
1

1

Ambientes de 
Desenvolvimento Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 8
Engenharia Informática

2005/2006

José António Tavares
jrt@isep.ipp.pt

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

2

PARTE 2
Projecto de Componentes da Camada de 
Acesso a Dados e Passagem de Dados entre 
Camadas



2

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

3

Conteúdo
Introdução
Componentes Lógicos de Acesso a Dados
Representação de Entidades de Negócio
Mapeamento de Dados Relacionais a Entidades de Negócio
Implementação de Componentes Lógicos de Acesso a Dados
Implementação de Entidades de Negócio
Transacções
Validações
Gestão de Excepções
Autorização e Segurança
Distribuição e Instalação (Deployment)

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

4

Resumo aula 6



3

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

5

DALC vs BE

DALC (Data Access Logic Component) has methods to 
implement business logic against the database.

BE (Business Entity) –
Data is used to represent real world business entities, such as 
products or orders. There are numerous ways to represent 
these business entities in your application — for example, 
XML or DataSets or custom object-oriented classes —
depending on the physical and logical design constraints of 
the application.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

6

Mapeamento de Dados Relacionais 
a Entidades de Negócio

Databases typically contain many tables, 
with relationships implemented by primary 
keys and foreign keys in these tables. When 
you define BE to represent this data in your 
application, you must decide how to map 
these tables to BE.

An hypothetical retailer’s database



4

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

7

Mapeamento de Dados Relacionais 
a Entidades de Negócio

The relationships between the DALC and the tables that they 
represent in the database.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

8

Implementação das classes de um 
DALC

DALC use ADO.NET to 
execute SQL statements or 
call stored procedures. 
If your application contains 
multiple DALC, you can 
simplify the implementation of 
DALC classes by using a data 
access helper component.
Design your DALC classes to 
provide a consistent interface 
for different types of clients.



5

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

9

Implementação das 
Entidades de Negócio

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

10

Implementação das Entidades de 
Negócio

Characteristics:
Provide stateful programmatic access to business data and 
(in some designs) related functionality.
Can be built from data that has complex schemas. The data 
typically originates from multiple related tables in the DB.
Data can be passed as part of the I/O parameters of business 
processes.
Can be serializable, to persist the current state of the entities.
Do not access the DB directly. All DB access is provided by 
the associated DALC.
Do not initiate any kind of transaction. Transactions are 
initiated by the application or business process that is using 
the BE.



6

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

11

Implementação das Entidades de 
Negócio

There are various ways to represent business 
entities in the applications, ranging from a 
data-centric model to a more object oriented 
representation:

XML
Generic DataSet (.NET Framework)
Typed DataSet (.NET Framework)
Custom BE components
Custom BE components with CRUD behaviors

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

12

Implementação das Entidades de 
Negócio

To help the in decision of the most appropriate 
representation for BE in a particular circumstance, 
the following tasks for each BE format have to be 
taken into account:

Organize collections of BE
Data bind BE to user interface controls
Serialize business entity data
Pass BE data between tiers



7

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

13

Representing BE as XML

<?xml version="1.0"?>

<Product xmlns="urn:aUniqueNamespace">

<ProductID> 1 </ProductID>

<ProductName>Chai</ProductName>

<QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>

<UnitPrice> 18.00 </UnitPrice>

<UnitsInStock> 39 </UnitsInStock>

<UnitsOnOrder> 0 </UnitsOnOrder>

<ReorderLevel> 10 </ReorderLevel>

</Product>

Example: The BE consists of a single product

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

14

Representing BE as XML –
Guidelines 1/2

Decide whether the XML document should contain a 
single BE or a collection of BE. 

Use a namespace to uniquely identify the XML 
document, to avoid name clashes with content in other 
XML documents. 

Choose appropriate names for elements and attributes. 
Choose names that make sense for your application.



8

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

15

Representing BE as XML –
Guidelines 2/2

Use one of the following approaches to retrieve 
your BE in XML format:

If you are using SQL Server 2000, you can use the 
FOR XML clause in your queries or stored procedures. 
Retrieve a DataSet and transform it or write it out as an 
XML stream. 
Build an XML document from output parameters or by 
using a data reader.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

16

Representing BE as XML –
Advantages

Standards support. 
XML is a World Wide Web Consortium (W3C) standard data 
representation format. (see http://www.w3.org/xml.)

Flexibility. 
XML can represent hierarchies and collections of information.

