
Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) – 2018/2019 1/8

SWitCH – Computing systems and networks (SCOMRED)

2018/2019

Laboratory Script – Week 06

IMPERIOUS: After each practical activity (in yellow), students are
supposed to reflect on results, and wait for the teacher’s
acknowledgment before progressing to the next practical activity in this
script.

1. HTTP server and Web UI

The HTTP protocol aims at transferring contents between applications, it’s based on the client-server
model and operates over a TCP connection established by the HTTP client towards the HTTP server.

Once the TCP connection is established the HTTP client sends a request (HTTP request) using one
method (HTTP request type, e.g. GET, POST, PUT) directed to a server side resource identified by a
URI, in response the server sends back the resource’s content.

Server side resources may be static or dynamic, static resources are most often stored in files, so in that
case the URI referrers to a file and the server simply replies back with the file contents. Dynamic
contents are generated by the server on runtime and unlike static resources they will be different for
different requests over the same URI.

Contents transfer is not limited to server to client direction, clients may also send a content to the
server. Requests with the GET method have no body, so in this case client to server data transfer is
rather limited, yet some data may be embedded in the URI, usually called the query string.

Requests with POST and PUT methods may have a body, so by using them, any sort of content can be
transferred from the client to the server.

The HTTP protocol and all kinds of contents that can be transferred by using it (HTML, images, etc.)
can be used to offer a Graphical User Interface (GUI) by an application, to achieve that a small HTTP
server must be included in the application. This is called a Web UI.

Here, small HTTP server stands for an HTTP server that does not fully implement the HTTP
protocol in all its features, but only features required for the specific use of that application.

HTTP messages processing

All HTTP messages (requests and responses) have the same general format, the first part (header) is
made of a variable number of variable length text lines, each line ending with CR/LF. An empty line
informs the header has ended, and thus, if it exists, next it’s the message’s body. If a body exists, then,
by now, whoever is reading the messages (client or server) is aware of that because has received header
lines about the body, in special the Content-length header field.

Application
with Web UI

HTTP
Server

HTTP

Client

(Web Browser)

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) – 2018/2019 2/8

2. A simple HTTP server implementation in Java (HTTPmessage.java)

We are now going to add a small HTTP server to our TCP Chat server project so that users are able
to interact with it by using a standard Web Browser. For that purpose we are going to create a new
class named HTTPmessage.

Starting by the most basic features, we should first address the issue of reading and writing variable
length text lines in HTTP format (CR/LF terminated). Concerning writing, there are no big issues, we
known the text line length so it’s just a matter of writing the line through the TCP connection (Output
stream):

public class HTTPmessage {

 private static final int CR=13;
 private static final int LF=10;

 private static final String VERSION="HTTP/1.1";

 private static final String CONTENT_TYPE="Content-type:";
 private static final String CONTENT_LENGTH="Content-length:";
 private static final String CONNECTION="Connection:";

 private static final String[][] knownFileExt = {
 { ".pdf" , "application/pdf" } ,
 { ".js" , "application/javascript" } ,
 { ".txt" , "text/plain" } ,
 { ".gif" , "image/gif" } ,
 { ".png" , "image/png" }
 };

 static private void writeHeaderLine(DataOutputStream out, String line)
 throws IOException {
 out.write(line.getBytes(), 0, line.length());
 out.write(CR); out.write(LF);
 }

The writeHeaderLine() method receives as arguments the DataOutputStream where to write the
line and the text line to be written as a String.

