
1

1

Ambientes de 
Desenvolvimento Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 8
Engenharia Informática

2004/2005

José António Tavares
jrt@isep.ipp.pt

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

2

PARTE 3
Projecto de Componentes da Camada de 
Acesso a Dados e Passagem de Dados entre 
Camadas



2

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

3

Conteúdo
Introdução
Componentes Lógicos de Acesso a Dados
Representação de Entidades de Negócio
Mapeamento de Dados Relacionais a Entidades de Negócio
Implementação de Componentes Lógicos de Acesso a Dados
Implementação de Entidades de Negócio
Transacções
Validações
Gestão de Excepções
Autorização e Segurança
Distribuição e Instalação (Deployment)

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

4

Enquadramento:
Resumo aulas 6 e 7



3

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

5

Intodução

Camadas comuns numa 
aplicação distribuída

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

6

DALC vs BE

DALC (Data Access Logic Component) has methods 
to implement business logic against the database.

BE (Business Entity) –
Data is used to represent real world business entities, 
such as products or orders. There are numerous ways to 
represent these business entities in your application —
for example, XML or DataSets or custom object-oriented 
classes — depending on the physical and logical design 
constraints of the application.



4

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

7

Mapeamento de Dados Relacionais 
a Entidades de Negócio

Databases typically contain many tables, 
with relationships implemented by primary 
keys and foreign keys in these tables. When 
you define BE to represent this data in your 
application, you must decide how to map 
these tables to BE.

An hypothetical retailer’s database

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

8

Mapeamento de Dados Relacionais 
a Entidades de Negócio

The relationships between the data access logic components 
and the tables that they represent in the database.



5

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

9

Implementação das classes de um 
DALC

DALC use ADO.NET to 
execute SQL statements or 
call stored procedures. 
If your application contains 
multiple DALC, you can 
simplify the implementation of 
DALC classes by using a data 
access helper component.
Design your DALC classes to 
provide a consistent interface 
for different types of clients.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

10

How to Define a DALC Class

Sample

The code is a sample definition of a class named 
CustomerDALC, which is the DALC class for 
Customer BE. The CustomerDALC class 
implements the CRUD operations for the Customer 
BE and provides additional methods to encapsulate 
business logic for this object.

Pág 50-51



6

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

11

Implementação das Entidades de 
Negócio

Continuação da aula anterior (aula 7)

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

12

Implementação das Entidades de 
Negócio

Characteristics:
Provide stateful programmatic access to business data and 
(in some designs) related functionality.
Can be built from data that has complex schemas. The data 
typically originates from multiple related tables in the DB.
Data can be passed as part of the I/O parameters of business 
processes.
Can be serializable, to persist the current state of the entities.
Do not access the DB directly. All DB access is provided by 
the associated DALC.
Do not initiate any kind of transaction. Transactions are 
initiated by the application or business process that is using 
the BE.



7

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

13

Implementação das Entidades de 
Negócio

There are various ways to represent business 
entities in your application, ranging from a 
data-centric model to a more object oriented 
representation:

XML
Generic DataSet (.NET Framework)
Typed DataSet (.NET Framework)
Custom BE components
Custom BE components with CRUD behaviors

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

14

Representing BE as XML

<?xml version="1.0"?>

<Product xmlns="urn:aUniqueNamespace">

<ProductID> 1 </ProductID>

<ProductName>Chai</ProductName>

<QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>

<UnitPrice> 18.00 </UnitPrice>

<UnitsInStock> 39 </UnitsInStock>

<UnitsOnOrder> 0 </UnitsOnOrder>

<ReorderLevel> 10 </ReorderLevel>

</Product>

Example: The BE consists of a single product



8

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

15

Representing BE As a Generic 
DataSet

A generic DataSet is an instance of the DataSet class, 
which is defined in the System.Data namespace in 
ADO.NET. 
A DataSet object contains one or more DataTable objects 
to represent information that the DALC retrieves from the 
DB.

A generic DataSet object for the Product BE.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

16

Representing BE as a Typed 
DataSet

A typed DataSet is a class that contains 
strongly typed methods, properties, and 
type definitions to expose the data and 
metadata in a DataSet.



