words separated

with hyphens (spinal case), instead of underscores (snake case).

• Avoid CRUD names (Create/Read/Update/Delete) for a URI.

• URI path elements should represent resources’ hierarchical structure.

• A URI path component can be used to represent a variable’s value, in

REST that’s the recommendation, nevertheless, a query string can also

be appended to a URI.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 7

RESTful – Contents transfer
Resources’ contents must be transferred between providers and consumers (in both

directions) in an implementation independent representation.

Text (ASCII characters organized in lines) is a universally supported concept and,

within some limits, it’s also acceptable for human reading. For those reasons it’s

widely used to represent data, nevertheless, rules must be established so that data

represented in text format can be analysed by applications.

We already are aware about the HTML specification that uses text, and yet HTML is

more focused on data presentation on not so much in data representation.

A somewhat similar, but more generic specification is Extensible Mark-up Language

(XML), RESTful constraints don’t impose the use of XML, but they clearly point out to

the use of either XML or JSON to represent generic data.

When web services resources are transferred between applications in XML format,

the Content-type: application/xml HTTP header line should be added. When

contents are in JSON format, the Content-type: application/json HTTP header line

should be added.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 8

Extensible Mark-up Language (XML)
XML is a data representation format through text, it’s designed to be both human-
readable and also easy to be processed by applications. The use of XML is one
alternative for contents transfer in REST web services.

As with HTML, XML encapsulates data within tags represented between symbols <
and >, but unlike with HTML where tag names have special meanings, in XML they
do not. In XML tags may be freely established by applications conforming their
needs. Another difference is, HTML specifies a way to present data to end-users,
XML specifies only the data representation.

An XML content may optionally start by a special line called XML prolog:

<?xml version="1.0" encoding="UTF-8"?>

The XML prolog line is optional, but every XML content must have a root tag
embracing the whole content. Tag names are case sensitive, and every opened tag
must be closed by an end tag. As with HTML, if a tag doesn’t have any data
(content) it may be closed immediately by ending it with /> instead of >.

If a tag’s content includes the < symbol or the & symbol, they must be represented,
correspondingly by < and & to avoid parsing issues.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 9

XML – tag’s attributes

In this example, <users> is the root tag. It contains four tags named <user>,
the first two are empty, although specified in different ways.

<?xml version="1.0" encoding="UTF-8"?>
<users>
 <user id=“100” />
 <user id=“101”></user>
 <user id=“102”><name>ABC</name></user>
 <user id=“103”>
 <name>ABC</name>
 <phone>9999909</phone>
 </user>
</users>

XML tags may have attributes, attributes are pairs name=“value” declared
within the start tag, attribute names are also case sensitive, and the attribute
value must always be quoted.

Tag’s attributes should be used to identify the data element and not the
data element’s properties. Properties should be specified by adding
sub tags.

Example:

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 10

Web services testing – Postman

In standard web browsers, when a URL is manually typed, the browser
always assumes the method to use is GET. So, a web browser is not a
suitable tool to impersonating consumer applications and test web services.

Applications generally called postman do the trick, they are able to
generate HTTP requests with any method, also setting HTTP headers and
the message’s content as required. In addition, they also provide extensive
information about the response received from the provider.

Postman is an essential tool when developing web services, by testing
them, the developer assures himself they are working properly before they
are actually used by real consumer applications.

Postman is often used to manually perform functional tests, but it may also
be programmed through scripts to automatically perform sets of unity tests,
thus ensuring web services are kept in conformity during development.

Several more or less sophisticated versions of postman are freely available,
some even run on standard web browsers as plugins or extensions.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 11

AJAX - Web browsers as web services consumers

The standard use of web browsers: retrieve contents and display them to end-users,
has no place in the web services model. Having said that, the fact is, modern web
browsers are themselves platforms where applications can be run, namely by using
JavaScript.

The XMLHttpRequest object class is an HTTP client available in JavaScript, by
using it, JavaScript applications may become web services’ consumers.