Reading is not so straightforward because we don’t know in advance how long the text line to be
received is. The only possible solution is reading bytes one by one until CR/LF is received:

static private String readHeaderLine(DataInputStream in) throws IOException {
 String ret="";
 int val;
 do {
 val=in.read();
 if(val==-1) throw new IOException();
 if(val!=CR) ret=ret+(char)val;
 }
 while(val!=CR);
 val=in.read(); // read LF
 if(val==-1) throw new IOException();
 return ret;
}

The readHeaderLine() method receives as argument the DataInputStream from where the text line
is to be read and returns the received text line as a String. The read() method is used to read one byte
at a time and add it to the string until CR is received. If the read() method returns -1, that stands for an
error an thus, an IOException in created an sent to the calling method.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) – 2018/2019 3/8

Both these methods are defined as static in our HTTPmessage class and they are to be used by the
non-static part of the class.

The non-static part has several attributes representing the message, they may represent the properties
of an HTTP message that has just been received or of a message to be sent.

//// NON-STATIC (INSTANCE) ELEMENTS

private boolean isRequest;
private String method;
private String uri;
private String status;

private String contentType;
private byte[] content;

Two constructors are defined, the HTTPmessage(DataInputStream in) receives as argument a
DataInputStream from where to read the message to be store in the new object.

public HTTPmessage(DataInputStream in) throws IOException {
 String firstLine=readHeaderLine(in);
 isRequest= !firstLine.startsWith("HTTP/");
 method=null;
 uri=null;
 content=null;
 status=null;
 contentType=null;

 String[] firstLineComp=firstLine.split(" ");
 if(isRequest) {
 method=firstLineComp[0];
 uri=firstLineComp[1];
 }
 else { // response
 status=firstLineComp[1] + " " + firstLineComp[2];
 }

 String headerLine;

 do {
 headerLine=readHeaderLine(in);
 if(headerLine.toUpperCase().startsWith(CONTENT_TYPE.toUpperCase())) {
 contentType=headerLine.substring(CONTENT_TYPE.length()).trim();
 }
 else
 if(headerLine.toUpperCase().startsWith(CONTENT_LENGTH.toUpperCase())) {
 String cLen=headerLine.substring(CONTENT_LENGTH.length()).trim();
 int len;
 try { len=Integer.parseInt(cLen); }
 catch(NumberFormatException ne) { throw new IOException(); }
 content = new byte[len];
 }
 }
 while(!headerLine.isEmpty());

 // READ CONTENT
 if(content!=null) in.readFully(content,0,content.length);
}

This method can be used to read both HTTP requests and responses, it starts by reading the first line
(request line in the case of a request or status line in the case off a response). If this line doesn’t start by
“HTTP/” we assume it’s a request, otherwise a response.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) – 2018/2019 4/8

Further processing of the first line depends on being a request or a response, for a request the method
and URI are extracted and stored in the new object, for a response, the only the status code is extracted
and stored in the new object.

Next we step into the header lines processing, lines are read until an empty line is received, only the
Content-type and Content-length header lines are processed, other lines are silently ignored.

Once the header has finished, if there was a Content-length header line, then the body is read and
stored in the new object.

The other constructor, HTTPmessage(), creates a new empty HTTPmessage to be later defined:

public HTTPmessage() {
 isRequest=true;
 method=null;
 uri=null;
 content=null;
 status=null;
 contentType=null;
}

Beyond several get and set interface methods to access properties, a method to send an
HTTPmessage is also defined, if the message properties are inconsistent, then it returns false.

public boolean send(DataOutputStream out) throws IOException {
 if(isRequest) {
 if(method==null||uri==null) return false;
 writeHeaderLine(out, method + " " + uri + " " + VERSION);
 }
 else {
 if(status==null) return false;
 writeHeaderLine(out,VERSION + " " + status);
 }

 if(content!=null) {
 if(contentType!=null) writeHeaderLine(out,CONTENT_TYPE + " " + contentType);
 writeHeaderLine(out,CONTENT_LENGTH + " " + content.length);
 }
 writeHeaderLine(out,CONNECTION + " close");
 writeHeaderLine(out,"");
 if(content!=null) {
 out.write(content,0,content.length);
 }
 return true;
}

Depending on being a request or a response, the proper request line or status line is written through the
provided DataOutputStream.