9

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

17

Defining Custom BE Components 
Custom classes that represent BE typically contain 
the following:

Private fields to cache the BE data locally.
Public properties to access the state of the entity, and 
to access sub-collections and hierarchies of data inside 
the entity.
Methods and properties to perform localized processing
by using the data in the entity component.
Events to signal changes to the internal state of the 
entity component.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

18

Defining Custom BE Components 
– Advantages

Code readability
Encapsulation
Modeling of complex systems
Localized validation
Private fields



10

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

19

Defining Custom BE Components 
– Disadvantages

Collections of BE
Serialization
Representation of complex relationships and 
hierarchies in a BE
Searching and sorting of data
Deployment
Support for Enterprise Services (COM+) clients
Extensibility issues

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

20

Defining Custom BE Components 
with CRUD Behaviors
When you define a custom entity, you can provide methods to 
completely encapsulate the CRUD operations on the underlying 
DALC.
This is the more traditional object-oriented approach, and may 
be appropriate for complex object domains. The client 
application no longer accesses the DALC class directly.

Instead, the client application creates an entity 
component and calls CRUD methods on the entity 
component. These methods forward to the underlying 
DALC.



11

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

21

Defining Custom BE Components 
with CRUD Behaviors

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

22

Defining Custom BE Components 
with CRUD Behaviors - Advantages

Encapsulation. 
The custom entity encapsulates the operations 
defined by the underlying DALC.
Interface to caller. 
The caller must deal with only one interface to 
persist BE data. There is no need to access the 
DALC directly.
Private fields. 
You can hide information that you do not want to 
expose to the caller.



12

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

23

Defining Custom BE Components with 
CRUD Behaviors - Disadvantages

Dealing with sets of BE. 
The methods in the custom entity pertain to a single 
BE instance. To support sets of BE, you can define 
static methods that take or return an array or a 
collection of entity components.
Increased development time. 
The traditional object-oriented approach typically 
requires more design and development

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

24

Recommendations for Representing 
Data and Passing Data Through Tiers 1/3

The way in which you represent data throughout your 
application, and the way in which you pass that data through 
the tiers, do not necessarily need to be the same. 
However, having a consistent and limited set of formats yields 
performance and maintenance benefits that reduce your need 
for additional translation layers.

The data format that you use should depend on your specific 
application requirements and how you want to work with the 
data. There is no universal way to represent your data, 
especially because many of today’s applications are required 
to support multiple callers.



13

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

25

Recommendations for Representing 
Data and Passing Data Through Tiers 2/3

However, it is recommended that you follow these 
general guidelines to represent your data:

If your application mainly works with sets and needs 
functionality such as sorting, searching, and data 
binding, Datasets are recommended. 
However, if your application works with instance data, 
scalar values will perform better.
If your application mainly works with instance data, 
custom BE components may be the best choice 
because they prevent the overhead caused when a 
DataSet represents one row.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

26

Recommendations for Representing 
Data and Passing Data Through Tiers 3/3

More recommendations:
In most cases, design your application to use a data-centric 
format, such as XML documents or DataSets:

you can use the flexibility and native functionality provided by
the DataSets to support multiple clients more easily, 
reduce the amount of custom code, 
and use a programming API that is familiar to most 
developers.

Although working with the data in an object-oriented fashion 
provides some benefits, custom coding complex BE 
increases development and maintenance costs in proportion 
to the amount of features you want to provide.



14

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

27

How to Define a BE Component

Sample

The example shows how to define a 
custom entity class for the Product BE.

Pág 54-55

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

28

How to Represent Collections and 
Hierarchies of Data in a BE Component

Sample

The example shows how to define a custom 
entity class for the Order BE. Each order 
comprises many order items; these order items 
are stored in a DataSet in the OrderEntity
class.

Pág 55-56



15

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

29

How to Expose Events in a BE 
Component

Sample

Custom entities can raise events when the BE state is 
modified. These events are useful for rich client, user-
interface design because data can be refreshed 
wherever it is being displayed. The sample shows how 
to raise BE related events in the OrderEntity class.

Pág 58-59

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

30

Others “How to...”

