RCOMP - Redes de Computadores
(Computer Networks)

2023/2024

Theoretical-practical lesson 11

* Network security.
* SSL/TLS network programming.

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

Network security and secure communications

Networks are exposed to all kinds of malicious attacks. This must be in focus
when network application protocols are designed, and thus security must be
enforced in network applications.

A network application dialogues with other remote network applications
(running in remote nodes). For that, uses either UDP or TCP, and knows the
remote node’s address (IPv4 or IPv6) and the port number. What happens in
networks between the nodes is totally out of control of network applications.

Recapping: we already knew networks are unreliable, now we must also
assume they have human intelligence dedicated to damaging the transactions
between network applications.

Regarding attacks, they encompass all sort of actions harmful to network
applications. An attacker could simply make the network inoperative (e.g., by
cutting a cable), network applications can’t do much in this case.

Most attacks are more subtle, to start with, sniffing is a big issue. We must
assume any information sent through a network can be read by attackers, and
that will not be noticed by applications because contents are not being
changed.

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

Authentication, privacy and integrity

To fully guarantee secure communications between two applications, there are
three related facets that must be considered:

- Authentication — ensuring attackers can’t impersonate a licit application.
- Privacy — ensuring attackers can’t read data.

- Integrity — ensuring attackers can’t change data.

Authentication is really the base stone, if not sure talking with the intended
counterpart, other facets become fairly irrelevant.

Proving the identity is most often based on possessing a secret nobody else
knows. For instance, a user’s password, or a Pre-Shared Key (PSK) for a

symmetrical cypher. In these two cases, it’s required both sides know the
secret, and nobody else knows it.

When using public key cryptography, the sender’s identity is proven by
encrypting with the its private key (creating a digital signature), the identity is
then checked at the receiver by decrypting with the sender’s public key
(checking the digital signature).

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

Privacy

Given that there’s no access control to data traveling through the network, the
only option to ensure privacy is by encrypting.

To operate, symmetrical key cyphers require the same Pre-Shared Key (PSK) to
be already available on both authentic sides, and unknown to others.

Asymmetrical key cyphers use different keys for encryption and decryption.

Integrity

The integrity facet is similar to error detection, a message authentication code
(MAC) is appended to data to be sure it hasn’t changed in transit.

Under the security point of view, things get far more complex because
intentional malicious actions are to be expected. Thus, an attacker could
change both the data, and the validation code as well, so they would be kept
matching. How this issue is addressed, depends on what solutions are in place
for authentication and privacy.

Integrity checking is based on hash functions. Hash functions receive a
whatever size block of data as input and produce a fixed size set of bits output
that represent the input. The output is called, the hash code or the digest, any
small change in input will drastically and unpredictably change the output.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira ‘

Hash functions

Hash functions are irreversible (one-way), they can intake any amount of data,
and yet, they always produce the same number of output bits (the hash code).

Its behaviour is deterministic (the output is always the same for the same
input). However, finding an input content, to match a given output hash code,
it’s almost impossible.

One characteristic of a hash function, is the number of bits it returns (the hash
code size). Ignoring other factors, the bigger the code, the harder will it be to
attack by using brute force.

For the purpose of validating data integrity, the hash code needs to be
protected against tampering.

If both the data and the hash code are being sent through a symmetric key
cypher, then that protection is already in place.

- =

r B Data
Symmetrical
> =P cypher —J Network
Hash() - /'
Hash code Secret

(MAC) Key

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira ‘

Hash functions usage scenarios

An asymmetrical key cypher may also be used, but then the hash code must be

encrypted using the sender’s private key. And this is a digital signature of that
data.

~

Hash code € Hash() <« Data
Asymmetrical
l i cypher —> Network
Source’s . — T
Private : Asymmhetrlcal > .Dlgltal
Key cypner signature Destination’s

Public Key

We can imagine an additional scenario where integrity is required, but privacy
is not a requirement. This is the case, for instance, of AH in IPsec.

Then we could simply use the above scenario and omit the final, right side,

encryption. If a Pre-Shared Key is available, then a symmetrical cypher could be
used to encrypt the hash code only.

MAC algorithms do that directly, they are based on hash functions to produce a
message authentication code (MAC), encrypted with a provided secret key. To
authenticate the message, the same secret key is required.

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

Network applications authentication

When developing network applications, most often, privacy is vital for network
exchanges. Nevertheless, authentication is a vital first step.

There are a number of approaches to authenticate applications:

1. Symmetrical key cipher

Applications that are to trust each other are given a same secret key. An
application is authentic if is able of exchanging information encrypted with that
key. This may encompass more than two applications, all sharing the same
secret key. The big issue it’s how to safely provide the same secret key to all
authentic applications and no others.