In such objects, the open() method is used to create a request (not actually send it),
any HTTP method can be used over a specified URL, and HTTP header lines can be
set, one by one, with the setRequestHeader() method. Then the request may be
sent by calling the send() method, request are, by default, asynchronous.

Asynchronous means when the send() method is called, the application will not be
blocked waiting for the response, this is most important for a web browser. Before
sending the request, call-back functions must be settled, they will be automatically
called when a response arrives.

This technique is known as AJAX (Asynchronous JavaScript and XML), and it allows
a dramatic improvement in web pages usability and interaction.

If data is to be sent (PUT or POST), it can be specified as argument of the send()
method, data can also be sent with GET, but in that case, it will be part of the URI
provided to the open() method.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 12

Before sending an asynchronous request, the object’s property onload should be
assigned with a call-back function, it will be called asynchronously (in background)
when the response arrives. Once the response arrives, within the onload call-back
function, the status property may be checked for the HTTP response´s status code,
of course, value 200 stands for ok.

By default, the XMLHttpRequest object has no timeout associated, meaning it will
wait forever for a response, however, the timeout property can be assigned with a
value in milliseconds. If timeout is settled, then the ontimeout property should be
assigned with a call-back function to handle that scenario.

Event property Standing for …

onreadystatechange The state has changed, the state property will contain one of the following values: 0
(request not initialized); 1 (server connection established); 2 (request received); 3
(processing request); 4: (request finished and response is ready)

onabort The request was aborted by calling the abort() method.

onerror The request has failed.

onload and onloadend The request was successful (load). The request processing has finished successfully or not.

ontimeout The request failed due to timeout (as defined by the timeout property value greater than
zero).

AJAX - Web browsers as web services consumers

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 13

Implementing a demo HTTP server in C language

Fully implementing a network client or server application can be a very
simple or a rather extensive activity, it all depends on the application
protocol’s complexity, and features.

HTTP basic concepts are pretty simple to implement. One TCP
connection, a request is sent, a reply is returned. Both the request and
the reply use the same message format: a text header possibly followed
by a body. A limited number of possible request types (methods) and an
also limited number of possible responses.

So, implementing an HTTP server to support a limited subset of HTTP
features, and not the whole HTTP protocol specification, isn’t such an
extensive task.

This HTTP server project covers most basic static contents retrieval,
through the GET method, web services and AJAX.

It’s a voting system, the current voting results must be displayed and
kept updated to all users, any user may vote any number of times, the
results being shown to all users must be always up-to-date.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 14

Specific design requirements

The HTTP server is going to have the following characteristics and
significant limitations:

• No persistent connections support, thus, the server will always send the
Connection: close header line to clients.

• All header field lines in client’s requests are ignored.

• GET /votes returns the voting standings as an HTML list. This list will also
include JavaScript linked buttons to cast votes.

• Other GET requests as assumed to refer to static content files, stored
within an established folder. By analyzing the file’s name, some relevant
content types should be inferred and supported.

• PUT is supported for the /votes/{n} URI, standing for a vote casting on
candidate number {n}, on this demo, candidates are numbered from 1 to 4.
PUT requests will not actually carry any body content.

When designing web services and consumers, data processing can be implemented
on both sides. In this project the GET /votes provides a ready to use server
generated HTML content, but it could be otherwise, for instance the server could
provide an XML content and it would be up to the consumer (JavaScript) creating the
HTML content from it to be presented.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 15

Architecture

Next we will analyze the provided C implementation

C/http-server-ajax-voting/http_srv_ajax_voting.c

Standard Web Browser HTTP Server
(to be developed)

The displayed

web page

HTTP

Client

JavaScript and

XMLHttpRequest objects

GET
(static contents: html,

images and

JavaScript files)

GET /votes

PUT /votes/{n}

Static files

content

Web services

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 16

Reading and writing HTTP headers (http.h and http.c)

Every HTTP message starts by a header of text lines, each header line is

CR+LF terminated. The first thing we need, to implement an HTTP client or

server, is a pair of functions to read and write this text lines in such a format.

