
Type-based XML processing in Logic
Programming

Jorge Coelho and Mário Florido

LIACC, University of Porto

14 January, 2003

PADL, 14 January 2003

Motivation

• XML: Standard for information exchange.

PADL, 14 January 2003

Motivation

• XML: Standard for information exchange.

• XSLT, DOM and SAX.

PADL, 14 January 2003

Motivation

• XML: Standard for information exchange.

• XSLT, DOM and SAX.

• Static validation.

PADL, 14 January 2003

Motivation

• XML: Standard for information exchange.

• XSLT, DOM and SAX.

• Static validation.

• XDuce and HaXml.

PADL, 14 January 2003

Main Goal

Use of Logic Programming with static validation for XML processing.

PADL, 14 January 2003

Implementation

1. Translator from XML to Prolog.

PADL, 14 January 2003

Implementation

1. Translator from XML to Prolog.

2. Translator from DTDs to Regular Types.

PADL, 14 January 2003

Implementation

1. Translator from XML to Prolog.

2. Translator from DTDs to Regular Types.

3. Type inference.

PADL, 14 January 2003

Implementation

1. Translator from XML to Prolog.

2. Translator from DTDs to Regular Types.

3. Type inference.

4. Translator from Prolog to XML.

PADL, 14 January 2003

Outline

• XML

PADL, 14 January 2003

Outline

• XML

• DTD

PADL, 14 January 2003

Outline

• XML

• DTD

• Translation from XML to Prolog

PADL, 14 January 2003

Outline

• XML

• DTD

• Translation from XML to Prolog

• Regular Types

PADL, 14 January 2003

Outline

• XML

• DTD

• Translation from XML to Prolog

• Regular Types

• Type inference (Zobel 1990)

PADL, 14 January 2003

Outline

• XML

• DTD

• Translation from XML to Prolog

• Regular Types

• Type inference (Zobel 1990)

• Translation from DTDs to Regular
Types

PADL, 14 January 2003

Outline

• XML

• DTD

• Translation from XML to Prolog

• Regular Types

• Type inference (Zobel 1990)

• Translation from DTDs to Regular
Types

• Type inference for XML processing
programs

PADL, 14 January 2003

Outline

• XML

• DTD

• Translation from XML to Prolog

• Regular Types

• Type inference (Zobel 1990)

• Translation from DTDs to Regular
Types

• Type inference for XML processing
programs

• Conclusions

PADL, 14 January 2003

Outline

• XML

• DTD

• Translation from XML to Prolog

• Regular Types

• Type inference (Zobel 1990)

• Translation from DTDs to Regular
Types

• Type inference for XML processing
programs

• Conclusions

• Future Work

PADL, 14 January 2003

XML - eXtensible Markup Language

PADL, 14 January 2003

XML - eXtensible Markup Language

Example:

<addressbook>
<name>Jorge</name>
<address>Porto</address>
<email>jorge@mailserver.pt</email>
<name>Mario</name>
<address>Lisboa</address>
<address>Portugal</address>
<phone>

<home>12457834</home>
</phone>

</addressbook>

PADL, 14 January 2003

Document Type Definition

PADL, 14 January 2003

Document Type Definition

DTDs are grammars that specify the document structure.

PADL, 14 January 2003

Document Type Definition

DTDs are grammars that specify the document structure.

Example:

<!ELEMENT addressbook (name,address+,phone?,email?)*>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT phone (home,mobile*)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT home (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>

PADL, 14 January 2003

Translation from XML to Prolog

PADL, 14 January 2003

Translation from XML to Prolog

Element with only character data

<!ELEMENT b (#PCDATA)>

Text of element b

b("Text of element b")

PADL, 14 January 2003

Translation from XML to Prolog

Element with only character data

<!ELEMENT b (#PCDATA)>

Text of element b

b("Text of element b")

Empty element

<!ELEMENT b EMPTY>

b

PADL, 14 January 2003

Translation from XML to Prolog

Element with sub elements

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

<a>
 Text for element b
<c> Text for element c </c>

a(
b(" Text for element b "),
c(" Text for element c "))

