
1

1

Ambientes de 
Desenvolvimento 

Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 4
Engenharia Informática

2004/2005

José António Tavares
jrt@isep.ipp.pt

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

2

O que é um componente e o 
que não é?

Capítulo 4 de:
Szyperski, Clemens et al. Component Software - Beyond 

Object-Oriented Programming. Second Edition



2

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

3

Conteúdo
Componentes
Objectos
Componentes e Objectos
Módulos
Abstração e Reutilização : WhiteBox vs
BlackBox
Interfaces
Dependências de Contexto Explícitas
Componentes – “Peso”

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

4

O que é um componente?
“A software package which offers service through interfaces”
[Peter Herzum and Oliver Sims, “Business Components Factory: A 
Comprehensive Overview of Component-Based Development for the Enterprise”, 
John Wiley & Sons, Incorporated, 1999].

“A coherent package of software artifacts that can be
independently developed and delivered as a unit and that can
be composed, unchanged, with other components to build
something larger”
[D.F. D’Souza and A.C. Wills, “Objects, Components, And Frameworks with UML 
– The Catalysis Approach” Addison-Wesley, 1998].

“A component is a unit of composition with contractually 
specified interfaces and explicit context dependencies only. 
A software component can be deployed independently and is 
subject to composition by third parties.”
[C. Szyperski, “Component Software: Beyond Object-Oriented Programming”
Addison-Wesley, 1998].



3

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

5

O que não é um componente?

Component isn’t an object, not in sense of 
simply being an object in a Java or C++ 
program, although it is true at runtime.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

6

Programação orientada a 
componentes

A sign of maturity

Evolved from Object-Oriented

Large scale reuse

Reconfigurable capabilities

Off-the-shelf components

Evolutionary refinement

Economically scaling



4

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

7

Termos e Conceitos

pre-built binary units
characteristic properties of a component are:

unit of independent deployment – it needs to be 
well separated from its environment and other 
components;
unit of a thirtd-party composition – it need to be 
sufficient self-contained and needs to come with clear 
specification of what it requires and provides;
has no (external) observable state – it is required 
that the component cannot be distinguished from 
copies of its own.

Componentes

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

8

Termos e Conceitos

objects are not sold, bought or deployed, the unit of 
deployment is something more static such as a class or 
rather a library or framework of classes
characteristic properties of an object are:

a unit of instantiation with a unique identity;
may have state and this can be externally observable;
encapsulates its state and behavior,
instances of classes or clones of prototype objects;
Intitialization: constructor (static procedure) or object factory
(separate object)

Objectos



5

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

9

Termos e Conceitos

a component is likely to act through objects – normally consists of one 
or more classes;
however, there is no need for a component to contain classes only, or 
even contain classes at all – might contain global procedures or static 
variables; might be implemented in functional or assembly language;
state maintained by an object is abstracted by that object’s reference
– a component that does not maintain observable state cannot 
(observably) maintain references even to the objects it creates;
just as classes can depend on other classes using inheritance, 
components can depend on other components – the superclasses of 
a class do not necessarily need to reside in the same component as 
the class itself;

Componentes e Objectos

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

10

Exemplos de Componentes:

Potential Examples:
Procedures ?
Classes ?
Modules ?
entire application ?

Are not components:
C macros
C++ templates
Smalltalk blocks



6

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

11

Termos e Conceitos

Modular languages – Molula-2 (Wirth, 1982) and Ada;
With Eiffel, it was claimed that a class is a better module (Meyer, 1988);
In more recent languages designs – such as Oberon, Modula-3, 
Component Pascal and C# – the notions of modules and classes are 
kept separated;

Modules as opposed to classes can be seen as minimal components: 
they package multiple classes, can be compiled separately and 
deployed independently;
There are cases where modules do not qualify as components –
modules can be build to use global (static) variables to expose 
observable state.

