Ambientes de
Desenvolvimento
Avancados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 5

Engenharia Informética

2005/2006

José Anténio Tavares
jrt@isep.ipp.pt

2005/2006

O que é um componente e 0
~\que ndo é?

Capitulo 4 de:

ESzyperski, Clemens et al. Component Software - Beyond

Object-Oriented Programming. Second Edition

ADAV
Ambientes de Desenvolvimento Avancados

2

?* “A software package which offers service through interfaces”

7)\ O que € um componente?
;[Peter Herzum and Oliver Sims, “Business Components Factory: A
Comprehensive Overview of Component-Based Development for the Enterprise”,
hn Wiley & Sons, Incorporated, 1999].

: ‘coherent package of software artifacts that can be
dependently developed and delivered as a unit and that can
composed, unchanged, with other components to build
/ 1ething larger”

. D'Souza and A.C. Wills, “Objects, Components, And Frameworks with UML
2005/2006 ADAV 3
Ambientes de Desenvolvimento Avancados

G@fa}ysis Approach” Addison-Wesley, 1998].

6mponent is a unit of composition with contractually
specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is

subject to composition by third parties.”
[C. Szyperski, “Component Software: Beyond Object-Oriented Programming”
Addison-Wesley, 1998].

7\ O que nao é um componente?

‘Tonent isn’t an object, not in sense of
"'Iy being an object in a Java or C++
am although it is true at runtime.

2005/2006 ADAV 4
Ambientes de Desenvolvimento Avancados

Componentes, Interfaces e
re-entrada.

Capitulo 5 de:

Szyperski, Clemens et al. Component Software - Beyond
Object-Oriented Programming. Second Edition

2005/2006 ADAV 5
Ambientes de Desenvolvimento Avancados

Conteudo

e Componentes e interfaces
Interfaces directas e indirectas

‘e Versoes

, Interfaces como contrato

e O que pertence a um contrato?
g-«lﬁgrmalidade ou informalidade?
& Caracteristicas nao documentadas
, Callbacks e contractos

e Re-entrada nos objectos

2005/2006 ADAV 6
Ambientes de Desenvolvimento Avancados

Componentes e interfaces

e Interfaces are the means by which components

, connect. Technically, an interface is a set of
~_named operations that can be invoked by

‘. clients.

ach operation’s semantics is specified, and this
~specification plays a dual role as it serves both

* 'providers implementing the interface and clients
using the interface.

2005/2006 ADAV 7
Ambientes de Desenvolvimento Avancados

Componentes e interfaces

e A component may either directly provide an
interface or implement objects that, if made
- available to clients, provide interfaces.

\ ‘e Interfaces directly provided by a component
a;::,x_(“';f_owrrespond to procedural interfaces of

g traditional libraries. Such indirectly
» implemented interfaces correspond to object
interfaces.

2005/2006 ADAV 8
Ambientes de Desenvolvimento Avancados

Interfaces Directas e indirectas

e A procedural (direct) interface to a component is
- modeled as an object interface of a static object
- within the component.

object (indirect) interface introduces an
indirection called method dispatch or,
ometimes, dynamic method lookup.

2005/2006 ADAV
Ambientes de Desenvolvimento Avancados

Interfaces Directas e indirectas

Example of indirection: classes

TextServices {{Interface))
Checker

void setChecker(Checker c) check()
A '| Checker getChecker() |

|

|

|

|

WordProcessor GrammarChecker

2005/2006 ADAV
Ambientes de Desenvolvimento Avancados

10

Interfaces Directas e indirectas

Example of indirection: messages

| theWP | | theChecker | | theTextServ |

L

getChecker()

ﬁ setChecker(this)
|

theChecker
- _ L]

2005/2006 ADAV 11
Ambientes de Desenvolvimento Avancados

\\ Versdes

Traditional version management assumes that the versions of a
component evolve at a single source. In a free market, the
.. evolution of versions is more complex and management of version
hgmbers can become a problem in its own right.

:W|th direct interfaces it suffices to check versions at bind time,
ich is when a service is first requested.

“In ﬁdi“’r:ect interfaces couple arbitrary third party.

1.a versioned system, care must be taken to avoid indirect
_coupling of parties that are of incompatible versions.

The goal is to ensure that older and newer components are either
compatible or clearly detected as incompatible.

2005/2006 ADAV 12
Ambientes de Desenvolvimento Avancados

Interfaces como contrato

Interfaces can be viewed as contracts between provider and consumer;
he contract states what the client needs to do to use the interfaces
d what the provider has to implement to meet the services promised
provider has to establish the post-condition before returning to the

by the interface;
client and the client can rely on the post-condition being met whenever the

go act is an appropriate approach, with pre- and post-conditions
§ call to the operation returns

hed to every operation
‘e Pre-and post-conditions are not the only way to form contracts.