If the message has a content, then the corresponding Content-type and Content-length header lines
are also written. To finish the header Conection: close and an empty line are then written.

If there’s a content, then the content is sent after the header.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) – 2018/2019 5/8

A message content can be set from either a string or a file (for static resources):

public void setContentFromString(String c, String ct) {
 content=c.getBytes(); contentType=ct;
}

public boolean setContentFromFile(String fname) {
 File f=new File(fname);
 contentType=null;
 if(!f.exists()) {
 content=null;
 return false;
 }
 for (String[] k : knownFileExt) {
 if (fname.endsWith(k[0]))
 contentType = k[1];
 }
 if(contentType==null) contentType="text/html";

 int cLen = (int) f.length();
 if(cLen==0) {
 content=null;
 contentType=null;
 return false;
 }

 content = new byte[cLen];

 DataInputStream fr;
 try {
 fr = new DataInputStream(new FileInputStream(f));
 try { fr.readFully(content,0,cLen); fr.close(); }
 catch(IOException ex) {
 System.out.println("Error reading file");
 content=null;
 contentType=null;
 return false;
 }
 }
 catch(FileNotFoundException ex) {
 System.out.println("File Not Found");
 content=null;
 contentType=null;
 return false;
 }
 return true;
}

If setting the content from a string, the caller must also specify the content-type.

For files only a small number of file types (filename’s extension) are supported. The default content-
type in text/html. If the file doesn’t exist or another error occurs when reading it this method returns
false.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) – 2018/2019 6/8

3. Adding the HTTP server to the TCP Chat project

Now that we have HTTP messages processing (very basic implementation) you can add the
HTTPmessage class to the TCP server project and implement the server itself.

In essence an HTTP server is a TCP server, so if we have previously implemented the TCP server
through classes TcpServer and TcpServerConn we are now going to add two similar classes, HttpServer
and HttpServerConn, working pretty the same way.

Starting with the main() class (TcpChatSrv), we are now going to start an additional thread for HTTP
connections:

public class TcpChatSrv {
 private static final int TCP_SERVER_PORT=9999;
 private static final int HTTP_SERVER_PORT=8080;
 private static final String WEB_ROOT_FOLDER="www";

 public static void main(String args[]) throws Exception {
 Thread tcpServer=new TcpServer(TCP_SERVER_PORT);
 tcpServer.start();
 Thread httpServer=new HttpServer(HTTP_SERVER_PORT, WEB_ROOT_FOLDER);
 httpServer.start();

 tcpServer.join();
 }
}

The HttpServer class constructor receives the port number and also the folder from where to fetch
files for static contents.

The HttpServer class is identical to the TcpServer class:

public class HttpServer extends Thread {

 private int serverPort;
 private String webRootFolder;

 public HttpServer(int port, String root) {serverPort=port; webRootFolder=root;}

 @Override
 public void run() {
 ServerSocket sock;
 Socket cliSock;
 try { sock = new ServerSocket(serverPort); }
 catch(IOException ex) {
 System.out.println("HTTP server: local port number " + serverPort +
 " not available - server aborted");
 return;
 }
 System.out.println("HTTP server: ready, listening on local port number " +
 serverPort);
 while(true) {

 try { cliSock=sock.accept(); }
 catch(IOException ex) {
 System.out.println("HTTP server: failed to accept client connection");
 cliSock=null;
 }
 if(cliSock!=null) {
 Thread cliThread = new HttpServerConn(cliSock,webRootFolder);

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) – 2018/2019 7/8

 cliThread.start();
 System.out.println("HTTP server: new client connection from " +
 cliSock.getInetAddress().getHostAddress() +
 ", port number " + cliSock.getPort());
 }
 }
 }
}

