
1

1

Ambientes de
Desenvolvimento Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 13
Engenharia Informática

2005/2006

José António Tavares
jrt@isep.ipp.pt

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

2

Polimorfismo

Capítulo 6 de:
Szyperski, Clemens et al. Component Software - Beyond

Object-Oriented Programming. Second Edition

2

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

3

Conteúdo

Conceito
Permutabilidade (Substitutability)
Tipos, subtipos, e verificação de tipos
Linguagens OO e Verificação de Tipos
O paradigma da Extensibilidade Independente
Segurança (Safety) por construção
Evolução vs Imutabilidade dos contratos
Outras formas de polimorfismo

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

4

Conceito

“Polimorfismo (Polymorphism) é a
capacidade de algo surgir sob múltiplas
formas, dependendo do contexto, e a
capacidade de “coisas” diferentes surgirem
sob a mesma forma num determinado
contexto”.

3

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

5

Permutabilidade

The same interface may be used by large
number of different clients
… but also be supported by a large number
of different providers

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

6

Permutabilidade

What a interface should require?
What is essential for the service

A Client may
establish more than is required by the pre-condition or
expect less than is guaranteed by the post-condition;

A Provider may
establish more than is required by the post-condition or
may require less than is guaranteed by the
pre-condition

4

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

7

Clients Interface Providers

Calls
Results

Permutabilidade
Pivotal role of the interface contract when considering
multiple clients and multiple providers of the services
advertised by an interface.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

8

Permutabilidade

When is it legal to substitute one service provider
for another?
An unknown number of clients may rely on the
service simply by relying on what is contractually
promised by the service interface;
Therefore, another service provider can come in if
it satisfies the same contract;
If a provider satisfies the same contract as another,
the former is said to be substitutable for the latter.

5

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

9

Permutabilidade

suppose contract specifies pre-condition R and post-condition G
‘provided pre-condition met, post-condition will be established’

R → G
suppose implementation instead requires R’ and guarantees G’

R’ → G’
implementation satisfies contract iff R ⇒ R’ (weaker pre-
condition) and G’⇒ G (stronger post-condition)

R ⇒ R’ → G’⇒ G
implementation refines contract: R → G ⊆ R’ → G’

Enfraquecer as pre-condições e fortalecer as post-condições

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

10

interface TextModel
{
int max(); //maximum length this text can have
int length(); //current length
char read(int pos); //character at position pos
void write(int pos, char ch); //insert character ch at pos

/**
* txt : array of char
* @pre
* @forall i : [0..this.length()] @ txt[i] = this.read(i)) and
* this.length() < this.max() and
* 0 =< pos and pos =< this.length()
* @post
* this.length() = this.length()@pre + 1 and
* @forall i : [0 .. pos-1] @ this.read(i) = txt[i] and
* this.read(pos) = ch and
* @forall i : [pos+1 .. this.length()-1] @ this.read(i) = txt[i-1]
**/
}

Permutabilidade

6

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

11

Permutabilidade

refinement might allow insertions past end of text, padding with blanks

* txt : array of char
* @pre
* @forall i : [0..this.length()] @ txt[i] = this.read(i)) and
* this.length() < this.max() and
* 0 =< pos and pos < this.max()
* @post
* this.length() = max(this.length()@pre, pos) + 1 and
* @forall i:[0..min(pos,this.length())-1] @ this.read(i)=txt[i] and
* this.read(pos) = ch and
* @forall i:[pos+1..this.length()@pre] @ this.read(i)=txt[i-1] and
* @forall i:[this.length()@pre+1..pos-1] @ this.read(i)=“ “

weaker pre-condition, stronger post-condition
refined (generalized) text model is substitutable for original

Refinamento do fornecedor (servidor)

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

12

Permutabilidade

client may provide more than is required and expect less than is guaranteed,
eg may only append, not insert:

if (text.length() < text.max()) {
pos = text.length();
text.write(pos, ch);
// expect text.read(text.length()-1)=ch

