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Motivation

• XML: Standard for information exchange.

• XSLT, DOM and SAX.

• Static validation.

• XDuce and HaXml.
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Main Goal

Use of Logic Programming with static validation for XML processing.
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Implementation

1. Translator from XML to Prolog.

2. Translator from DTDs to Regular Types.

3. Type inference.

4. Translator from Prolog to XML.
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XML - eXtensible Markup Language

Example:

<addressbook>
<name>Jorge</name>
<address>Porto</address>
<email>jorge@mailserver.pt</email>
<name>Mario</name>
<address>Lisboa</address>
<address>Portugal</address>
<phone>

<home>12457834</home>
</phone>

</addressbook>
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Document Type Definition

DTDs are grammars that specify the document structure.

Example:

<!ELEMENT addressbook (name,address+,phone?,email?)*>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT phone (home,mobile*)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT home (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
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Element with only character data

<!ELEMENT b (#PCDATA)>

<b>Text of element b</b>

b("Text of element b")
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Translation from XML to Prolog

Element with only character data

<!ELEMENT b (#PCDATA)>

<b>Text of element b</b>

b("Text of element b")

Empty element

<!ELEMENT b EMPTY>

<b/>

b
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Translation from XML to Prolog

Element with sub elements

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

<a>
<b> Text for element b </b>
<c> Text for element c </c>

</a>

a(
b(" Text for element b "),
c(" Text for element c "))
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Translation from XML to Prolog

Element with zero or more occurrences

<!ELEMENT a (b)*>
<!ELEMENT b (#PCDATA)>

<a>
<b> First b </b>
<b> Second b </b>
<b> Third b </b>
</a>

a(
[b(" First b "),
b(" Second b "),
b(" Third b ")])
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Translation from XML to Prolog

Element with one or more occurrences

<!ELEMENT a (b+,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

<a>
<b> Text for b </b>
<c> Text for c </c>

</a>

a(
[b(" Text for b ")],
c(" Text for c "))
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Translation from XML to Prolog

Optional element

<!ELEMENT a (b?,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

<a>
<c> Text for c </c>

</a>

a(
c(" Text for c "))

<a>
<b> Text for b </b>
<c> Text for c </c>

</a>

a(
b(" Text for b "),
c(" Text for c "))
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Translation from XML to Prolog

Disjoint elements

<!ELEMENT a (b|c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

<a> <b> Text </b> </a>

<a> <c> Another text </c> </a>

a(b(" Text "))

a(c(" Another text "))
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Using two distinct DTDs to validate the same document can lead to different
(valid) terms:
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Translation guided by DTDs

Using two distinct DTDs to validate the same document can lead to different
(valid) terms:

<a>
<b> First b </b>
<b> Second b </b>

</a>

<!ELEMENT a (b,b)>
<!ELEMENT b (#PCDATA)>

a(
b(" First b "),
b(" Second b "))

<!ELEMENT a b*>
<!ELEMENT b (#PCDATA)>

a(
[b(" First b "),
b(" Second b ")])
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Type Rule
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• α → {a}

• β → {nil, .(α, β)}
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Regular Types

Regular types are defined as the class of types that can be specified by sets of type
rules.

Type symbol → {Types that describe terms}︸ ︷︷ ︸
Type Rule

Given the following rules:

• α → {a}

• β → {nil, .(α, β)}
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Regular Types produced by α:

{a}
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Regular Types produced by α:

{a}

Regular Types produced by β:

{nil, .(a, nil), .(a, a, nil), . . .}
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Type inference (Zobel 1990)

We built a type inference system that uses Regular Types as an approximation to
program types. For example, given the next program:

p(0).
p(f(X)):-q(X),X=f(Y).
q(f(0)).
q(g(X)).
q(f(X)):-p(X).
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Type inference (Zobel 1990)

We built a type inference system that uses Regular Types as an approximation to
program types. For example, given the next program:

p(0).
p(f(X)):-q(X),X=f(Y).
q(f(0)).
q(g(X)).
q(f(X)):-p(X).

The system reaches the following ty-
pes:

• αp → {0, f(f(α1))}

• αq → {g(µ), f(α1)}

• α1 → {0, αp}
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Translating from DTDs to Regular Types

Element with only character data

T (<!ELEMENT e (#PCDATA) >) = τe → {e(string)}

<!ELEMENT a (#PCDATA)>

τ → {a(string)}
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Translating from DTDs to Regular Types

Empty element

T (<!ELEMENT e EMPTY >) = τe → {e}

<!ELEMENT a EMPTY>

τ → {a}
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Translating from DTDs to Regular Types

Element with any contents

T (<!ELEMENT e ANY >) = τe → {e(µ)}

<!ELEMENT a ANY>

τ → {a(µ)}
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Translating from DTDs to Regular Types

Element with sub elements

T (<!ELEMENT e (e1, . . . , en) > = τe → {e(τe1, . . . , τen)}, where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n



PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with sub elements

T (<!ELEMENT e (e1, . . . , en) > = τe → {e(τe1, . . . , τen)}, where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>



PADL, 14 January 2003

Translating from DTDs to Regular Types

Element with sub elements

T (<!ELEMENT e (e1, . . . , en) > = τe → {e(τe1, . . . , τen)}, where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

τ1 → {a(τ2, τ3)}
τ2 → {b(string)}
τ3 → {c(string)}



PADL, 14 January 2003
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Element with zero or more occurrences