2005/2006 ADAV 13
Ambientes de Desenvolvimento Avancados

O que pertence a um contrato?

e contract = signature + behavioral specification;

e specifies requirements and guarantees, perhaps using pre-
and post-conditions;

o refinements (eg revisions) may weaken preconditions and/or

“ strengthen post conditions

~e__might also specify non-functional requirements (eg speed,

“time complexity, space)

might also specify safety (“this bad thing will never happen”)

nd progress (“this good thing will eventually happen”)

_properties

e should be rigorous; may be formal

2005/2006 ADAV 14
Ambientes de Desenvolvimento Avancados

terface contracts should be as formal as possible to
rive all necessary information and to enable formal

. degrées of formality — the preciseness of the specification
have to be balanced against the critically of the target part.

2005/2006 ADAV 15
Ambientes de Desenvolvimento Avancados

Caracteristicas nao
documentadas

e always possible to observe behavior of
implementation (eg testing, debugging,

_\ espionage)

c may provide more information than specification

- depending on such information is dangerous

'y -ﬁgﬁguarantee that later versions will behave the
/ same

"e NoO guarantee even that this version always
behaves the same

2005/2006 ADAV 16
Ambientes de Desenvolvimento Avancados

% Callbacks e contractos

o Callback or up-call is procedure registered with and

subsequently called by a library

Callbacks are a common feature in procedural libraries
that have to handle asynchronous events.

2005/2006 ADAV 17

Ambientes de Desenvolvimento Avancados

A callback usually reverses the direction of the flow of

controls, so a lower layer calls a procedure in a higher

layer.

T e resulting contract are far less manageable than

~simple pre- and post-conditions.

e Validity of the library state is specified as part of a
contract.

Callbacks e contractos

Other

Client party Library
Critical part
Client installs €allback

The intermediate
rty calls library |ibrary state at the
point of calling the
callback may be
reveled to clients.

Third

Liptrary invokes callback

Callback queries library

»§ Callback returns

Library returns

2005/2006 ADAV 18
Ambientes de Desenvolvimento Avancados

public delegate void MyDelegate(); // delegate declaration

— public interface I {

= event MyDelegate MyEvent;
void FireAway();

}

public class MyClass: 1 {
public event MyDelegate MyEvent;

gublic void FireAway()
if (MyEvent != null)
}

MyEvent();
}
public class MainClass {
static private void ()

Console_WriteLine(**Called when the event fires.™);
}

static public void Main O {
1 i = new MyClass(Q);

i .MyEvent += new MyDelegate(f);
i.FireAway(Q);

}
3

Que e tém de especial os
callbacks?

e in layered architecture, calls originate in higher
(more abstract) layer and move downwards

e library operations complete before returning to

A client, who cannot observe intermediate states

A o _____ callback usually reverses this flow

‘e intermediate state of library becomes visible

;o client may observe, or even modify, library’s
~intermediate state

e client certainly observes identity and ordering of
callbacks

2005/2006 ADAV 20
Ambientes de Desenvolvimento Avancados

O que é que se pode fazer

e unrealistic to restrict behavior of client during
callback (most non-trivial callbacks query library for
more information before taking appropriate action)

. library state must remain valid while observable

~hence must remain valid during callbacks

no longer sufficient to give pre- and post-conditions
- for library

2005/2006 ADAV 21
Ambientes de Desenvolvimento Avancados

Re-entrada nos objectos

(re-entrance)

The object re-entrance is the situation in which an object’s
method is invoked while another method is still executing.

. The real problem is observation of an object undergoing a
state transition with inconsistent intermediate states
becoming visible. Considering object re-entrance, the
problem is when an object’s method is invoked while
another method is still executing.

. Recursion and re-entrances become even more pressing
problem when crossing the boundaries of components.

2005/2006 ADAV 22
Ambientes de Desenvolvimento Avancados

Re-entrada nos objectos

(re-entrance)

User Text Text
Interface view Model Display

Type

Write

insertNotification

(remove caret mark)

(update text display)

A AN “

(redisplay caret mark)

Message sequence caused by a request to insert a typed character

2005/2006 ADAV 23
Ambientes de Desenvolvimento Avancados

?} Re-entrada nos objectos

' Multi-threading

e problems of recursive re-entrance similar to those of
oncurrent interaction

erhaps helps to make objects thread-safe? (ie
protected from unwanted interference from concurrent
ctivities)

no! thread safety addresses only external re-entrance

N
B locking prevents other objects from invoking our
methods, but cannot prevent us from invoking our
own (or self-inflicted deadlocks would result)

2005/2006 ADAV 24
Ambientes de Desenvolvimento Avancados

12

/
\

2005/2006

Questoes

ADAV 25
Ambientes de Desenvolvimento Avancados

13