How to Use XML to Represent Collections and 
Hierarchies of Data
How to Apply a Style Sheet Programmatically in a 
.NET Application
How to Create a Typed DataSet
How to Bind BE Components to User Interface 
Controls
How to Serialize BE Components to XML Format
How to Serialize BE Components to SOAP Format
How to Serialize BE Components to Binary Format



16

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

31

Transações

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

32

Transações
Most of today’s applications need to support transactions for 
maintaining the integrity of a system’s data. There are several 
approaches to transaction management; however, each approach 
fits into one of two basic programming models:

Manual transactions. 
Write code that uses the transaction support features of either 
ADO.NET or Transact-SQL directly in your component code or 
stored procedures, respectively.
Automatic transactions. 
Using Enterprise Services (COM+), you add declarative attributes
to your classes to specify the transactional requirements of your 
objects at run time. You can use this model to easily configure 
multiple components to perform work within the same transaction.



17

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

33

Implementação de Transações

In most circumstances, the root of the 
transaction is the business process rather than 
a DALC or a BE Component. The reason is 
that business processes typically require 
transactions that span multiple BE, not just a 
single BE. 
However, situations may arise where you need 
to perform transactional operations on a single 
BE without the assistance of a higher-level 
business process.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

34

Implementação de Transações
For example, to add a new customer to the DB discussed 
earlier, you must perform the following operations:

Insert a new row in the Customer table.
Insert a new row or rows in the Address table.

Both of these operations must succeed. 
If the Customer BE will never be a part of a larger business 
process that will initiate the transaction, use manual 
transactions within the Customer BE. 
Manual transactions are significantly faster than automatic 
transactions because they do not require any inter-process 
communication with the Microsoft Distributed Transaction 
Coordinator (DTC).



18

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

35

Implementação de Transações

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

36

Recomendações para Utilização de 
Transações Manuais nos DALC

Where possible, perform your processing in stored 
procedures. Use the Transact-SQL statements 
BEGIN TRANSACTION, END TRANSACTION, and 
ROLLBACK TRANSACTION to control 
transactions. 
If you are not using stored procedures, and the 
DALC will not be called from a business process, 
you can control transactions programmatically by 
using ADO.NET.



19

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

37

Recomendações para Utilização de 
Transações Automáticas nos DALC 1/4

Despite the overhead associated with COM+ 
transactions, automatic transactions provide 
a simpler programming model 
They are necessary when your transactions 
span multiple distributed data sources as 
they work in conjunction with the DTC. 

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

38

Recomendações para Utilização de 
Transações Automáticas nos DALC 2/4

If you implement automatic transactions in DALC, 
consider:

The DALC must inherit from the ServicedComponent class 
in the System.EnterpriseServices namespace. Note 
that any assembly registered with COM+ services must have 
a strong name.
Annotate the DALC with the 
Transaction(TransactionOption.Supported)
attribute so that you can perform read and write operations in 
the same component. This option avoids the overhead of 
transactions where they are not required — unlike 
Transaction(TransactionOption.Required), which 
always requires a transaction.



20

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

39

Recomendações para Utilização de 
Transações Automáticas nos DALC 3/4

The following code sample shows how to support 
automatic transactions in a DALC class:

using System.EnterpriseServices;

[Transaction(TransactionOption.Supported)]

public class CustomerDALC : ServicedComponent

{

...

}

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

40

Recomendações para Utilização de 
Transações Automáticas nos DALC 4/4

If you use automatic transactions, your DALC should 
vote in transactions to indicate whether the operation 
succeeded or failed. 
To vote implicitly, annotate your methods by using 
the AutoComplete attribute and throw an exception 
if the operation fails. 
To vote explicitly, call the SetComplete or 
SetAbort method on the ContextUtil class.



21

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

41

Utilização de Transações 
Automáticas nos Componentes BE

If you implement custom BE components that have 
behaviors, you can use automatic transactions to 
specify the transactional behavior of these objects. 
The recommendations for using automatic 
transactions to specify the transactional behavior of 
BE components are the same as the previously 
listed recommendations for implementing automatic 
transactions in DALC.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

42

Validações



22

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

43

Validações
Data validation can be performed at many tiers 
in an application. 
Different types of validation are appropriate in 
each tier:

The client application can validate BE data locally, 
before the data is submitted.
Business processes can validate business documents 
as the documents are received by using an XSD 
schema.
DALC and stored procedures can validate data to 
ensure referential integrity and to enforce constraints 
and nontrivial business rules.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

44

Tipos de Validações
Point-in-time validation. This is a validation that 
is performed at a specific point in time. For 
example, a business process validates an XML 
document when the document is received.
Continuous validation. This is validation that is 
performed on an ongoing basis at many 
different levels in your application. 