PADL, 14 January 2003

Translation from XML to Prolog

Element with zero or more occurrences

<!ELEMENT a (b)*>
<!ELEMENT b (#PCDATA)>

<a>
 First b
 Second b
 Third b

a(
[b(" First b "),
b(" Second b "),
b(" Third b ")])

PADL, 14 January 2003

Translation from XML to Prolog

Element with one or more occurrences

<!ELEMENT a (b+,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

<a>
 Text for b
<c> Text for c </c>

a(
[b(" Text for b ")],
c(" Text for c "))

PADL, 14 January 2003

Translation from XML to Prolog

Optional element

<!ELEMENT a (b?,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

<a>
<c> Text for c </c>

a(
c(" Text for c "))

<a>
 Text for b
<c> Text for c </c>

a(
b(" Text for b "),
c(" Text for c "))

PADL, 14 January 2003

Translation from XML to Prolog

Disjoint elements

<!ELEMENT a (b|c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

<a> Text

<a> <c> Another text </c>

a(b(" Text "))

a(c(" Another text "))

PADL, 14 January 2003

Translation guided by DTDs

Using two distinct DTDs to validate the same document can lead to different
(valid) terms:

PADL, 14 January 2003

Translation guided by DTDs

Using two distinct DTDs to validate the same document can lead to different
(valid) terms:

<a>
 First b
 Second b

<!ELEMENT a (b,b)>
<!ELEMENT b (#PCDATA)>

a(
b(" First b "),
b(" Second b "))

<!ELEMENT a b*>
<!ELEMENT b (#PCDATA)>

a(
[b(" First b "),
b(" Second b ")])

PADL, 14 January 2003

Regular Types

PADL, 14 January 2003

Regular Types

Regular types are defined as the class of types that can be specified by sets of type
rules.

PADL, 14 January 2003

Regular Types

Regular types are defined as the class of types that can be specified by sets of type
rules.

Type symbol

PADL, 14 January 2003

Regular Types

Regular types are defined as the class of types that can be specified by sets of type
rules.

Type symbol →

PADL, 14 January 2003

Regular Types

Regular types are defined as the class of types that can be specified by sets of type
rules.

Type symbol → {Types that describe terms}

PADL, 14 January 2003

Regular Types

Regular types are defined as the class of types that can be specified by sets of type
rules.

Type symbol → {Types that describe terms}︸ ︷︷ ︸
Type Rule

PADL, 14 January 2003

Regular Types

Regular types are defined as the class of types that can be specified by sets of type
rules.

Type symbol → {Types that describe terms}︸ ︷︷ ︸
Type Rule

Given the following rules:

• α → {a}

• β → {nil, .(α, β)}

PADL, 14 January 2003

Regular Types

Regular types are defined as the class of types that can be specified by sets of type
rules.

Type symbol → {Types that describe terms}︸ ︷︷ ︸
Type Rule

Given the following rules:

• α → {a}

• β → {nil, .(α, β)}

PADL, 14 January 2003

Regular Types produced by α:

{a}

PADL, 14 January 2003

Regular Types produced by α:

{a}

Regular Types produced by β:

{nil, .(a, nil), .(a, a, nil), . . .}

PADL, 14 January 2003

Type inference (Zobel 1990)

We built a type inference system that uses Regular Types as an approximation to
program types. For example, given the next program:

p(0).
p(f(X)):-q(X),X=f(Y).
q(f(0)).
q(g(X)).
q(f(X)):-p(X).

PADL, 14 January 2003

Type inference (Zobel 1990)

We built a type inference system that uses Regular Types as an approximation to
program types. For example, given the next program:

p(0).
p(f(X)):-q(X),X=f(Y).
q(f(0)).
q(g(X)).
q(f(X)):-p(X).