T (<!ELEMENT e e1∗ >) = τe → {nil, .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1
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Translating from DTDs to Regular Types

Element with zero or more occurrences

T (<!ELEMENT e e1∗ >) = τe → {nil, .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1

<!ELEMENT a b*>
<!ELEMENT b (#PCDATA)>

τ1 → {a(τ2)}
τ2 → {nil, .(τ3, τ2)}
τ3 → {b(string)}
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Translating from DTDs to Regular Types

Element with one or more occurrences

T (<!ELEMENT e e1+ >) = τe → {.(τe1, nil), .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1
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Translating from DTDs to Regular Types

Element with one or more occurrences

T (<!ELEMENT e e1+ >) = τe → {.(τe1, nil), .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1
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Translating from DTDs to Regular Types

Element with one or more occurrences

T (<!ELEMENT e e1+ >) = τe → {.(τe1, nil), .(τe1, τe)},where
T (<!ELEMENT e1 >) = τe1 → Υe1

<!ELEMENT a b+>
<!ELEMENT b (#PCDATA)>

τ1 → {a(τ2)}
τ2 → {.(τ3, nil), .(τ3, τ2)}
τ3 → {b(string)}
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Translating from DTDs to Regular Types

Disjoint elements

T (<!ELEMENT e (e1| · · · |en) >) = τe → {τe1, . . . , τen},where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n
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<!ELEMENT a (b|c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>
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<!ELEMENT a (b|c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

τ1 → {a(τ2)}
τ2 → {τ3, τ4}
τ3 → {b(string)}
τ4 → {c(string)}
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Translating from DTDs to Regular Types

Optional element

T (<!ELEMENT e (e1, . . . , ei?, . . . , en)) = τe → {e(τe1, . . . , τei−1
, τei+1

, . . . , τen),
e(τe1, . . . , τei−1

, τei
, τei+1

, . . . , τen)},
where
T (<!ELEMENT ei >) = τei

→ Υei
,

for 1 ≤ i ≤ n
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Translating from DTDs to Regular Types

Optional element

<!ELEMENT a (b,c?,d?)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>
<!ELEMENT d (#PCDATA)>
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Translating from DTDs to Regular Types

Optional element

<!ELEMENT a (b,c?,d?)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>
<!ELEMENT d (#PCDATA)>

τ1 → {a(τ2), a(τ2, τ3),

a(τ2, τ4), a(τ2, τ3, τ4)}
τ2 → {b(string)}
τ3 → {c(string)}
τ4 → {d(string)}
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• DTDs used as type declarations.
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Type inference for XML processing programs

• DTDs used as type declarations.

• Use of standard type checking for validation.
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p(a(X, Y ), d(X, Y )).

Input DTD:

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>



PADL, 14 January 2003

Type inference for XML processing programs

p(a(X, Y ), d(X, Y )).

Input DTD:

<!ELEMENT a (b,c)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

Regular types:

τa → {a(τb, τc)}
τb → {b(string)}
τc → {c(string)}
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Type inference for XML processing programs

p(a(X, Y ), d(X, Y )).

Output DTD:

<!ELEMENT d (e,c)>
<!ELEMENT e (#PCDATA)>
<!ELEMENT c (#PCDATA)>



PADL, 14 January 2003

Type inference for XML processing programs

p(a(X, Y ), d(X, Y )).

Output DTD:

<!ELEMENT d (e,c)>
<!ELEMENT e (#PCDATA)>
<!ELEMENT c (#PCDATA)>

Regular types:

τd → {d(τe, τc)}
τe → {e(string)}
τc → {c(string)}
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p(a(X, Y ), d(X, Y )) ::< τa, τd >

τa → {a(τb, τc)}
τb → {b(string)}
τc → {c(string)}
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Type inference for XML processing programs

p(a(X,Y ), d(X,Y )) ::< τa, τd >

τa → {a(τb, τc)}
τb → {b(string)}
τc → {c(string)}

τd → {d(τe, τc)}
τe → {e(string)}
τc → {c(string)}

τb ∩ τe = ∅ ⇒ TYPE ERROR
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Type inference for XML processing programs

Example:

If we want to translate the next document:

<catalogue>
<book>

<title> The Art of Computer Programming - Volume 1</title>
<author> D. Knuth </author>
<year> 1997 </year>
<publisher> Addison-Wesley </publisher>

</book>
...

</catalogue>
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Type inference for XML processing programs

Example:

Validated by the DTD:

<!ELEMENT catalogue (book)+>
<!ELEMENT book (title,author,year,publisher)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
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Type inference for XML processing programs

Example:

To this new document:

<catalogue>
<book>

<title> The Art of Computer Programming - Volume 1</title>
<year> 1997 </year>

</book>
...

</catalogue>
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Type inference for XML processing programs

Example:

Validated by the DTD:

<!ELEMENT catalogue (book)+>
<!ELEMENT book (title,year)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
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Type inference for XML processing programs

Example:

The next (simple) program is enough:

process(catalogue(L1),catalogue(L2)):-
conversion(L1,L2).

conversion([book(A,_,Z,_)],[book(A,Z)]).

conversion([book(A,_,Z,_)|R1],[book(A,Z)|R2]):-
conversion(R1,R2).
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Conclusions

• Relation between Regular Types and DTDs.

• Translating XML documents to Prolog terms.

• Type checking leads to correct processing of XML.
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• Improve the efficiency of the type inference algorithm.
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Future work

• Improve the efficiency of the type inference algorithm.

• “Real-world” applications.
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END