Módulos

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

12

Termos e Conceitos

In ideal blackbox abstraction a client cannot see beyond the 
interface, implementations are reused without building on 
anything else than their interface
In whitebox abstraction the interface may still enforce 
encapsulation and limit what clients can do but the 
implementation is fully available and implementation 
inheritance allows for substantial interference
Glassbox reuse allows inspection of the implementation but 
not interference
Grayboxes are those that reveal a controlled part of their 
implementation

Abstração e Reutilização : WhiteBox vs BlackBox



7

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

13

Termos e Conceitos

Define component’s access points – allow clients of a 
component, usually components themselves, to access 
services provided;

Interface specifies signature and behavior;

Normally, multiple interfaces are provided corresponding to 
different access points, each representing a service that 
component offers;

Emphasizing the contractual nature of the interface 
specifications is important because the component and its 
clients are developed in mutual ignorance.

Interfaces

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

14

Termos e Conceitos

Components have to specify their needs – specification of what the 
deployment environment will need to provide so that the 
component can function;
These needs are called context dependencies, referring to the 
context of composition and deployment;
If there were only one software component world, it would suffice 
to enumerate requires interfaces of the other components to 
specify all context dependencies;
In reality, there are several component worlds that partial coexist, 
partial compete and partially conflict with each other – OMG’s
CORBA, Sun’s Java and Microsoft’s COM and CLR.

Dependências de Contexto Explícitas



8

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

15

Termos e Conceitos

Fat Components
The component is self-contained and can function under weak 
environmental guarantees
The context dependencies are reduced making the component 
more robust over time
But a component with everything bundled in is not a component 
anymore

Lean Components
Other components are (re)-used to achieve the component's 
services
The context dependencies increase making the component more 
vulnerable in case of context evolution
Re-use is maximized, use is compromised

“Peso” de Componentes

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

16

Termos e Conceitos
Compromisso entre ‘ágil’ (leanness) e robustez 



9

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

17

Componentes, Interfaces e 
re-entrada.

Capítulo 5 de:
Szyperski, Clemens et al. Component Software - Beyond 

Object-Oriented Programming. Second Edition

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

18

Conteúdo

Componentes e interfaces
Interfaces directas e indirectas
Versões
Interfaces como contrato
O que pertence a um contrato?
Formalidade ou informalidade?
Características não documentadas
Callbacks e contractos
Re-entrada nos objectos



10

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

19

Componentes e interfaces

Interfaces are the means by which components 
connect. Technically, an interface is a set of 
named operations that can be invoked by 
clients.

Each operation’s semantics is specified, and this 
specification plays a dual role as it serves both 
providers implementing the interface and clients 
using the interface.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

20

Componentes e interfaces

A component may either directly provide an 
interface or implement objects that, if made 
available to clients, provide interfaces.

Interfaces directly provided by a component 
correspond to procedural interfaces of 
traditional libraries. Such indirectly
implemented interfaces correspond to object 
interfaces.



11

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

21

Interfaces Directas e indirectas

A procedural (direct) interface to a component is 
modeled as an object interface of a static object 
within the component.

An object (indirect) interface introduces an 
indirection called method dispatch or, 
sometimes, dynamic method lookup.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

22

Interfaces Directas e indirectas
Example of indirection: classes



12

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

23

Interfaces Directas e indirectas
Example of indirection: messages

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

24

Versões
Traditional version management assumes that the versions of a 
component involve at a single source. In a free market, the 
evolution of versions is more complex and management of version 
numbers can become a problem in its own right.

With direct interfaces it suffices to check versions at bind time, 
which is when a service is first requested. 
In indirect interfaces couple arbitrary third party. 
In a versioned system, care must be taken to avoid indirect 
coupling of parties that are of incompatible versions. 
The goal is to ensure that older and newer components are either
compatible or clearly detected as incompatible.