The system reaches the following ty-
pes:

• αp → {0, f(f(α1))}

• αq → {g(µ), f(α1)}

• α1 → {0, αp}

PADL, 14 January 2003

Translating from DTDs to Regular Types

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with only character data

T (<!ELEMENT e (#PCDATA) >) = τe → {e(string)}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with only character data

T (<!ELEMENT e (#PCDATA) >) = τe → {e(string)}

<!ELEMENT a (#PCDATA)>

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with only character data

T (<!ELEMENT e (#PCDATA) >) = τe → {e(string)}

<!ELEMENT a (#PCDATA)>

τ → {a(string)}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Empty element

T (<!ELEMENT e EMPTY >) = τe → {e}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Empty element

T (<!ELEMENT e EMPTY >) = τe → {e}

<!ELEMENT a EMPTY>

PADL, 14 January 2003

Translating from DTDs to Regular Types

Empty element

T (<!ELEMENT e EMPTY >) = τe → {e}

<!ELEMENT a EMPTY>

τ → {a}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with any contents

T (<!ELEMENT e ANY >) = τe → {e(µ)}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with any contents

T (<!ELEMENT e ANY >) = τe → {e(µ)}

<!ELEMENT a ANY>

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with any contents

T (<!ELEMENT e ANY >) = τe → {e(µ)}

<!ELEMENT a ANY>

τ → {a(µ)}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with sub elements

T (<!ELEMENT e (e1, . . . , en) > = τe → {e(τe1, . . . , τen)}, where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with sub elements

T (<!ELEMENT e (e1, . . . , en) > = τe → {e(τe1, . . . , τen)}, where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with sub elements

T (<!ELEMENT e (e1, . . . , en) > = τe → {e(τe1, . . . , τen)}, where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

τ1 → {a(τ2, τ3)}
τ2 → {b(string)}
τ3 → {c(string)}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with zero or more occurrences

T (<!ELEMENT e e1∗ >) = τe → {nil, .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with zero or more occurrences

T (<!ELEMENT e e1∗ >) = τe → {nil, .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1

<!ELEMENT a b*>
<!ELEMENT b (#PCDATA)>

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with zero or more occurrences

T (<!ELEMENT e e1∗ >) = τe → {nil, .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1

<!ELEMENT a b*>
<!ELEMENT b (#PCDATA)>

τ1 → {a(τ2)}
τ2 → {nil, .(τ3, τ2)}
τ3 → {b(string)}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with one or more occurrences

T (<!ELEMENT e e1+ >) = τe → {.(τe1, nil), .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with one or more occurrences

T (<!ELEMENT e e1+ >) = τe → {.(τe1, nil), .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1

<!ELEMENT a b+>
<!ELEMENT b (#PCDATA)>

PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with one or more occurrences

T (<!ELEMENT e e1+ >) = τe → {.(τe1, nil), .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1

<!ELEMENT a b+>
<!ELEMENT b (#PCDATA)>

τ1 → {a(τ2)}
τ2 → {.(τ3, nil), .(τ3, τ2)}
τ3 → {b(string)}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Disjoint elements

T (<!ELEMENT e (e1| · · · |en) >) = τe → {τe1, . . . , τen},where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n

PADL, 14 January 2003

PADL, 14 January 2003

<!ELEMENT a (b|c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

PADL, 14 January 2003

<!ELEMENT a (b|c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

τ1 → {a(τ2)}
τ2 → {τ3, τ4}
τ3 → {b(string)}
τ4 → {c(string)}

PADL, 14 January 2003

Translating from DTDs to Regular Types

Optional element

T (<!ELEMENT e (e1, . . . , ei?, . . . , en)) = τe → {e(τe1, . . . , τei−1
, τei+1

, . . . , τen),
e(τe1, . . . , τei−1

, τei
, τei+1

, . . . , τen)},
where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n

PADL, 14 January 2003

Translating from DTDs to Regular Types

Optional element

<!ELEMENT a (b,c?,d?)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>
<!ELEMENT d (#PCDATA)>

PADL, 14 January 2003

Translating from DTDs to Regular Types

Optional element

<!ELEMENT a (b,c?,d?)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>
<!ELEMENT d (#PCDATA)>

τ1 → {a(τ2), a(τ2, τ3),

a(τ2, τ4), a(τ2, τ3, τ4)}
τ2 → {b(string)}
τ3 → {c(string)}
τ4 → {d(string)}

PADL, 14 January 2003

Type inference for XML processing programs

• DTDs used as type declarations.

PADL, 14 January 2003

Type inference for XML processing programs

• DTDs used as type declarations.

• Use of standard type checking for validation.

PADL, 14 January 2003

Type inference for XML processing programs

p(a(X, Y), d(X, Y)).

Input DTD:

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

PADL, 14 January 2003

Type inference for XML processing programs

p(a(X, Y), d(X, Y)).