}

provided initial state implies pre-condition
this.length() < this.max() and 0 =< pos and pos =< this.length()

guaranteed post-condition
this.length() = this.length()@pre + 1 and
@forall i : [0 .. pos-1] @ this.read(i) = txt[i] and
this.read(pos) = ch and
@forall i : [pos+1 .. this.length()-1] @ this.read(i) = txt[i-1]

implies expected final state
refined (restricted) client is usable with original TextModel

Refinamento do cliente

7

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

13

Tipos, subtipos, e verificação de
tipos

ideally, all conditions of the contract would be stated explicitly and
formally
compiler or other automatic tool would check client and provider
against contract, statically reject violations (and pass the rest!)
ideal is unattainable
general contract-checking is equivalent to theorem-proving and
hence undecidable
even what is possible is too expensive for regular use
compromise: check only simple things (eg types, not values)
compromise: check later than desirable (eg version conflicts at
load time, array bounds at run time)

Verificação de Tipos e de Contratos

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

14

Subtypes

classes implementing an interface are subtypes of that
interface
extensions of an interface are also subtypes
inclusion polymorphism: subtype may be used wherever
supertype is expected (as far as type checking is
concerned)
type is weakened contract — contract refines type
signature
type correctness does not imply substitutability
similarly, subtyping does not imply substitutability either

8

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

15

Subtypes
interface View{
void close();
void restore(int left, int top, int right, int bottom);

}

interface TextView extends View{
int caretPos();
void setCaretPos(int pos);

}

interface Graphics extends View{
int cursorX();
int cursorY();
void setCursorXY(int x, int y);

}

TextView a subtype of View; TextView can be used when
View is expected.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

16

Subtypes

types of output parameters and return values form part of operation’s
post-condition
post-condition may be strengthened: output types may be specialized
(subtyped) — covariance
dually, types of input parameters form part of
pre-condition
pre-condition may be weakened: input types may be generalized
(supertyped) — contravariance
consequently, types of in-out parameters may not be varied

Covariance and Contravariance

9

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

17

Subtypes

Subcontract
Covariance and Contravariance

Function F Function G

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

18

Subtypes

Suppose TextModel and GraphicsModel subtype Model.

interface View {
Model getModel();

}
interface TextView extends View {

TextModel getModel(); // not legal Java!
}
interface GraphicsView extends View {

GraphicsModel getModel();
}

covariant redefinition in subtypes of output type of getModel
client expecting Model may get TextModel instead

Example of Covariance

10

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

19

Subtypes

What about extending View with setModel?

interface View {
Model getModel();
void setModel (Model m);

}
interface TextView extends View {

TextModel getModel();
void setModel (TextModel m);

}
interface GraphicsView extends View {

GraphicsModel getModel();
void setModel (GraphicsModel m);

}

Example of Contravariance

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

20

Linguagens OO e
Verificação de Tipos

some OO languages (eg Smalltalk) have no explicit type
system

in general, type checking must be done at runtime (or rely on
global analysis of entire code body)

restriction StrongTalk of Smalltalk is statically type-checkable,
but types are inferred rather than explicitly stated

most modern languages are statically typed

most allow no changes in parameters for subtypes — C++
introduced covariant return types in 1994, and Component
Pascal supports them; Java 1.0 beta spec allowed covariant
changes to return type, but final 1.0 and 1.1 specs do not

11

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

21

Subtipos estruturais vs subtipos
declarados

some programming languages (eg StrongTalk, Haskell) can infer
types by analyzing code
not possible for interface: there may be no code!
others establish subtyping by examining structure of types: if
interface of one type contains all methods of a second, with
appropriate signatures, it is a subtype
known as structural subtyping as opposed to declared subtyping
dangerous, because of coincidences
(graphics editor accepting all objects implementing draw. . .)
accidental subtyping unlikely? not with abstract classes, which have
small interfaces (eg java.lang.Cloneable has no entries!)

