
Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 1

Networking: IPv6, UDP and TCP

Network Programming in Java – UDP and TCP

SCOMRED, November 2018

IPv6 (Internet Protocol version 6)

In nowadays internet, two versions of the IP protocol are

being used at the same time, version four and version six.

IPv6 is meant to totally replace IPv4, but that won’t be in

the near future.

One major difference between IPv4 and IPv6 is the number of

bits making a node address, 32 bits in IPv4, and 128 bits in

IPv6.

Despite this difference, in IPv6 addresses are use the same

way as with IPv4, the prefix length indicates how many leading

bits of the address are representing the network, that part of

the address is the network prefix.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 2

Network Applications

Network interface

UDPTCP

IPv4 IPv6

In the present, most nodes are dual-

stack, they have both an IPv4 layer

and an IPv6 layer. By using this

strategy nodes can communicate

through the internet with IPv4 nodes

and also with IPv6 nodes, and this

will continue to happen while the

internet changes to IPv6.

IPv6 addresses representation

IPv6 node addresses are rather long (128 bits), to represent

them in a human suitable way, they are split into 8 sets of 16

bits each. Each set of 16 bits is represented in hexadecimal

and separated from other sets by a colon:

xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx

Some writing shortenings are possible: within each set,

leading zeros may be removed; the biggest sequence of zeros

may be replaced by a double colon.

For instance: fd1e:0078:0a04:0005:0000:0000:0000:0034/64

Can also be represented as: fd1e:78:a04:5::34/64

This node address belongs to network: fd1e:78:a04:5::/64

The first valid node on this network is fd1e:78:a04:5::1/64

The last valid node on this network is:

fd1e:78:a04:5:ffff:ffff:ffff:ffff/64

Unlike with IPv4, in IPv6 there’s no broadcast address, so the

equivalent address can be used by a node.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 3

Layer 4

In the first lecture we have studied how networks operate up

to layer three (the network layer).

Yet, what layer three provides (IPv4 or IPv6) is not suitable

to be used by network applications. Two main issues would

arise if applications were to use IP directly:

- IP is unreliable, meaning when sending data through the

network there’s no guarantee it will be delivered, even

worst the sender will never known if data has arrived to the

destination node or not.

- IP doesn’t identify network applications, the IP protocol

only handles node addresses. However, within each node,

usually there are many network applications running, data

from different network applications running it the same node

can’t get mixed. So, with nothing else but IP, in each node,

only one network application could be running.

The layer four (transport layer) handles both these issues,

for both IPv4 and IPv6, the layer four implementations that

operate over them are TCP and UDP.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 4

Port numbers

Both UDP (User Datagram Protocol) and TCP (Transmission

Control Protocol) handle the issue of identifying applications

the very same way, they use port numbers. Port numbers are 16

bits numbers assigned by the local operating system to network

applications as they request, they are unique within the node.

UDP and TCP packets have their own headers, while the header

of an IP packet contains the source and destination IP node

addresses, the header of UDP and TCP packets contains the

source and destination port numbers.

The destination port number represents a running network

application on the destination node address.

The source port number represents a running network

application on the source node address.

If UDP or TCP data is sent to a port number that is not being

used by any application on the destination node, that data is

lost.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 5

Layers, type identifiers and port numbers

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 6

ETHERNET

E-TYPE

IPv4

TYPE

0x0800

ARP

0x0806

IPX

0x8137

UDP

17

TCP

6

ICMPv4

1

Application

PORT PORT

PORT

8030500 305004576
22

4576

30500

Data
ETHERNET

header
FCS

800

IP header Data

6

TCP

header
Data

23

Data

IPv6

0x86DD

Application HTTP Server SSH Server Application Application Application

Layer two

(network interface)

Layer three

Layer four

NEXT-H

6

17
ICMPv6

58

The image above represents how network layers interoperate

within a node. They all share a same resource, the network

interface, and yet data doesn’t get mixed.

We can also see that despite the existence of two IP layers,

there’s only one UDP layer and one TCP layer.