Interoperability. 
XML is an ideal choice for exchanging information with external parties 
and trading partners, regardless of platform. If the XML data will be 
consumed by ASP.NET or WinForms applications, you can load the 
XML data into a DataSet to take advantage of the data binding support 
provided by DataSets.



9

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

17

Representing BE as XML –
Disadvantages 1/3

Preserving type fidelity. Type fidelity is not preserved in XML. 
However, you can use XSD schemas for simple data typing.

Validating XML. To validate XML, you can parse the code 
manually or use an XSD schema. Both approaches are 
relatively slow. 

Displaying XML. You cannot automatically display XML data 
in the user interface. You can write an XSLT style sheet to 
transform the data into a DataSet; however, style sheets are 
not easy to write. Alternatively, the style sheet can transform 
the XML into a displayable format such as HTML.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

18

Representing BE as XML –
Disadvantages 2/3

Parsing XML. To parse XML, you can use the Document 
Object Model (DOM) or the XmlReader class provided in 
the.NET Framework class library. XmlReader provides 
fast-forward only, read-only access to XML data, but DOM 
is more flexible because it provides random read/write 
access. However, parsing an XML document by using 
DOM is slower; 

Using private fields. You do not have the option of hiding 
information.



10

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

19

Representing BE as XML –
Disadvantages 3/3

Sorting XML. 
You cannot automatically sort XML data. 
Instead, use one of the following techniques:

Deliver the data in presorted order. This option does not 
support dynamic resorting of data in the calling application.
Apply an XSLT style sheet to sort the data dynamically. If 
necessary, you can alter the sort criteria in the XSLT style 
sheet at run time, by using DOM.
Transform the XML data into a DataSet, and use a 
DataView object to sort and search the data elements.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

20

Representing BE As a Generic 
DataSet

A generic DataSet is an instance of the DataSet class, which is 
defined in the System.Data namespace in ADO.NET. 
A DataSet object contains one or more DataTable objects to 
represent information that the DALC retrieves from the DB.

A generic DataSet object for the Product BE.



11

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

21

Representing BE As a Generic 
DataSet

A generic DataSet object for the Order BE.

Orders Datatable

OrderDetails Datatable

Defines OrderID
as primary key in
Orders Datatable

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

22

Representing BE As a Generic 
DataSet

// Create a ProductDALC object
ProductDALC dalcProduct = new ProductDALC();

// Call a method on ProductDALC to get a DataSet
// containing information for all products
DataSet dsProducts = dalcProduct.GetProducts();

// Use DataSet in the client. For example, bind the 
// DataSet to user interface controls
dataGrid1.DataSource = dsProducts.Tables[0].DefaultView;
dataGrid1.DataBind();

// When you are ready, pass the updated DataSet to 
// the ProductDALC to save the changes back to the DB
dalcProduct.UpdateProducts(dsProducts);



12

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

23

Representing BE as a Generic 
DataSet – Advantages 1/2

Flexibility. DataSets can contain collections of data, and can 
represent complex data relationships.

Serialization. DataSets natively support serialization when passing 
across tiers.

Data binding. DataSets can be bound to any user interface controls 
in ASP.NET and Windows Forms applications.

Sorting and filtering. DataSets can be sorted and filtered by using 
DataView objects. An application can create several DataView
objects for the same DataSet.

Interchangeability with XML. DataSets can be read/written in XML 
format. This is a useful technique in remote and disconnected 
applications. Applications can also persist DataSets to XML.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

24

Representing BE as a Generic 
DataSet – Advantages 2/2

Availability of metadata. Full metadata can be provided for a 
DataSet, in the form of an XSD schema. You can also 
programmatically obtain metadata for the DataSet by using methods 
in the DataSet, DataTable, DataColumn, Constraint, and Relation 
classes.

Optimistic concurrency. When you are updating data, you can use 
DataSets, in conjunction with data adapters, to perform optimistic 
concurrency checks easily.

Extensibility. If the database schema is modified, the methods in the 
DALC can create DataSets that contain modified DataTable and 
DataRelation objects as appropriate. The DALC method signatures do 
not change. The calling application can be modified to use these new 
elements in the DataSet.



13

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

25

Representing BE as a Generic 
DataSet – Disadvantages 1/2

Client code must access data through collections in the 
DataSet. 

To access a table in a DataSet, client code must index into the 
DataTable collections by using an integer indexer or a string 
indexer. 
To access a particular column, you must index into the DataColumn
collection by using a column number or a column name.

...

// Get the product name for the product in the first row of a 

// DataSet called dsProducts. Note the collections are zero-based.

String str = 
(String)dsProducts.Tables["Products"].Rows[0]["ProductName"];

...