2. Self-signed public key certificates

Each application has its own self-signed certificate, in each application the
counterpart’s certificate is added as trusted. If there are more than two
applications, certificates of all the others must be added in each. It’s a pretty
safe solution, and yet certificates have to be added manually on each node.

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

3. IP node addresses-based authentication

If it’s known an application is running on node with a static IP address, that
might be used to authenticate incoming traffic. But there’re several issues.
First, it’s exposed to spoofing attacks, therefore, to be safe, it must be deployed
in a network under tight control (e.g., within a DMZ).

Regarding the spoofing attacks (source IP counterfeiting) menace, it may be
softened if double direction dialogues are enforced, this is because by using a
fake source IP address the attacker doesn’t receive responses to made
requests. For instance, the use of TCP instead of UDP turns spoofing attacks
harder due to the three-way handshake to establish the connection,
encompassing random sequence numbers.

If the node bears the possibility of common users running applications, then it
must also be assured the incoming traffic is not from such an application. The
simplest approach is checking if traffic is coming from a reserved port number
(below 1024) because common user are not allowed to use those.

To summarize, to enforce IP node addresses-based authentication, both
network and the node must be under tight control of a trusted administrator.

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

4. Valid public key certificate

All options exposed so far, require a previous knowledge between applications
and coordinated administrative settings on both sides.

However, this is not the case of a server to be made publicly available to
anonymous clients. Most often, in such a scenario, the server isn’t interested in
authenticating client applications, perhaps it's more interested in
authenticating users latter when the safe communication is already
established. Nevertheless, for the client, authenticating the server is vital,
otherwise it might be under a MITM (man in the middle) attack, and talking
with a fake server impersonating the real one.

The server application is not aware of clients’ existence before it’s contacted by
them, client applications know about the server’s existence by knowing the
server’s node DNS name only.

This is solved by the use of a valid public key certificate by the server
application, the public key certificate associates the public key to the server
DNS name (CN attribute in the subject field).

If the certificate is valid (including being issued by a trusted CA) then the client
has the guarantee that by encrypting data with that public key only the
application running on the referred DNS name node will be able to decrypt.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira ‘

Public key certificates validation

Network applications, most often client applications, need to check if a public
key certificate they receive is valid, beyond validity dates included in the
certificate (not before and not after), this encompasses two vital checks:

1t The issuer must be a trusted CA, this means by following the certificate
chain, a certificate classified as belonging to a trusted CA is found. In other
words, that certificate is locally stored in the list of trusted certificates
(certificate verification storage).

2"d The CN attribute in the certificate’s subject field has to match the DNS
name of the node intended to be the counterpart (e.g., intended server).

Depending on the used API, these validations may be provided through
suitable functions/methods.

For self-signed certificates, manually placed by the administrator in each side’s
certificate verification storage, the first validation is of course already
established. The second validation could, in this case be omitted, if we want
the counterpart authenticated application to be able to run on different nodes
or in a node with a dynamic IP address.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

The SSL/TLS protocol

This protocol is dedicated to establishing secure communications between two
network applications. It operates by negotiating a set of mechanisms (known
as cypher suite) to be used in order to ensure authentication, privacy, and
integrity.

SSL/TLS was designed to transform unsafe application protocols into secure
application protocols, it’s enforced immediately once the dialogue starts, prior
to the original non-secure application protocol starts operating.

By using SSL/TLS insecure application protocols are turned secure, they are
usually referred by the original name with an S suffix (e.g. HTTP becomes
HTTPS). Yet the original insecure application protocol suffers no change
whatsoever, simply data is sent and received through SSL/TLS provided
functions/methods, instead of standard send/write and receive/read methods.

SSL/TLS operates over TCP or UDP, though is easier to implement over TCP than
over UDP (TLS over UDP is known as DTLS - Datagram Transport Layer Security).
Regarding the first vital step of authentication, either a pre-shared key or public
key certificates may be used. We will be focusing on the later as that’s the only
option for anonymous clients contacting a public server through its DNS node
name.

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

The OpenSSL library (C language)

When developing network applications in C language, in Linux systems the
OpenSSL library may be used to attain secure communications. This library
provides a large variety of cryptographic functions, and support to the SSL/TLS
protocol. Only a few will be referred here, related to establishing secure
communications over TCP, based on public key certificates authentication.

Programs will have to include the relevant header files (e.g., openssl/ssl.h), and
then be linked to the necessary libraries (-Issl —lcrypto).