TCP - reliability

Regarding reliability, UDP doesn’t add any

significant feature to IP, so UDP is as

unreliable as IP. Specifically, when UDP is used

to send data, the sender never known it was ever

delivered to the destination application.

TCP on the other hand is reliable, and it’s also

connection oriented, while UDP is connectionless.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 7

IPv4/IPv6

Network

Applications

TCP UDP

Layer 2 Network

Interface

TCP/IP stack

Being connection oriented means that before actually sending

data, a connection must be established between two running

applications. It’s called the TCP connection.

Once the TCP connection is established, then it behaves like a

dedicated reliable channel for data transfer between the two

applications. Bytes may be written in one side and they will be

reliably available for reading on the other side in the same

exact sequence.

The client-server model

Almost every network application dialogues with other network

applications by using a very simple model called client-server

model. For this model to work, each application must take a

different role (client or server) and be aware of it.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 8

Client Server
REQUEST

Server

ServerClient
REPLY

Client

ProcessingWaiting

1st – It all starts by the

client initiative of sending

a request to the server. To

do that it must know the

server’s IP address and port

number.

2nd – The server has received

the request and is processing

it. Meanwhile, the client is

waiting for a response.

3rd – The server sends back a response to the client. The

client address (IP and port number) are known to the server

from the moment the request was first received.

Port numbers used by servers are fixed and standard for each

type of service. Examples: TCP/22 for SSH and TCP/80 for HTTP.

Java language programming basics

Unlike with other programming languages, when a program

written in Java is compiled, the resulting product is not

suitable to be run by the operating system.

Programs written in Java are intended to be run in a special

environment called the Java Virtual Machine or Java Runtime

Environment (JRE).

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 9

Operating system

Hardware e Firmware

Applications

JRE

Java
Application

JRE

Java
Application

Java is object-oriented, an object is made

of variables (data) and methods (functions).

Objects are classes’ instances, to create an

object, a class must be declared first, and

then objects can be created from that

declared class.

Classes, methods and variables must be declared and they have

names, objects are created in runtime by using the keyword new

followed by the calling of the constructor method.

The constructor is a method with the same name of the class,

it’s often used to initialize stuff within the object upon

creation.

Java – variables and objects

When a new object is created, the constructor returns a

reference to it, that reference has to be stored in a variable,

otherwise you won't be able to use that object.

In fact, the Java virtual machine performs a periodic garbage

collecting, and unreferenced objects are automatically removed.

When assigning an object reference to a variable, the variable

must be of the same class as the referred object.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 10

Methods and variables declared in a class can be declared as

public or private. If private, they can be accessed only from

methods of the class, if public, they can be accessed from

methods of other objects and classes.

In object-oriented programming you should enforce variables

encapsulation, in simple words, all variables are declared as

private, yet they are indirectly publicly accessible through a

set of public methods.

The only required knowledge to be able use the object is their

public methods, these publics methods make the object’s

interface, other objects interact by using the interface.

Network sockets in Java

Under the API (Application Programming Interface) point of view, date

is sent and receive from the network by using sockets.

In Java, sockets are objects (objects of the Socket class or a

subclass), in other languages they may be different things, and yet

they all represent the same: a mean through which the application can

use the network.

In this course, sockets are going to be used to: send and receive UDP

packets; establish TCP connections; transfer data through an

established TCP connection. These operations are going to be based on

the client-server model.

One thing both UDP and TCP clients must known in the first place is

the server application address: the IP node’s address of the node

where it’s running and the local port number it’s using. This is

required for the client to be able to send the request to the server

application.

Usually the IP node address is provided by the user interacting with

the client application, either an IPv4 address, an IPv6 address or

the node’s DNS name. The server’s local port number is fixed and

commonly hardcoded, both on the client application and the server

application.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 11

UDP clients and servers

UDP has some notorious limitations, it’s unreliable and

connectionless. One other limitation is about the content length of

each UDP packet (datagram), it can hold only up to 512 bytes.

Because UDP is connectionless, UDP client-server interactions are in

most cases limited to single UDP packets:

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 12

UDP server

Request
Receive DatagramSend Datagram

Process Request

Send Datagram

UDP client

Receive Datagram

UDP Datagrams

Reply

The UDP client sends a

request (a single UDP

packet) and the server

replies back with a response

(a single UDP packet).