In C language the most convenient way to represent text lines is by null

terminated strings:

void readLineCRLF(int sock, char *line)
{
char *aux=line;
for(;;) {

read(sock,aux,1);
if(*aux=='\n')

{
*aux=0;return;
}

else
if(*aux!='\r') aux++;
}

}

void writeLineCRLF(int sock, char *line)
{
char *aux=line;
while(*aux) {write(sock,aux,1); aux++;}
write(sock,"\r\n",2);
}

Reading a header line has to be done byte by
byte, this is because we do not know the line’s
length until we hit CR+LF.

Unlike with reading, when writing a header
line, we already know its length, so another
possible solution is:

void writeLineCRLF(int sock, char *line)
{
write(sock,line,strlen(line));
write(sock,"\r\n",2);
}

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 17

Sending an HTTP response header (http.h and http.c)

An HTTP server receives an HTTP request message and then replies with an HTTP

response message. To send HTTP response messages, a simple function was

defined:

void sendHttpStringResponse(int sock, char *status, char *contentType, char *content) {
sendHttpResponse(sock,status,contentType,content,strlen(content));
}

The first argument it the socket through which the response is to be sent (written),

next the status code and text, the content type, and the content’s length. The header

will always include the Connection: close line, and of course it’s ended by an empty

line. The sendHttpStringResponse() function, calls the previous function to send a

response with a text content (body) stored in a string (C null terminated string):

void sendHttpResponseHeader(int sock, char *status, char *contentType, int contentLength) {
char aux[200];
sprintf(aux,"%s %s",HTTP_VERSION,status);
writeLineCRLF(sock,aux);
sprintf(aux,"Content-type: %s",contentType);
writeLineCRLF(sock,aux);
sprintf(aux,"Content-length: %d",contentLength);
writeLineCRLF(sock,aux);
writeLineCRLF(sock,HTTP_CONNECTION_CLOSE);
writeLineCRLF(sock,"");
}

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 18

HTTP responses with other contents (http.h and http.c)

For cases where the content is not text:

Because the content may not be text, it’s not passed to functions as a null terminated

string, therefore the content size has to be provided by the caller (contentLength).

Also, because the content’s size may be rather large, content writing operations may

be incomplete (when writing, done may be less than todo), so we ensure the whole

content is effectively written. If the whole content writing is successful the 1 value is

returned, otherwise 0 is returned.

int sendHttpResponse(int sock, char *status, char *contentType, char *content,
int contentLength) {

int done, todo;
char *aux;
sendHttpResponseHeader(sock, status, contentType, contentLength);
aux=content; todo=contentLength;
while(todo) {

done=write(sock,aux,todo);
if(done<1) return(0);
todo=todo-done;
aux=aux+done;
}

return(1);
}

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 19

HTTP responses for file contents (http.h and http.c) 1/3

The sendHttpFileResponse() function handles with static files contents:

void sendHttpFileResponse(int sock, char *status, char *filename) {
FILE *f;
char *aux;
char line[200];
int done;
long len;
char *contentType="text/html";

f=fopen(filename,"r");
if(!f) {

sendHttpStringResponse(sock, "404 Not Found", contentType,
"<html><body><h1>404 File not found</h1></body></html>");

return;
}

aux=filename+strlen(filename)-1;
while(*aux!='.' && aux!=filename) aux--;

(…)

It receives a filename whose content is to be sent in the body of the HTTP response

message, if opening the requested file fails, the 404 Not Found status is sent with a

simple HTML content. The content type defaults to text/html, but next the filename’s

extension is analysed to settle a more appropriate content type. The aux pointer will

be pointing to the last dot in the filename, or to the filename itself if there’s no dot.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 20

HTTP responses for file contents (http.h and http.c) 2/3

(…)
if(*aux=='.')