SSL/TLS only comes to play once communications are established, thus for TCP,
after the client connects to the server, and after the server accepts a client’s
connection. So basically, we have insecure TCP connections and SSL/TLS will
transform them into secure TCP connections by a coordinated effort on both
sides (client and server).

To establish the cypher suite, SSL/TLS uses the client-server model, one
application is required to assume the SSL/TLS client role and send the Client
Hello message, the other application must assume the SSL/TLS server role,
receive the Client Hello and send back the Server Hello message. Usually, the
TCP client is the SSL/TLS client, and the TCP server is the SSL/TLS server.

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

The OpenSSL library - context preparation

To be able to latter secure the TCP connection, a context to store SSL/TLS
settings must be created in the first place, this encompasses defining a
method, and thus, establishing the role. For a client by calling
TLSvl 2 client_method(), for a server by calling TLSvl_2_ server_method().

Then, the returned method (a pointer) can be used to create the context, e.g.,
for a client:

SSL_METHOD *method;

SSL_CTX *ctx;

method = TLSvl_2_ client_method();

ctx = SSL_CTX_new(method);

Further settings regarding the context are required, namely loading a local
public key certificate and corresponding private key from local files.

This is required if the authentication method is based on public key certificates
and thus corresponding cypher suites are to be supported. The local certificate
is to be presented to counterparts during the TLS handshake (Hello messages)
as part of the negotiation.

In additional, and optionally, it’s possible to restrict SSL/TLS versions and
cypher suited to be supported .

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

OpenSSL - the local certificate

To authenticate both the client and the server, both are required to have a
public key certificate and the corresponding private key.

The server is always required to have one, for the client it’s optional, however,
the server may demand a client’s certificate. The local certificate and the
corresponding private key are loaded from a file into the context by calling
SSL_CTX_use_certificate_file() and SSL_CTX_use_PrivateKey_file() functions.

ctx = SSL_CTX_new(method);
SSL_CTX use_certificate_file(ctx, filenamel, SSL_FILETYPE_PEM);
SSL_CTX_use_PrivateKey _file(ctx, filename2, SSL_FILETYPE_PEM);

In this case, the PEM format is being used, with this format, both the certificate
and the private key may be stored on the same file, if so, filename2 would be
the same as filenamel.

It should be checked if the loaded private key matches the loaded certificate,
this can be accomplished by calling the SSL_CTX_ check_private_key(ctx)
function, if they don’t match, zero will be returned.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

OpenSSL - preparing the negotiation (optional)

Things are now prepared for the SSL/TLS negotiation; however, it may be wise
to restrict negotiation options. The negotiation establishes the SSL/TLS version
to be used, and the cypher suite to be used.

To set the minimal SSL/TLS version, for the created context, the following
function can be used:

SSL_CTX_set_min_proto_version(SSL_CTX *ctx, int version);

Where version can be zero, standing for the lowest available version, or one of
the following values, from lower to higher versions: SSL3 VERSION,
TLS1_VERSION, TLS1 1 VERSION, TLS1 2 VERSION.

TLSv1 is the same as SSLv3.1, starting from SSLv3.1, SSL was renamed to TLS.

Regarding cypher suites, by default there’s a significant number available to be
used on the negotiation, they are included on the Client Hello message sent to
the server. The list of supported cypher suites may be reduced by using the
following function:

SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str);

The provided string (str) has a special matching format, to include and exclude
cypher suites, based on their names, and features, like security level.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira ‘

OpenSSL - trusted entities (certificates)

Later, during the TLS handshake, the application is going to receive a public key
certificate from the counterpart, this is always the case for the client. The
server may or not demand the client’s public key certificate.

When the certificate is received, it must be checked if it’s valid, including if it
was issued by a trusted entity, possibly a trusted CA. For the issuer to be
trusted, it’s required be in certification chain leading to a certificate regarded
as trusted by the application.

Such a list of trusted certificates must be available and should be loaded into
the context for later checking. The following function may be used:

SSL_CTX_ load_verify locations(SSL_CTX *ctx, const char *CAfile,
const char *CApath);

CAfile is a filename in PEM format holding a set of certificates, and CApath the
name of a folder from where all existing files are loaded when verification is
requested. CAfile may be NULL, in that case it’s ignored, and the same goes for
CApath. In Linux systems, the usual folders where trusted CA certificates are
stored are /etc/ssl/certs/ or [etc/pki/tls/certs/. When using self-signed
certificates, each application should load the counterpart’s public key
certificate for latter checking.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira ‘

OpenSSL - requesting a certificate

As far as a public key certificates-based authentication cypher suite is selected,
the default behaviour is the server sending a certificate to the client and not
demanding a public key certificate from the client.