Because UDP is unreliable, either or both the

request and the response may be lost. In that case

the UDP client application hangs waiting for a

response that will never arrive.

If data length of either the request or the response exceeds 512

bytes, they could be split into several UDP datagrams, but this turns

the implementation rather more complex. In this case using TCP

instead of UDP might be an easier alternative.

In Java there’s a specific subclass of the Socket class to handle

UDP, it’s the DatagramSocket class.

DatagramSocket class instantiation

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 13

If we intend to implement a UDP server application, the socket

must have a fixed UDP local port number:

DatagramSocket mySocket = new DatagramSocket(9999);

The UDP client application should then send its request to UDP

port number 9999 on the server node. Notice port numbers

bellow 1024 are available only to the system and

administrators, ordinary users are not able to use them.

Regarding the UDP client application local port number, it can

be any available port number on its node, to get that the

client calls the constructor with no arguments:

DatagramSocket mySocket = new DatagramSocket();

There’s no need for the client port number to be fixed because

when the server receives the requests it takes knowledge of

both the client’s IP node address and the client’s local port

number, thus when replying back it uses these elements to

settle the response’s destination address.

The InetAddress class

To store and handle IP addresses (both IPv4 or IPv6 addresses) Java

provides the InetAddress class.

The getByName() static method receives as argument a string, it can

be either an IPv4 address representation, an IPv6 address

representation or a node’s DNS name. This method creates and returns

a new instance of the class (object) with the given IP address stored

in it.

The getHostAddress() method returns a string containing the human

readable representation of the stored IP address.

The getByName() method will be typically used on the client

application to create a InetAddress class object with a user provided

IP address stored in it. It will be latter used when sending the

request to the server application.

The getHostAddress() method may be used to present the source address

of a received UDP datagram, or in case of TCP the source address of

an incoming TCP connection request.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 14

The DatagramPacket class

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 15

Represents a UDP packet. Before sending a UDP datagram, a

DatagramPacket object must be created, it will also be

required when receiving a UDP datagram to store it. Has

several public methods to interact with it’s internal data:

Data – Data transported by the packet, either to be sent or

that has been received:

void setData(byte[] buf, int offset, int length);

byte[] getData();

Length – the number of bytes to be sent or that have been

received:

void setLength(int length);

int getLength();

Address – the IP remote address (where to send the packet, or

from where it was received):

void setAddress(InetAddress addr);

InetAddress getAddress();

The DatagramPacket class

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 16

Port – the remote UDP port number (where to send the packet or

from where the packet was received):

void setPort(int port);

int getPort();

The DatagramPacket class has several constructors, the two

most often used are:

DatagramPacket(byte[] buf, int length);

DatagramPacket(byte[] buf, int length, InetAddress address, int port);

The first one is suitable to create an object to store an

incoming packet. It only settles the place to store its

transported data (content/payload) and the maximum allowed

packet size. The remote IP address and the remote port number

are available once the packet is received.

Sending an UDP packet

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 17

To send a UDP packet you must:

1st Create a UDP socket (DatagramSocket).

2nd Create a DatagramPacket, settle it’s data and the

destination address.

3rd Call the send() method of the DatagramSocket and provide it

the DatagramPacket as argument. Example:

String phrase=“Testing”;

DatagramSocket mySocket = new DatagramSocket();

DatagramPacket udpPacket = new DatagramPacket(phrase.getBytes(), phrase.length,

InetAddress.getByName(“192.168.10.1”), 9999);

mySocket.send(udpPacket);

mySocket.close();

This example sends a UDP datagram with the content “Testing”

to the UDP port number 9999 of the node with IPv4 address

192.168.10.1. When an application no longer needs a socket,

it should close it by calling the close() method.

Receiving a UDP packet

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 18

To receive a UDP packet you must:

1st Create a DatagramSocket and define a fixed local UDP port

number.

2nd Create a DatagramPacket and settle only the place where to

store its data and the maximum data size.