{
if(!strcmp(aux,".pdf")) contentType="application/pdf";
else
if(!strcmp(aux,".js")) contentType="application/javascript";
else
if(!strcmp(aux,".txt")) contentType="text/plain";
else
if(!strcmp(aux,".gif")) contentType="image/gif";
else
if(!strcmp(aux,".png")) contentType="image/png";
}

else
contentType="application/x-binary";

(…)

Conforming to the filename’s extension the content type value is settled, by default

the text/html is used for filename with unhandled extensions. If there’s no dot in the

filename, the content type is going to be be application/x-binary.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 21

HTTP responses for file contents (http.h and http.c) 3/3

(…)
fseek(f,0,SEEK_END);
len=ftell(f);
if(!status) status="200 Ok";
sendHttpResponseHeader(sock, status, contentType, len);
rewind(f);
do {

done=fread(line,1,200,f);
if(done>0) write(sock,line,done);
}

while(done>=0);
fclose(f);
}

To know the file’s size (the content’s length) the fseek() and ftell() functions are used.

If the caller hasn’t provided a status, 200 Ok is used.

All data required to send the HTTP response message’s header is now settled, so

sendHttpResponseHeader() is called.

Then, we can start reading data from the beginning of the file (rewind) and send it to

the HTTP client as it’s read. When there’s no more data to read from the file, fread()

returns zero, or -1 in the case of error.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 22

HTTP server (http_srv_ajax_voting.c)

(…)
#include "http.h"
#define BASE_FOLDER "www"

void processHttpRequest(int sock, int conSock); // implemented ahead
void processGET(int sock, char *requestLine); // implemented ahead
void processPUT(int sock, char *requestLine); // implemented ahead

#define NUM_CANDIDATES 4
char *candidateName[] = { "Candidate A", "Candidate B", "Candidate C" , "Candidate D" };
int candidateVotes[NUM_CANDIDATES];
unsigned int httpAccessesCounter=0;
(…)

Beyond other required header files, the already implemented functions defined in

http.h are included, the defined BASE_FOLDER represents the folder from where to

attain static file contents as requested by clients.

This is just a demo voting system, for this demo only four alternatives (candidates)

are established, each candidate’s current number of votes is stored in

candidateVotes[NUM_CANDIDATES], so the first candidate will have index zero. An

HTTP requests counter is also established and started, it’s mostly for debugging

purposes, and it will also be shown in the server’s web page.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 23

HTTP server’s main loop (http_srv_ajax_voting.c)
(…)
int main(int argc, char **argv) {
(…)

for(i=0; i<NUM_CANDIDATES; i++) candidateVotes[i]=0;
signal(SIGCHLD, SIG_IGN); // AVOID LEAVING TERMINATED CHILD PROCESSES AS ZOMBIES
while(1) {

newSock=accept(sock,(struct sockaddr *)&from,&adl);
httpAccessesCounter++;
processHttpRequest(sock,newSock);
}

close(sock);
return(0);
}

The main() server function, implements a basic TCP server by preparing an

AF_INET6 socket for accepting TCP connections as usual. It then initializes voting

counters and starts the usual TCP infinite loop of client connections acceptance. For

each client connection, the accesses counter is updated and then the

processHttpRequest() function is called.

Notice that so far, no child process has been created. The point is, when a vote is

casted through an HTTP request the vote counters must be updated, if that was

handled in a child process, then Inter Process Communication (IPC) would be

required to update vote counters on the parent process.

