
André dos Santos Cruz Moreira (asc@isep.ipp.pt) – November 2018 1/3

URI (Uniform Resource Identifier)

URL (Uniform Resource Locator)

URN (Uniform Resource Name)

Web Browsers and Web Servers

1. URI (Uniform Resource Identifier)

A URI is a string that identifies a resource, the resource may be a
static file (document), like for instance index.html, or an application
like for instance calculate.

The URI definition encompasses both the URN and URL concepts.

Resources are physically located in servers, an URN is a globally unique
string that identifies a resource by identifying not only its name but
also the server where the resource is.

Within a server, resources are often placed in a directory structure,
so to identify them within the server we must include the path to reach
it from the root folder (/). For instance:

/pages/info/document-list.html

This is a URI but it’s neither a URN nor a URL because it doesn’t
identify the server where this resource is stored.

A URN identifies the server where the resource is stored in the generic
form:

{SERVER}/{PATH-TO-RESOURCE}/{RESOURCE}

The {SERVER} represents a network node’s address, usually a DNS name,
but it may also be an IPv4 or IPv6 node address.
A URN is globally unique because we assume the {SERVER} is globally
unique, and within the same server we can’t have two resources with a
same name and same path location.

Of course, every URN is also a URI, but not every URI is a URN.

André dos Santos Cruz Moreira (asc@isep.ipp.pt) – November 2018 2/3

2. URL (Uniform Resource Locator)

The URL goes one step further, it not only identifies the resource
globally like a URN, but also specifies the way to access it, usually
by including a protocol specification.

The generic of a URL is:

{ACCESS}://{SERVER}/{PATH-TO-RESOURCE}/{RESOURCE}

The {ACCESS} part of the URL specifies a mean of accessing the resource
on the server, typically by using and appropriate content transfer
protocol, like for instance HTTP, HTTPS or FTP.

In this case, the {SERVER} specification may also, optionally, include
elements related to the access to the server:

[{USERNAME}@]{SERVER}[:PORT-NUMBER]

When no {USENAME}@ is used, it’s assumed the access doesn’t require a
login, if no :PORT-NUMBER is used, the default standard port number for
the protocol is used, e.g. 80 for HTTP and 443 for HTTP.

3. Web Browsers and Web Servers

When you type on your browser something like server.example.com, that’s
not a URL, however the browser application by itself will assume a
default mean of accessing the server, usually HTTP. So the provided
string is regarded as a server’s DNS name and transformed into the URL,
following the example it would be http://server.example.com.

Keeping with the same example, apparently http://server.example.com
doesn´t represent a resource, it’s just a server and the way to access
it. In this case the browser application assumes the resource is / that
stands for a folder (folders are also resources), and this case is the
root folder of the documents’ directory tree on the server side.

Regarding HTTP, browsers also assume a default HTTP access method and
that’s GET, so to exactly describe what a browser will do when
server.example.com is provide it’s:

- Opens a TCP connection with port number 80 of the server with DNS
name server.example.com.

- Send through it an HTTP request GET /

How a request for a folder is handled by the server, depends on the
server’s configuration, they may provide an HTML page with the folder’s
content (objects listing). Nevertheless, most HTTP servers are
configured to return back instead the content of a specific file present
in the folder, usually a file named index.html.

Servers may also send back a response asking the browser to redirect
the request to a different URL, often the same URL using HTTPS instead
of HTTP.

André dos Santos Cruz Moreira (asc@isep.ipp.pt) – November 2018 3/3

4. HTML references

Many HTML tags have references to other resources, for instance:

<script src=URI><script>

These references to external contents may be URLs, or not. When a browser
loads an HTML page it sets the location of the loaded content, and
that’s a URL representing the folder from where the resource was loaded,
any references within the document (URIs) are relative to the current
location, except if they are URLs.

For instance if an HTML page is loaded from URL
http://serv.ex.com/testing/page1.html, then location is set to
http://serv.ex.com/testing, references within the document that are not
URLs are relative to this location, for instance:

URI in the page Corresponding URL to be used

/newpages/list.html http://serv.ex.com/newpages/list.html

doc.html http://serv.ex.com/testing/doc.html

http://s2.example.com/doc.html http://s2.example.com/doc.html

../newpages/list2.html http://serv.ex.com/newpages/list2.html

Using URIs that are not URLs in HTML pages is most useful because those
pages will work with no changes on any server where they are deployed
as far as relative locations between pages are kept.

The part of the location URL value, corresponding to the access protocol
and server is known as the content’s origin:

ACCESS://[{USERNAME}@]{SERVER}[:PORT-NUMBER]

For instance for location http://serv.ex.com:8080/testing/, the origin
is http://serv.ex.com:8080.
For security reasons browsers enforce a same origin policy regarding
some operations by JavaScript functions, namely when those functions
make HTTP requests (AJAX), those requests must be directed to the same
origin as the loaded page.