3rd Call the receive() method of the DatagramSocket providing

in the DatagramPacket. Notice the receive() method will block

the application until a UDP packet is received. Example:

byte[] data = new byte[30];

DatagramSocket mySocket = new DatagramSocket(9999);

DatagramPacket udpPacket = new DatagramPacket(data, 30);

mySocket.receive(udpPacket);

String phrase = new String(udpPacket.getData(), 0, udpPacket.getLength());

System.out.println(phrase + “ received from IP: " +

udpPacket.getAddress().getHostAddress() + " port: “ +

udpPacket.getPort());

mySocket.close();

TCP (Transmission Control Protocol)

Unlike UDP, TCP is reliable and connection-oriented. Because it’s

connection-oriented, before taking advantage of its reliability

features, a connection must be established, for that the two enrolled

applications must take different roles. In the client-server model:

The TCP client application requests a TCP connection establishment

(connect) with the server application. To be successful, on the other

side there must be a TCP server application than accepts that

request. Then the TCP connection is established.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 19

TCP client TCP server
TCP connection request

ACCEPT

TCP server

TCP connection

ACCEPT

CONNECT

TCP client

READ/WRITE WRITE/READ

To request the TCP connection

establishment the TCP client

must know the IP address of

the node where the server is

running and the local port

number it is using.

Once the TCP connection has been successfully established, then bytes

can be sent through it (write) and received from it (read). The

delivery of bytes written on one side is guaranteed on the other side

on the same sequence they where written.

TCP benefits and challenges - synchronization

A TCP connection is a dedicated and reliable communication channel

between two applications, through it, bytes are written on one side

and will be available for reading on the other side.

This is a significant improvement over UDP, and yet it presents its

own challenges.

Byte synchronization – receiving operations must match sending

operations on the counterpart application. If not so, one application

will get blocked on a reading operation, this happens because read

operations are blocking, when the reception of a UDP datagram is

requested or when the reading of some bytes on a TCP connection is

requested, the operations blocks until data is available.

Whereas in UDP synchronization is packet oriented, in TCP

synchronization is byte oriented. In UDP when you request the

reception of a packet you don’t specify the packet size, in TCP when

you request the reading of bytes you must specify how many bytes.

The big issue is, often, the TCP application doesn´t know how many

bytes the counterpart is sending. There are mainly to approaches to

solve this. One is, the sender previously announcing how many bytes

it’s going to send next. One other approach is establishing one byte

value to represent the end of sending.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 20

TCP benefits and challenges

When using TCP there’s another tricky situation on the server side.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 21

TCP client TCP server
TCP connection request

ACCEPT

TCP server

TCP connection

ACCEPT

CONNECT

TCP client

READ/WRITE WRITE/READ

The TCP server is blocked on the

accept operation until a

connection establishment request

arrives from a client. When that

happens a new socket is created,

the new socket represents the

connection with that specific

client and is totally dedicated

to that client only.

As clients connect to the server, the server ends up with several

sockets to manage: the initial socket where new client connection

establishment requests may arrive at any time, and sockets from

already established connections with current clients.

This is a problem, at any time the server may have to:

- Accept a new connection from a new client.

- Read an incoming request from a client through one of the already

established connections.

And it can’t tell what is going to happen first, so it can’t be

blocked waiting for one specific event of those to happen.

Asynchronous reception

The issue we have just been talking about is generally known as

asynchronous reception. It happens whenever an application has

several possible input sources and isn’t able to tell in which data

will be available first.

One possible, but not very efficient, solution is polling. Even

though by default socket’s input operations (e.g. receive, read and

accept) block indefinitely until the input event occurs, that can be

changed. In Java the setSoTimeout() method of the Socket class

settles the maximum blocking time for an input operation over it, in

milliseconds. If the operation takes longer it will be aborted and an

error (exception) produced.

The polling strategy consists on establishing a short input timeout

for every socket, and then going through each of them a trying the

input operation.

One more efficient approach to this problem is creating multiple

parallel running tasks, one for each socket. Then each task itself

will be blocked waiting for the input event on its socket, but the

server application in the overall is ready for any possible input

even.