23

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

45

Tipos de Validações
Examples of Continuous validation include the 
following:

User interfaces can specify maximum field lengths to prevent 
the user from entering strings that are too long.
DataSets can specify the maximum length of data columns.
Custom BE components can perform range checks, length 
checks, non-null checks, and other simple tests on entity 
data.
DALC, stored procedures, and the DB itself can perform 
similar tests to ensure that data is valid before it is saved in
the DB.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

46

Gestão de Excepções



24

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

47

Gestão de Excepções

When errors occur in .NET applications, the general 
advice is to throw exceptions rather than return error 
values from your methods. 
This advice has implications for the way you write 
DALC and BE components.

Isto é o que Microsoft recomenda …
Nem sempre se deve seguir esta recomendação …

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

48

Gestão de Excepções

There are two general kinds of exceptions 
that will occur:

Technical exceptions, which include:
ADO.NET
Connection to database
Resources (such as database, network share, and 
Message Queuing) are unavailable

Business logic exceptions, which include:
Validation errors
Errors in stored procedures that implement business logic



25

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

49

Gestão de Excepções nos DALC
public class CustomerDALC
{

public void UpdateCustomer(Dataset aCustomer)
{

try
{

// Update the customer in the database...
}
catch (SqlException se)
{

// Catch the exception and wrap, and rethrow
throw new DataAccessException(

"Database is unavailable", se);
}
finally
{

// Cleanup code
}

}
}

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

50

Gestão de Excepções nos 
Componentes BE

public class CustomerEntity
{

public void Update()
{

// Check that the user has provided the required
// data. In this case a first name for the customer
if (FirstName == "" )
{

// Throw a new application exception that 
// you have defined
throw new MyArgumentException(

"You must provide a First Name.);
}
...

}
}



26

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

51

Autorização e Segurança

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

52

Autorização e Segurança
The .NET CLR uses permissions objects to implement its 
mechanism for enforcing restrictions on managed code.
There are three kinds of permissions objects:

Code access security. 
These permissions objects are used to protect resources and 
operations from unauthorized use.
Identity. 
These permissions objects specify the required identity 
characteristics that an assembly must have in order to run.
Role-based security. 
These permissions objects provide a mechanism for discovering 
whether a user (or the agent acting on the user’s behalf) has a 
particular identity or is a member of a specified role.



27

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

53

Segurança nos DALC -
Recomendações

DALC are designed to be used by other application 
components, and are the last place in your application code 
where you can implement security before the caller has 
access to your data.
Often, DALC can rely on the security context set by the 
caller.
However, there are some situations where the DALC should 
perform its own authorization checks to determine whether 
a principal is allowed to perform a requested action.
Authorization occurs after authentication and uses 
information about the principal’s identity and roles to 
determine what resources the principal can access.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

54

Segurança nos DALC -
Recomendações

Perform authorization checks at the DALC level if you need to:
Share DALC with developers of business processes that you do 
not fully trust.
Protect access to powerful functions exposed by the data stores.

After you define identity and principal objects, there are three
different ways to perform role-based security checks:

Use the PrincipalPermission object to perform imperative 
security checks.
Use the PrincipalPermissionAttribute attribute to perform 
declarative security checks.
Use the properties and the IsInRole method in the Principal 
object to perform explicit security checks.