Input DTD:

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

Regular types:

τa → {a(τb, τc)}
τb → {b(string)}
τc → {c(string)}

PADL, 14 January 2003

Type inference for XML processing programs

p(a(X, Y), d(X, Y)).

Output DTD:

<!ELEMENT d (e,c)>
<!ELEMENT e (#PCDATA)>
<!ELEMENT c (#PCDATA)>

PADL, 14 January 2003

Type inference for XML processing programs

p(a(X, Y), d(X, Y)).

Output DTD:

<!ELEMENT d (e,c)>
<!ELEMENT e (#PCDATA)>
<!ELEMENT c (#PCDATA)>

Regular types:

τd → {d(τe, τc)}
τe → {e(string)}
τc → {c(string)}

PADL, 14 January 2003

Type inference for XML processing programs

p(a(X, Y), d(X, Y)) ::< τa, τd >

τa → {a(τb, τc)}
τb → {b(string)}
τc → {c(string)}

PADL, 14 January 2003

Type inference for XML processing programs

p(a(X, Y), d(X, Y)) ::< τa, τd >

τa → {a(τb, τc)}
τb → {b(string)}
τc → {c(string)}

τd → {d(τe, τc)}
τe → {e(string)}
τc → {c(string)}

PADL, 14 January 2003

Type inference for XML processing programs

p(a(X,Y), d(X, Y)) ::< τa, τd >

τa → {a(τb, τc)}
τb → {b(string)}
τc → {c(string)}

τd → {d(τe, τc)}
τe → {e(string)}
τc → {c(string)}

PADL, 14 January 2003

Type inference for XML processing programs

p(a(X,Y), d(X,Y)) ::< τa, τd >

τa → {a(τb, τc)}
τb → {b(string)}
τc → {c(string)}

τd → {d(τe, τc)}
τe → {e(string)}
τc → {c(string)}

PADL, 14 January 2003

Type inference for XML processing programs

p(a(X,Y), d(X,Y)) ::< τa, τd >

τa → {a(τb, τc)}
τb → {b(string)}
τc → {c(string)}

τd → {d(τe, τc)}
τe → {e(string)}
τc → {c(string)}

τb ∩ τe = ∅ ⇒ TYPE ERROR

PADL, 14 January 2003

Type inference for XML processing programs

Example:

If we want to translate the next document:

<catalogue>
<book>

<title> The Art of Computer Programming - Volume 1</title>
<author> D. Knuth </author>
<year> 1997 </year>
<publisher> Addison-Wesley </publisher>

</book>
...

</catalogue>

PADL, 14 January 2003

Type inference for XML processing programs

Example:

Validated by the DTD:

<!ELEMENT catalogue (book)+>
<!ELEMENT book (title,author,year,publisher)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>

PADL, 14 January 2003

Type inference for XML processing programs

Example:

To this new document:

<catalogue>
<book>

<title> The Art of Computer Programming - Volume 1</title>
<year> 1997 </year>

</book>
...

</catalogue>

PADL, 14 January 2003

Type inference for XML processing programs

Example:

Validated by the DTD:

<!ELEMENT catalogue (book)+>
<!ELEMENT book (title,year)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>

PADL, 14 January 2003

Type inference for XML processing programs

Example:

The next (simple) program is enough:

process(catalogue(L1),catalogue(L2)):-
conversion(L1,L2).

conversion([book(A,_,Z,_)],[book(A,Z)]).

conversion([book(A,_,Z,_)|R1],[book(A,Z)|R2]):-
conversion(R1,R2).

PADL, 14 January 2003

Conclusions

• Relation between Regular Types and DTDs.

PADL, 14 January 2003

Conclusions

• Relation between Regular Types and DTDs.

• Translating XML documents to Prolog terms.

PADL, 14 January 2003

Conclusions

• Relation between Regular Types and DTDs.

• Translating XML documents to Prolog terms.

• Type checking leads to correct processing of XML.

PADL, 14 January 2003

Future work

• Improve the efficiency of the type inference algorithm.

PADL, 14 January 2003

Future work

• Improve the efficiency of the type inference algorithm.

• “Real-world” applications.

PADL, 14 January 2003

END