Parallel tasks may be implemented as processes or threads, in the

case of Java we are going to use threads.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 22

The Socket class

In Java, a TCP client can request a TCP connection establishment by

creating a Socket class object using the following constructor:

public Socket(InetAddress address, int port) throws IOException

The provided IP address must match the node where the server is

running, and the port number, the local TCP port number the server

application is using.

In case of failure, for instance because the server application is

not running, this will generate an exception, otherwise the TCP

connection was successfully established and is represented by the

socket.

To implement the server side there’s a specific class named

ServerSocket, its constructor receives as argument the local TCP port

number where it will accept client’s connection requests.

public ServerSocket(int port) throws IOException

Of course, this will generate an exception if the requested port

number is already being used. Otherwise, the application will be then

ready to receive TCP connection requests, though incoming requests

will be on hold until explicitly accepted.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 23

The accept() method of the ServerSocket class

After creating the ServerSocket, clients' connection requests are not

declined, but they are put on hold in a queue until their turn

arrives and the accept method is called:

public Socket accept() throws IOException

If there are no pending requests for acceptance, this method blocks

until one arrives.

On success, accept() returns a new Socket class object representing

the TCP connection with that specific client.

Once the connection is established, on each side there’s a Socket

object representing the TCP connection.

Now, to be able to send and receive data, Java applications must get

the socket’s streams first:

public OutputStream getOutputStream() throws IOException

public InputStream getInputStream() throws IOException

Afterwards they can write bytes into the output stream and read bytes

from the input stream.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 24

Reading and writing bytes

Among others, the InputStream class has the following public methods:

int read() throws IOException

int read(byte[] b, int off, int len) throws IOException

The first one read one single byte and returns its value as integer,

it will have a value between 0 and 255. The second method reads len

bytes and stores them in buffer b, starting in position off.

Likewise, among others, the OutputStream class has the following

public methods:

void write(int b) throws IOException

void write(byte[] b, int off, int len) throws IOException

The first writes a single byte. The second writes len bytes, that are

stored in buffer b starting from position off.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 25

Multi-thread TCP servers in Java

We already know a TCP server has the asynchronous events issue to

handle. One effective way to handle that in Java is by creating

several threads, each dedicated to, and waiting for one event.

Because threads run in parallel, they won’t block each other.

In Java a thread is defined by a declaring class that implements the

Runnable interface, the class must define the run() method. This is

the method that will be called by the start() method of the Thread

class to actually start running the thread in parallel.

The class may be declared in either two ways:

- By declaring a subclass of the Thread class (extends the Thread

class). The Thread class implements the Runnable interface, so it

defines the run() method, thus when declaring it we must override the

inherited declaration (@Override annotation). Because the class is a

Thread’s subclass, instances have the start() method to turn them

into running threads.

- By declaring a new class that implements the Runnable interface.

With this solution, instances can’t be turned into running threads by

themselves. An additional object is required, an instance of the

Thread class, it’s used as an intermediary, it creates the running

thread and executes our run() method.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 26

TCP server example – the thread

Next we have an example of a class implementing the Runnable

interface, it will be used by a TCP server when creating threads to

attend clients.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 27

public class AttendClient implements Runnable {

private Socket cliSock;

public AttendClient(Socket s) {

cliSock=s;

}

public void run() { // thread execution starts

// TO DO: get cliSock input and output streams

// TO DO: read requests and write replies

cliSock.close();

} // thread execution ends

}

The AttendClient() class’s constructor (used in instantiation) stores

the Socket (connected to the client) in a private variable for latter

use when the run() method is called (by the start() method of the

Thread class).

TCP server example – the main loop

Server applications are most often designed to run for ever, this is

one of the few cases where infinite loops are ok:

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 28

Once the accept() method unblocks, the returned Socket is passed to

the AttendClient() on instantiation. The new instance of AttendClient

is then passed to the constructor of the Thread class.