The HttpServerConn class constructor receives a socket, connected to the client and is supposed to
read an HTTP message from it and then send back an HTTP response:

public class HttpServerConn extends Thread {
 private Socket cli;
 private String webRootFolder;
 private DataInputStream sIn;
 private DataOutputStream sOut;

 public HttpServerConn(Socket s, String root) { cli=s; webRootFolder=root;}

 @Override
 public void run() {
 try {
 sIn = new DataInputStream(cli.getInputStream());
 sOut = new DataOutputStream(cli.getOutputStream());
 HTTPmessage request = new HTTPmessage(sIn);
 HTTPmessage response = new HTTPmessage();
 response.setResponseStatus("200 OK");

 if(request.getMethod().equals("GET")) {
 if (request.getURI().equals("/messages")) {
 String content = "<html><body><h1>TCP Chat Messages:</h1><hr>";
 content += ChatMessages.getLastHTML();
 content += "<hr /></body></html>";
 response.setContent(content, "text/html");

 }
 else { // NOT GET /messages , THEN IT MUST BE A FILE
 String fullname = webRootFolder + "/";
 if (request.getURI().equals("/")) fullname = fullname +
 "index.html";
 else fullname = fullname + request.getURI();
 if (!response.setContentFromFile(fullname)) {
 response.setContentFromString(
 "<html><body><h1>404 File not found</h1></body></html>",
 "text/html");
 response.setResponseStatus("404 Not Found");
 }
 }
 }
 else {
 response.setContentFromString(
 "<html><body><h1>ERROR: 405 Method Not Allowed</h1></body></html>",
 "text/html");
 response.setResponseStatus("405 Method Not Allowed");
 }
 response.send(sOut);
 }
 catch(Exception ex) { System.out.println("HTTP I/O error"); }
 try { cli.close(); } catch(Exception ex) { System.out.println(
 "HTTP I/O error closing client connection"); }
 }
}

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) – 2018/2019 8/8

The HttpServerConn run() starts by getting the streams from the socket, then receives an HTTP
message by calling the TCPmessage constructor. An empty response HTTP message is created and
the response status is set to 200 OK, this will make this message to be a response.

For now we will only handle GET requests, so if that’s not the case, a 405 Method Not Allowed
response is sent.

In the case of a GET, we will handle dynamically requests for URI /messages, and provide for that an
HTML page with the last chat messages. With that goal, a new method getLastHTML() was added to
class ChatMessages:

public static synchronized String getLastHTML() {
 String res="";
 for(int i=0;i<numMessages;i++) {
 res=res+"<p>" + lastMessages[i] + "</p>";
 }
 return res;
}

This method simply returns a string with last chat messages, each within a <p> HTML tag.

If the GET is not for the /messages URI, then we assume it must be a file stored in the provided
Web Root Folder.

PRACTICE:

Implement what has been described so far. You may download all files from Moodle.

In summary:

1. Pickup your TcpChatSrv project

2. Add new classes: TCPmessage; HttpServer; HttpServerConn

3. Add features to old classes: TcpChatSrv; ChatMessages

4. Setup web root folder and test

Before checking the /messages URI processing through the GET request, we’ll check if our HTTP
server is properly processing GET requests for static files.

PRACTICE:

On your project’s root folder create a new directory named www. Download into it HTML and image
files provided on Moodle. They include an index.html file and two image files for testing. As usually
happens with HTTP servers, a GET request for the web root folder (GET /) will be replied by our
HTTP server with the content of a file named index.html.

Start the server application (TcpChatSrv), it now includes an HTTP server listening on port number
8080.

Next, use your personal Web Browser to open URL http://localhost:8080, you should be able to see
the index.html file content and the two referred images.

The index.html page provides a link to the URL http://localhost:8080/messages, it will open in a
separate browser window/tab the list of last exchanged chat messages.

Use the old TcpChatCli application to post some chat messages, to see them you must then reload the
http://localhost:8080/messages page.

For now this is all our Web UI is capable of, but that’s a start. All background is settled for much more.