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

26

Representing BE as a Generic 
DataSet – Disadvantages 2/2

High instantiation and marshalling costs.
DataSets result in the creation of several sub-objects 
(DataTable, DataRow, and DataColumn), which means that 
DataSets can take longer to instantiate and marshal than 
XML strings or custom entity components. 

The relative performance of DataSets improves as the 
amount of data increases, because the overhead of creating 
the internal structure of the DataSet is less significant than 
the time it takes to populate the DataSet with data.

Private fields. 
You do not have the option of hiding information.



14

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

27

Representing BE as a Typed 
DataSet

A typed DataSet is a class that contains 
strongly typed methods, properties, and 
type definitions to expose the data and 
metadata in a DataSet.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

28

Representing BE as a Typed 
DataSet - Advantages

Code readability. 
To access tables and columns in a typed DataSet, you can use typed 
methods and properties, as shown in the following code:

...

// Get the product name for the product in the 

// first row of a typed DataSet called

// dsProducts. Note the collections are 

// zero-based.

String str = dsProducts.Products[0].ProductName;

...

Compile type checking. 
Invalid table names and column names are detected at compile time 
rather than at run time.



15

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

29

Representing BE as a Typed 
DataSet – Disadvantages 1/2

Deployment. 
The assembly containing the typed DataSet class must 
be deployed to all tiers that use the BE.

Support of Enterprise Services (COM+) callers. 
If a typed DataSet will be used by COM+ clients, the 
assembly containing the typed DataSet class must be 
given a strong name and must be registered on client 
computers. Typically, the assembly is installed in the 
GAC (Global Assembly Cache).

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

30

Representing BE as a Typed 
DataSet – Disadvantages 2/2

Extensibility issues. 
If the DB schema is modified, the typed DataSet class 
might need to be regenerated. The regeneration process 
will not preserve any custom code that was implemented 
in the typed DataSet class. 

Instantiation. 
You cannot instantiate the type by using the new operator.

Inheritance. 
Your typed dataset must inherit from DataSet, which 
precludes the use of any other base classes.



16

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

31

Defining Custom BE Components 
1/2

Custom classes that represent BE typically contain the 
following:

Private fields to cache the BE data locally. These fields hold 
a snapshot of the data in the DB at the time the data was 
retrieved from the DB by the DALC.

Public properties to access the state of the entity, and to 
access sub-collections and hierarchies of data inside the 
entity. 

The properties can have the same names as the database 
column names, but this is not an absolute requirement. 
Choose property names according to the needs of your application, 
rather than the names in the database.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

32

Defining Custom BE Components 
2/2

Custom classes that represent BE typically 
contain the following - Continuation:

Methods and properties to perform localized 
processing by using the data in the entity 
component.

Events to signal changes to the internal state of 
the entity component.



17

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

33

Defining Custom BE Components

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

34

Defining Custom BE Components 
– Recommendations 1/6

Choosing between structs and classes. 
For simple BE that do not contain hierarchical data 
or collections, consider defining a struct to represent 
the BE. For complex BE, or for BE that require 
inheritance, define the entity as a class instead.

Representing the BE’s state. 
For simple values such as numbers and strings, 
define fields by using the equivalent .NET data type.



18

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

35

Defining Custom BE Components 
– Recommendations 2/6

Representing sub-collections and hierarchies in a custom 
BE Component. 
There are two ways to represent sub-collections and 
hierarchies of data in a custom entity:

A .NET collection such as ArrayList. The .NET collection classes 
offer a convenient programming model for resizable collections, and 
also provide built-in support for data binding to user interface 
controls.

A DataSet. DataSets are well suited for storing collections and 
hierarchies of data from a relational database or from an XML 
document. Additionally, DataSets are preferred if you need to be 
able to filter, sort, or data bind your sub-collections.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

36

Defining Custom BE Components 
– Recommendations 3/6

Supporting data binding for user interface clients. 
If the custom entity will be consumed by user interfaces and you
want to take advantage of automatic data binding, you may need 
to implement data binding in your custom entity. Consider the 
following scenarios:

Data binding in Windows Forms. You can data bind an entity 
instance to controls without implementing data binding interfaces in 
your custom entity. You can also data bind an array or a .NET 
collection of entities.
Data binding in Web Forms. You cannot data bind an entity instance 
to controls in a Web Form without implementing the IBindingList
interface. However, if you want to data bind only sets, you can use 
an array or a .NET collection without needing to implement the 
IBindingList interface in your custom entity.