13

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

25

Interfaces como contrato
Interfaces can be viewed as contracts between provider and consumer;
The contract states what the client needs to do to use the interfaces
and what the provider has to implement to meet the services promised
by the interface;
A contract is an appropriate approach, with pre- and post-conditions
attached to every operation

The client has to establish the pre-condition before calling the operation and 
the provider can rely on the precondition being met whenever the operation 
is called
The provider has to establish the post-condition before returning to the 
client and the client can rely on the post-condition being met whenever the 
call to the operation returns

Pre- and post-conditions are not the only way to form contracts.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

26

O que pertence a um contrato?
contract = signature + behavioral specification;
specifies requirements and guarantees, perhaps using pre-
and post-conditions;
refinements (eg revisions) may weaken preconditions and/or 
strengthen post conditions
might also specify non-functional requirements (eg speed, 
time complexity, space)
might also specify safety (“this bad thing will never happen”) 
and progress (“this good thing will eventually happen”) 
properties
should be rigorous; may be formal



14

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

27

Formalidade ou informalidade?

None of the real-world laws are formal. New 
“interpretations” are found every day and tested in court.

Interface contracts should be as formal as possible to 
derive all necessary information and to enable formal 
verification – this is complex and, therefore, rarely used in 
practice;
Different parts of a system can be specified using different 
degrees of formality – the preciseness of the specification 
have to be balanced against the critically of the target part.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

28

Características não 
documentadas

always possible to observe behavior of 
implementation (eg testing, debugging, 
espionage)
may provide more information than specification
depending on such information is dangerous
no guarantee that later versions will behave the 
same
no guarantee even that this version always 
behaves the same



15

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

29

Callbacks e contractos
Callback or up-call is procedure registered with and 
subsequently called by a library
Callbacks are a common feature in procedural libraries 
that have to handle asynchronous events.
A callback usually reverses the direction of the flow of 
controls, so a lower layer calls a procedure in a higher 
layer.
The resulting contract are far less manageable than 
simple pre- and post-conditions.
Validity of the library state is specified as part of a 
contract.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

30

Callbacks e contractos

Client
Other
party Library

Calls

Results

Client installs callback

Third party calls library

Library invokes callback

Callback queries library

Callback returns

Library returns

Critical part

The intermediate
library state at the
point of calling the
callback may be
reveled to clients.



16

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

31

Que é têm de especial os 
callbacks?

in layered architecture, calls originate in higher 
(more abstract) layer and move downwards
library operations complete before returning to 
client, who cannot observe intermediate states
callback usually reverses this flow
intermediate state of library becomes visible
client may observe, or even modify, library’s 
intermediate state
client certainly observes identity and ordering of 
callbacks

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

32

O que é que se pode fazer
unrealistic to restrict behavior of client during 
callback (most non-trivial callbacks query library for 
more information before taking appropriate action)

library state must remain valid while observable

hence must remain valid during callbacks

no longer sufficient to give pre- and postconditions
for library



17

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

33

Re-entrada nos objectos 
(re-entrance)

The object re-entrance is the situation in which an object´s
method is invoked while another method is still executing.

The real problem is observation of an object undergoing a 
state transition with inconsistent intermediate states 
becoming visible. Considering object re-entrance, the 
problem is when an object´s method is invoked while 
another method is still executing.

Recursion and re-entrances become even more pressing 
problem when crossing the boundaries of components.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

34

Re-entrada nos objectos
(re-entrance)

User
Interface

Text
Model Display

Calls

Results

Type

Write

insertNotification

(remove caret mark)

(update text display)

(redisplay caret mark)

Text
view

Message sequence caused by a request to insert a typed character



18

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

35

Re-entrada nos objectos

Multi-threading
problems of recursive re-entrance similar to those of 
concurrent interaction
perhaps helps to make objects thread-safe? (ie
protected from unwanted interference from concurrent 
activities)
no! thread safety addresses only external re-entrance
locking prevents other objects from invoking our 
methods, but cannot prevent us from invoking our 
own (or self-inflicted deadlocks would result)

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

36

Questões

?