However, we may be interested in forcing the demand of a counterpart’s
certificate, this will be the case for the server side, making it demand a client’s
certificate on the Server Hello message. To demand a counterpart’s certificate
and make the handshake fail if it fails to obey, the following function can be
used:

SSL_CTX_set_verify(ctx, SL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT, NULL);

The last argument is a custom call-back function to check the received
certificate during the handshake, if NULL, as above, the default library function
will be used. This setting is mostly relevant on the server side, making the
server include a demand for the client’s certificate on the Server Hello
message. For a client, the effect is it will abort the handshake if the server’s
certificate is not valid, otherwise the handshake is always successful.

Once the handshake is concluded, applications can then inspect the SSL/TLS
attained connection and check if there’s a counterpart (peer) certificate, if it’s
valid, and other properties, thus making required validations.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira ‘

OpenSSL - securing the TCP connection

Until now, it has all been about preparing the context. Now things are ready to
secure the TCP connection. From the created context, a new SSL connection
must be created and associated with the connected socket. For a TCP client it’s
the socket attained after the successful call of the connect() function, for a TCP
server it’s the socket returned by the accept() function. As an example,
imagining the connected socket is stored in a variable called sok, and the
created context in a variable named ctx, then it would be:

SSL *sslConn;
sslConn= SSL_new(ctx);
SSL_set_fd(sslConn, sok);

The sslConn variable represents the SSL/TLS connection and is now associated
with the connected socket. The SSL/TLS handshake can now start, the client
calls SSL_connect(sslConn), and the server calls SSL_accept(sslConn). Both
should return value one, otherwise it means the handshake has failed and the
SSL/TLS connection has not been successfully established. Applications can
now start exchanging information by reading and writing bytes through the
SSL/TLS connection (sslConn). Once they are done, they should first close the
SSL/TLS connection by calling SSL_free(sslConn), and only then close the socket
itself.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira ‘

OpenSSL - sending and receiving bytes
Once the TCP connection is secured, data exchange can start.

Instead of using the read() function to read bytes from the socket, and the
write() function to write bytes into the socket, now these functions are
replaced by SSL_read() and SSL_write():

int SSL_read(SSL *ssl, void *buf, int num);
int SSL_write(SSL *ssl, const void *buf, int num);

Instead of receiving a connected socket as first argument they receive the
SSL/TLS connection, elsewhere they are similar to the standard read() and
write(). If successful they return the number of byte read or written, a returned
value below one indicates an error.

We have stepped into data exchange, but one vital stage may be missing. The
counterpart’s public key certificate checking. This is always required for the
client, the server may or not receive a certificate from the client.

If the SSL_CTX_set_verify() function was used to enforce the SL_VERIFY_PEER
flag, and the received certificate is invalid, then the handshake fails. But before
starting data exchanges the received certificate should be checked.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira ‘

OpenSSL - checking the peer certificate

The counterpart’s certificate (peer’s certificate) is actually checked during the
handshake as established for the context with the SSL_CTX set verify()
function, however, if SL_ VERIFY_PEER was not enforced, even if it’s invalid, the
handshake is successful, and the SSL/TLS connection is established. This
validation confronts the certificate’s issuer against the list of trusted certificates
established for the context trough the SSL CTX load verify locations()
function.

To get the result of the certificate validation during the handshake the
following function can be used afterwards:

SSL_get_verify_result(sslConn)

If the received certificate is valid, this function returns the value X509 _V_OK.
However, if the peer hasn’t provided any certificate, it returns X509 V_OK as
well. So, we should first check that by attaining the peer certificate:

X509* cert=SSL_get_peer_certificate(sslConn);

If there’s no peer certificate it returns NULL, otherwise a pointer to the
certificate is returned, further details regarding the certificate fields can then
be inspected.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

OpenSSL - checking the peer's name

Depending on the scenario, an application may want to check if the received
certificate has a common name (CN) attribute on the subject field, matching
the DNS name of the counterpart it’s expecting to be talking with. This is vital
for a client talking with a public server over the internet, meaning the
certificate was issued for that specific server and thus authenticates the server.

Once the certificate is attained (SSL get peer certificate), to store the
subject’s field in a string the following code can be used:

#define BUF_SIZE 500
char subject[BUF_SIZE];
X509 NAME_oneline(X509 get subject_name(cert),subject,BUF_SIZE);

The common name is at the end of the subject string, started by “/CN=" so we
can get it by using:

char *cn=strstr(subject,”/CN=");
ch+=4,;

Then we can check if the string starting at cn matches (strcmp) the expected
DNS host name.