The thread is now ready to start running by calling its start()

method, that in turn will call the run() method of AttendClient.

public class TcpServer {

public static void main(String args[]) {

static ServerSocket sock = new ServerSocket(9999);

static Socket nSock;

while(true) {

nSock=sock.accept(); // wait for a new connection

Thread cliConn = new Thread(new AttendClient(nSock));

cliConn.start(); // start running the thread in background

}

}

}

Concurrency and locking

All running threads in an application have access to same data

(public variables and methods), this of course raises concurrency

issues. The programmer must ensure two threads will never be

accessing the same data at the same time, specially if one or both

are changing that data, if that happens, results become

unpredictable.

Programming languages offer resources to control this, one is the

lock. A lock is also known as mutex (mutual exclusion), it can be

either on the released or acquired state.

When several threads try acquiring the same lock it’s guaranteed only

one thread is going to be successful, all other threads are putted on

hold until the lucky thread that acquired the lock releases it.

Bear in mind the lock doesn’t control access to anything beyond the

lock itself. It’s up to the programmer ensuring that every thread

acquires the appropriate lock before accessing some specific data.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 29

Intrinsic locks – in Java, each and every object and class has its

own dedicated lock, called intrinsic lock. Intrinsic locks are

indirectly acquired when the synchronized keyword is deployed.

Static and non-static

You might have noticed something odd, it was told classes have

intrinsic locks. This only makes sense if classes exist in runtime

and aren’t simple declarations of objects to be.

Variables and methods of a class are by default non-static, this

means they exist only in objects created from the class.

And yet, some variables and methods of a class can be declared to be

static, them they exist in the class and not in objects created from

the class. The static part of a class exists in runtime, it’s unique

and identified by the class name. The non-static part of the class

exists only on objects created from in, and they don’t have the

static part.

This clarification was required to appropriately talk about the

synchronized keyword usage. The most straightforward way to use

intrinsic locks is by declaring methods to be synchronized.

If a method is declared to be synchronized, when called, the

intrinsic lock is acquired by the caller, when the method returns,

the intrinsic lock is released. If the method is static then the

acquired lock belongs to the class, otherwise it belongs to the

object.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 30

Example – synchronized static methods

In the following totally static class, all methods are declared to be

synchronized. So, when called, they all acquired the class’s

intrinsic lock. This ensures it will never happen two threads running

any of these methods at the same time.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 31

public class MyCounter {

private static Integer value;

public static synchronized int get() { return value; }

public static synchronized void inc() {value++; }

public static synchronized void dec() {value--; }

public static synchronized void set(int v) {value=v; }

public static synchronized void reset() {value=0; }

}

Blocking the entire class or object for a method’s execution can be

excessive or too coarse in many cases.

A more accurate use of intrinsic locking can be achieved by declaring

a block to be synchronized with the intrinsic lock of a given object

or class.

Example – synchronized static methods

Now, imagine we want to add a new method to read a value from the

user’s terminal. If it was declared as synchronized, then the class

would be blocked while the user is typing, and that’s pointless.

Instead, we can lock the class (CLASSNAME.class) intrinsic lock only

when that’s in fact required.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 32

public class MyCounter {

private static Integer value;

public static synchronized void inc() { value++; }

public static synchronized void dec() { value--; }

public static void readVal() throws IOException {

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

System.out.print(“Enter a new value please: ");

int v = Integer.parseInt(in.readLine());

synchronized(MyCounter.class) { value=v; }

} }

A synchronized static method works the same ways as a block

synchronized to CLASSNAME.class. A synchronized non-static method

works the same ways as a block synchronized to self.

Don’t forget methods declared to be synchronized act on different

intrinsic locks depending on being static or non-static.

A careless programmer might forget that and create a buggy class like

the following:

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 33

Problems are on methods inc() and dec(), they are non-static, so by

declaring them synchronized, they lock the object and not the class,

however, they access the static variable named value that belongs to

the class and not to the object.

public class MyCounter {

private static Integer value;

public static synchronized int get() { return value; }

public synchronized void inc() { value++; }

public synchronized void dec() { value--; }

public static synchronized void set(int v) { value=v; }

public static synchronized void reset() { value=0; }

}