19

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

37

Defining Custom BE Components 
– Recommendations 4/6

Exposing events for internal data changes. 
Exposing events is useful for rich client user 
interface design because it enables data to be 
refreshed wherever it is being displayed. 

The events should be for internal state only, not 
for data changes on a server.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

38

Defining Custom BE Components 
– Recommendations 5/6

Making your business entities serializable.
Making business entities serializable enables the 
business entity’s state to be persisted in interim states 
without database interactions. The result can be to ease 
offline application development and design of complex 
user interface processes that do not affect business data 
until they are complete. There are two types of 
serialization:

XML serialization by using the XmlSerializer class.

Formatted serialization by using the BinaryFormatter or 
SoapFormatter class.



20

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

39

Defining Custom BE Components 
– Recommendations 6/6

XML serialization by using the XmlSerializer class.
Use XML serialization when you need to serialize only public 
fields and public read/write properties to XML. Note that if you
return BE data from a Web service, the object is automatically 
serialized to XML through XML serialization.

Formatted serialization by using the BinaryFormatter or 
SoapFormatter class.

Use formatted serialization when you need to serialize all the 
public and private fields and object graphs of an object, or if you 
will pass an entity component to or from a remoting server.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

40

Defining Custom BE Components 
– Advantages 1/3

Code readability.
To access data in a custom entity class, you can use typed methods and 
properties;

// Create a ProductDALC object

ProductDALC dalcProduct = new ProductDALC();

// Use the ProductDALC object to create and populate a 

// ProductEntity object. This code assumes the ProductDALC class

// has a method named GetProduct, which takes a Product ID as a

// parameter (21 in this example) and returns a ProductEntity

// object containing all the data for this product.

ProductEntity aProduct = dalcProduct.GetProduct(21);

// Change the product name for this product

aProduct.ProductName = "Roasted Coffee Beans";



21

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

41

Defining Custom BE Components 
– Advantages 2/3

Encapsulation. 
Custom entities can contain methods to encapsulate 
simple business rules. These methods operate on the 
business entity data cached in the entity component, 
rather than accessing the live data in the database.
Consider the following example:

// Call a method defined in the ProductEntity

// class.

aProduct.IncreaseUnitPriceBy(1.50);

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

42

Defining Custom BE Components 
– Advantages 3/3

Modeling of complex systems. 
If you are modeling a complex domain problem that has many 
interactions between different BE, it may be beneficial to define 
custom entity classes to absorb the complexity behind well-defined 
class interfaces.

Localized validation. 
Custom entity classes can perform simple validation tests in their 
property accessors to detect invalid BE data. 

Private fields. 
You can hide information that you do not want to expose to the 
caller.



22

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

43

Defining Custom BE Components 
– Disadvantages 1/3

Collections of business entities. 
A custom entity represents a single BE, not a collection 
of BE. The calling application must create an array or a 
collection to hold multiple BE.

Serialization. 
You must implement your own serialization mechanism 
in a custom entity. You can use attributes to control how 
entity components are serialized, or you can implement 
the ISerializable interface to control your own 
serialization.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

44

Defining Custom BE Components 
– Disadvantages 2/3

Representation of complex relationships and hierarchies in 
a BE. 
You must implement your own mechanism for representing 
relationships and hierarchies of data in a BE Component. As 
described previously, DataSets are often the easiest way to 
achieve this effect.

Searching and sorting of data.
You must define your own mechanism to support searching and 
sorting of entities.

Deployment. 
You must deploy, on all physical tiers, the assembly containing 
the custom entity.



23

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

45

Defining Custom BE Components 
– Disadvantages 3/3

Support for Enterprise Services (COM+) clients. 
If a custom entity will be used by COM+ clients, the 
assembly containing the entity must be given a strong 
name and must be registered on client computers. 
Typically, the assembly is installed in the GAC.

Extensibility issues. 
If the database schema is modified, you might need to 
modify the custom entity class and redeploy the 
assembly.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

46

Defining Custom BE Components 
with CRUD Behaviors

When you define a custom entity, you can provide methods to 
completely encapsulate the CRUD operations on the 
underlying DALC.
This is the more traditional object-oriented approach, and may 
be appropriate for complex object domains. The client 
application no longer accesses the DALC class directly.

Instead, the client application creates an entity component and 
calls CRUD methods on the entity component. These methods 
forward to the underlying DALC.



24

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

47

Defining Custom BE Components 
with CRUD Behaviors

Advantages
Encapsulation 

Interface to caller

Private fields

Disadvantages
Dealing with sets of BE

Increased development time

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

48

Questões

?