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

Example - checking certificates of HTTPS servers

For the sake of applying what has been studied, next we will analyse a client
application that establishes a TCP connection with standard HTTPS servers on
the internet (port number 443) and then secures it with SSL/TLS, the objective
is presenting information about the certificate provided by the server.

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#include <openssl/crypto.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>

#define BUF_SIZE 500
#define SERVER_PORT "443"

int main(int argc, char **argv) {
int err, sock;
char line[BUF_SIZE];
struct addrinfo req, *list;

if(argc!=2) {
puts("HTTPS server's DNS name is required as argument");
exit(1);
}

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

Example - checking certificates of HTTPS servers

Initially it’s a standard TCP client. In this case, only once the socket is
connected, then the SSL/TLS context is settled:

bzero((char *)&req,sizeof(req));

req.ai_family = AF_UNSPEC;
req.ai_socktype = SOCK_STREAM;
err=getaddrinfo(argv[1l], SERVER_PORT , &req, &list);
if(err) {
printf("Failed to get server address, error: %s\n",gai_strerror(err)); exit(1); }

sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
if(sock==-1) {
perror("Failed to open socket"); freeaddrinfo(list); exit(1);}

if(connect(sock, (struct sockaddr *)list-»>ai_addr, list->ai_addrlen)==-1) {
perror("Failed connect"); freeaddrinfo(list); close(sock); exit(1);}

puts("Connected (TCP)");
const SSL_METHOD *method=SSLv23 method();
SSL_CTX *ctx = SSL_CTX new(method);

// ABORT ON HANDSHAKE IF CERTIFICATE UNTRUSTED
//SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER,NULL);

// LOAD TRUSTED CA CERTIFICATES
SSL_CTX load _verify locations(ctx,NULL,"/etc/ssl/certs");

// Disable some cyphers and require HIGH, standing for 128-bits or above keys
SSL_CTX set cipher list(ctx, "HIGH:!aNULL:!kRSA:!PSK:!SRP:!MD5:!RC4");

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

Example - checking certificates of HTTPS servers

Continue with the SSL/TLS context setup, and then start the handshake, if
successful, start analysing the server’s public key certificate.

// SOME SERVERS MAY NOT SUPPORT TLS1.2, so don’t uncomment this
// SSL_CTX_set_min_proto_version(ctx,TLS1 2 VERSION);

SSL *sslConn = SSL_new(ctx);
SSL_set_fd(sslConn, sock);
if(SSL_connect(sslConn)!=1) {
puts("TLS handshake error");
SSL_free(sslConn);
close(sock);
exit(1);
}

puts("Secured connection (SSL/TLS)");
X509* cert=SSL_get peer_certificate(sslConn);
X509 free(cert);

if(cert==NULL) {
puts("Sorry: no certificate provided by the server");
SSL_free(sslConn);
close(sock);
exit(1);
}

X509 NAME_oneline(X509 get subject name(cert),line,BUF_SIZE);
printf("Server's certificate subject: %s\n",line);

Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

Example - checking certificates of HTTPS servers

Check if the subject’s CN attribute matches the server’s DNS name.

char *cn=strstr(line,“/CN=");
if(cn==NULL) {
puts("Server's certificate CN not found");

}
else {
cn+=4;
if(strcmp(cn,argv[1])) {
puts("SECURITY WARNING: the server's certificate CN attribute doesn't match");
}
else
printf("Server name (%s) matches.\n", cn);
}

X509_NAME_oneline (X509 get_issuer_name(cert),line,BUF_SIZE);
printf("Server's certificate issuer: %s\n",line);

printf("TLS version: %s\nCypher suite: %s\n",SSL_get cipher_version(sslConn),SSL_get cipher(sslConn));
if(SSL_get_verify_result(sslConn)!=X509 V _OK) {

puts("Sorry: untrusted server certificate");
SSL_free(sslConn);

close(sock) ; In a lab class, students will
exit(1); . . .
} compile and test this client
puts("The certificate is trusted"); application by Contacting pUbIlC
SSL_free(sslConn); HTTPS servers and others on the
close(sock); .
exit(0); Internet.
}

‘ Instituto Superior de Engenharia do Porto — Departamento de Engenharia Informatica — Redes de Computadores (RCOMP) — André Moreira

	Slide 1
	Slide 2: Network security and secure communications
	Slide 3: Authentication, privacy and integrity
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