28

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

55

Windows Authentication

Ideally, you should use Windows Authentication, 
rather than using SQL Server Authentication, when 
you connect to the database. 
However, you should use service accounts and 
avoid impersonating through to the database, 
because this will impede connection pooling. 
Connection pooling requires identical connection 
strings; if you try to open the database by using 
different connection strings, you will create separate 
connection pools, which will limit scalability.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

56

Secure Communication 
Recommendations

To achieve secure communication between calling 
applications and DALC, consider the following 
recommendations:

If your DALC are called over the wire from diverse tiers, and 
the exchange involves sensitive information that needs to be 
protected, use Distributed Component Object Model 
(DCOM), Secure Sockets Layer (SSL), or Secure Internet 
Protocol (IPSec) secure communication technologies.
If data is stored encrypted in a DB, DALC are usually 
responsible for encrypting and decrypting the data. If the risk 
of exposing the information is high, strongly consider 
securing the communication channel to and from the DALC.



29

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

57

Recommendations for Security in 
BE Components

If you implement your BE as data structures (such as XML or 
DataSets), you do not need to implement security checks.
However, if you implement your BE as custom BE 
components with CRUD operations, consider the following 
recommendations:

If the entities are exposed to business processes that you do not 
fully trust, implement authorization checks in the BE 
components and in the DALC. If you do implement checks at 
both levels, however, you may encounter the maintenance issue 
of keeping the security policies synchronized.
BE components should not deal with communication security or 
data encryption. Leave these tasks to the corresponding DALC.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

58

Distribuição e Instalação 
(Deployment)



30

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

59

Distribuição e Instalação 
(Deployment)

Deploying DALC
Deploying BE

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

60

Deploying DALC 1/3
Deploy DALC together with the business process objects. This 
deployment method provides optimum performance for data 
transfers, and has several additional technical benefits:

Transactions can flow seamlessly between the business process 
objects and the DALC. However, transactions do not flow seamlessly 
across remoting channels. In the remoting scenario, you need to 
implement transactions by using DCOM. Furthermore, if the business 
process and the DALC were separated by a firewall, you would require 
firewall ports open between both physical tiers to enable DTC 
communication.
Deploying business process objects and DALC together reduces the
number of transaction failure nodes.
The security context flows automatically between the business process 
objects and the DALC. There is no need to set principal objects.



31

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

61

Deploying DALC 2/3
Deploy DALC together with the user-interface code. 
DALC are sometimes used directly from UI 
components and UI process components. 
To increase performance in Web scenarios, you can 
deploy DALC together with the UI code; this 
deployment method enables the UI layer to take 
advantage of data reader streaming for optimum 
performance.

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

62

Deploying DALC 3/3
However, if you do consider this deployment 
method, bear in mind the following:

A common reason for not deploying DALC together with UI 
code is to prevent direct network access to your data 
sources from your Web farms.
If your Web farm is deployed in a DMZ scenario, firewall 
ports must be opened to access SQL Server. If you are 
using COM+ transactions, additional firewall ports must be 
opened for DTC communication.



32

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

63

Deploying BE

BE are used at many different tiers in your 
application. Depending on how you 
implement your BE, you may need to 
deploy them to multiple locations if your 
application spans physical tiers. 

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

64

Deploying BE - Implementation
scenarios

Deploying BE implemented as typed DataSets. The typed DataSet
class must be accessed by the DALC and by the calling application. 
Therefore, the recommendation is to define typed DataSet classes in 
a common assembly to be deployed on multiple tiers.
Deploying BE implemented as custom business entity components. 
The custom entity class may need to be accessed by the DALC, 
depending on how you defined the method signatures in the DALC. 
Follow the same recommendation as for typed DataSets by defining 
custom entity classes in a common assembly to be deployed on 
multiple tiers.
Deploying BE implemented as generic DataSets or XML strings.
Generic DataSets and XML strings do not represent a separate data 
type. There are no deployment issues for BE implemented in these
formats.



33

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

65

Pet Shop Application

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

66

PetShop - Microsoft
Microsoft .NET Pet Shop

http://msdn.microsoft.com/library/en-us/dnbda/html/bdasamppet.asp

http://java.sun.com/developer/releases/petstore/



34

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

67

PetShop - Microsoft
.NET Pet Shop high-level logical architecture

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

68

PetShop - Microsoft
.NET Pet Shop 2.0 Architecture



35

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

69

PetShop - Microsoft
.NET Pet Shop 3.0 Architecture

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

70

PetShop - Microsoft
DAL factory implementation in .NET Pet Shop



36

2004/2005 ADAV
Ambientes de Desenvolvimento Avançados

71

Questões

?