IPC is being avoided by implementing vote casting processing in the main process

and not in a child process.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 24

processHttpRequest() function (http_srv_ajax_voting.c)

void processHttpRequest(int sock, int conSock) {
char requestLine[200];
readLineCRLF(conSock,requestLine);
if(!strncmp(requestLine,"GET /",5)) {

if(!fork()) { // GET requests are processed in background
close(sock);
processGET(conSock,requestLine);
close(conSock); exit(0);
}

close(conSock); return;
}

if(!strncmp(requestLine,"PUT /votes/",11)) processPUT(conSock,requestLine);
else {

sendHttpStringResponse(conSock, "405 Method Not Allowed", "text/html",
"<html><body>HTTP method not supported</body></html>");

}
close(conSock);
}

Once the request line is read, if it’s a GET method request, then a child process is

created to handle it through the processGET() function. If it’s a vote casting (PUT

/votes/…) no child process is created, and it’s handled through the processPUT()

function in the main process.

If the request is neither a GET, nor a PUT for a URI started by /votes/, the server

replies with the 405 Method Not Allowed status response.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 25

processGET() function (http_srv_ajax_voting.c)

void processGET(int sock, char *requestLine) {
char *aux, line[200], filePath[100], uri[100];

do { // READ AND IGNORE HEADER LINES
readLineCRLF(sock,line);
}

while(*line);

strcpy(uri,requestLine+4);
aux=uri; while(*aux!=32) aux++; *aux=0;
if(!strncmp(uri,"/votes",8)) {

sendVotes(sock); return;
}

if(!strcmp(uri,"/")) strcpy(uri,"/index.html"); // BASE URI
strcpy(filePath,BASE_FOLDER);
strcat(filePath,uri);
sendHttpFileResponse(sock, NULL, filePath);
}

After reading (and ignoring) all request’s header lines, the URI is analysed, if it’s

/votes, the sendVotes() function is called to send a response with an HTML content

holding the current votes counting, and necessary HTML tags for vote casting.

Otherwise, it’s assumed it must be a reference to a static file, so the URI is appended

(strcat) to the BASE_FOLDER and sendHttpFileResponse() is called.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 26

sendVotes () function (http_srv_ajax_voting.c)

void sendVotes(int sock) {
char buffer[1024], line[200];;
strcpy(buffer,"<hr>");
for(int i=0; i<NUM_CANDIDATES; i++) {

sprintf(line, "<button type=\"button\" onclick=\"voteFor(%i)\">Vote
for %s</button> %s - %d votes ", i+1, candidateName[i], candidateName[i],
candidateVotes[i]);

strcat(buffer,line);
}

sprintf(line, "<hr><p>HTTP server accesses counter: %u</p><hr>",
httpAccessesCounter);

strcat(buffer,line);
sendHttpStringResponse(sock, "200 Ok", "text/html", buffer);
}

This function creates an HTML content and sends it as content of an HTTP response

message, its sole purpose is being called by processGet(), in response to a GET

/votes HTTP request.

The created HTML content is an unnumbered list tag () with buttons calling

JavaScript voteFor() function to cast votes (by calling web services), and the current

votes for each candidate. The JavaScript voteFor() function receives the candidate

number as argument, first candidate is number one.

In addition, the current HTTP accesses counter value is also included in the content.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 27

processPUT() function (http_srv_ajax_voting.c)

void processPUT(int sock, char *requestLine) {
char *aux, line[200], uri[100];
int candidate;

// READ AND IGNORE HEADER LINES
do { readLineCRLF(sock,line); } while(*line);

strcpy(uri,requestLine+4);
aux=uri; while(*aux!=32) aux++; *aux=0;
aux=uri+strlen(uri)-1; while(*aux!='/') aux--; // FIND LAST SLASH
aux++;
candidate=atoi(aux); candidate--; // CONVERT TO INDEX VALUE
if(candidate<0||candidate>NUM_CANDIDATES) { // BAD CANDIDATE INDEX

sendHttpStringResponse(sock, "405 Method Not Allowed", "text/html",
"<html><body>HTTP method not supported</body></html>");

return;
}

candidateVotes[candidate]++;
sendHttpStringResponse(sock, "200 Ok", "text/plain","");
}

After reading (and ignoring) all request’s header lines, the URI is analysed to isolate

the last URI path’s element, it should be a number (1..4). It’s converted to an integer

(atoi), if not within range, a 405 Method Not Allowed response is sent. Otherwise, the

number of votes is updated. This function receive no PUT content because that’s the

way this service was designed. Because this function is called within the main

process, and not in a child process, the new voting status is effective for all following

client requests.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 28

Main HTML page (www/index.html)
<html><head><title>HTTP demo</title>
<script src="rcomp-ajax.js"></script>
</head>
<body bgcolor=#C0C0C0 onload="refreshVotes()"><h1>HTTP server demo - Voting with AJAX</h1>
<h3>Linux/C version</h3>
<hr><center>
<table width=60% border=1 cellpadding=20 cellspacing=20><tr>
<td align=left><big>
<div id="votes">
Please wait, loading voting results ...
</div>
</big></td></tr></table>
</center><hr>
<center><table border=0><tr><td align=center>Image contents are supported:

(http2.png)</td>
<td align=center>
(http.gif)</td></tr></table><center>
</body></html>

The page loads the JavaScript file rcomp-ajax.js (www/rcomp-ajax.js), containing

some required functions. When the HTML body is loaded, the browser will

automatically call (onload) the refreshVotes() JavaScript function. This function will

use the XMLHttpRequest object to consume web services and update the page area

identified as votes (<div id="votes"></div>).

Additionally, this page also loads some images just for the sake of checking the

server is handling appropriately GET requests for images.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 29

JavaScript function refreshVotes() (www/rcomp-ajax.js)
function refreshVotes() {

var request = new XMLHttpRequest();
request.onload = function upDate() {

document.getElementById("votes").innerHTML = this.responseText;
setTimeout(refreshVotes, 1500);
};

request.ontimeout = function timeoutCase() {
document.getElementById("votes").innerHTML = “Still trying ...";
setTimeout(refreshVotes, 1000);
};

request.onerror = function errorCase() {
document.getElementById("votes").innerHTML = “Still trying ...";
setTimeout(refreshVotes, 1000);
};

request.open("GET", "/votes");
request.timeout = 5000;
request.send();
}

It’s called once the HTML page is loaded, creates the XMLHttpRequest object and

settles call-back functions. For a success the upDate() function is called, it replaces

the votes area in the HTML page with the received response (responseText). The

update() function also schedules an automatic call to refreshVotes() in 1.5 seconds.

This means once a response is received, the function is called again in 1.5 seconds.

Call-back functions are also settled for error events. Finally, the web service to

consume is defined (GET /votes), a timeout is settled (5 sec.) and the request is

started (send).

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 30

JavaScript function voteFor() (www/rcomp-ajax.js)

function voteFor(option) {
var request = new XMLHttpRequest();
request.open("PUT", "/votes/" + option);
request.send();
}

It’s called by user interaction (clicking the voting button), it sends a PUT request to

the server with the URI /votes/{n} , as defined by the server for the candidate.

This is a PUT request without a body, the only required data is the URI itself. Under

REST point of view, votes is a resource collection and {n} a resource (candidate

number). Because the only use case for PUT over a candidate is casting a vote, there

is no real need to provide any data on PUT requests.

Also bear in mind that, in this server implementation, PUT requests processing

assumes there’s no body, if a PUT request with a body is sent, the server will crash.

The server is designed to provide web services strictly for this consumers.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 31

Results - the web page

The HTTP server accesses counter should be always increasing because the

refreshVotes() JavaScript function is cyclically being called. The voting board is

update every 1.5 seconds, plus the time it takes to complete the GET /votes request.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 32

Results - the web page when the server becomes unavailable

JavaScript call-back functions, established for timeout and error events,

will keep trying until the service is available again.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Extensible Mark-up Language (XML)
	Slide 9: XML – tag’s attributes
	Slide 10: Web services testing – Postman
	Slide 11: AJAX - Web browsers as web services consumers
	Slide 12
	Slide 13: Implementing a demo HTTP server in C language
	Slide 14: Specific design requirements
	Slide 15: Architecture
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