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

22

O paradigma da Extensibilidade
Independente

principle function of component orientation is to allow
independent extensibility

independently-developed extensions should be freely
combinable

eg OS with applications

eg plug-in architectures (Netscape, QuickTime)

eg micro-kernel OS architectures (influencing NT)

want uniform independent extensibility recursively
through all levels

(The paradigm of Independent Extensibility - IE)

12

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

23

O paradigma da Extensibilidade
Independente

IE explored in research projects, but failed in industrial
projects (eg Taligent)
partitioning into small components compromises
performance
eg in micro-kernel OS, frequent crossing of protection
boundaries
initial euphoria for micro-kernel OSs evaporated; eg NT4
moved significant parts of display driver code into NT
kernel to improve performance of graphics-intensive
applications

The failure of independent extensibility

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

24

O paradigma da Extensibilidade
Independente

how can IE be viable if performance so badly affected?
ask rather, why is performance so badly hit?
cross-context calls expensive (on well-tuned OS, about 100 times
slower than local in-process call)
ok for time-sharing of traditional OSs, with IPC based on buffered
pipelines, but not for tightly-interacting components with synchronous
calls
contexts typically not used in PCs (MacOS, MSDOS): no hardware
protection, no context-switching, plug-ins share address space with
and may crash entire system
how to combine efficiency and safety?
choose granularity carefully
statically check safety, run unprotected

The solution?

13

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

25

Segurança (Safety) por
construção

careful language design can allow static safety checking
eg Java is type-safe, in the sense that most memory
references are statically checked (automatic garbage collection
helps), and the others (eg array bounds) are checked at run-
time
memory errors cannot occur
must also check for eligibility to access certain features
Java also provides module safety: explicit statement of
services needed; other services prohibited
module safety under reflection and meta-programming also
achievable
Component Pascal is also type- and module safe

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

26

Segurança por construção

Multi-language environments
component technology allows assembly of
components implemented in different languages
mutual safety then depends on safety of all
languages involved
requires sufficiently strong IDL (interface
definition language)
strength of whole is limited by strength of
weakest link

14

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

27

Segurança por construção

Trust
these approaches depend on careful language design and
definition
language should have formal semantics, and formal proofs of
safety properties
proofs need also to be trusted and checked
not only language, but also environment (compilers, verifiers,
interpreters) need to be checked
trust is a matter of reducing unknown to known and trusted, in a
trusted way
a social process; it helps if it is public (eg Unix and Java security
strategies)

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

28

Evolução vs Imutabilidade dos
contratos

contract mediates between clients and providers
how can contracts be updated?
provider could stop supporting particular interface,
losing part of client base
provider should not change specification of interface, as
this would break clients without indication
similarly, client change its understanding of the contract
how to refer to particular contract? typically by name of
associated interface

15

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

29

Evolução vs Imutabilidade dos
contratos

Syntactic vs semantic contract changes
change of signature of interface is a syntactic change
change of behavior is a semantic change
viewing OO provider as ‘owner’ of contract, problem of contract
change sometimes called fragile base class problem (more later)
simple approach: make contract immutable once it has been
published (COM approach)
alternatively, obtain agreement for change among all parties
(difficult after publication)
IBM’s SOM supports a release order, and only adds to interfaces
(guaranteeing for every method a fixed index into the dispatch
table)

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

30

Evolução vs Imutabilidade dos
contratos

Contract expiry
some current component infrastructures offer
licensing services
natural for a license to expire after a certain date
simplifies evolution: free changes after license
expiry
frees up-to-date providers and clients from much
baggage
problem for legacy systems, even isolated ones

16

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

31

Evolução vs Imutabilidade dos
contratos

Overriding law

commonly applied in self-justification by
organizations dominating a market
deprecation of clients or providers conforming to old
(interpretation of) contract
morally better way: through intervention of accepted
standards organization

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

32

Outras formas de polimorfismo

note that inclusion polymorphism is different from
ad-hoc polymorphism and parametric polymorphism
ad-hoc polymorphism or overloading is using the
same name for different features (no common type
or implementation)
eg for integer and real addition in C
eg vector and matrix operations in APL
eg for similar methods with different parameters in
C++, Java

17

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

33

Outras formas de polimorfismo
Parametric polymorphism

parametric polymorphism or genericity is using the same
implementation at different types
for example, list reversal for all list element types
eg polymorphic types in Haskell (Hindley-Milner typing)
eg Pizza, Generic Java
not C++ templates (which expand to different
implementations at different types)
bounded polymorphism combines inclusion and parametric
polymorphism: common implementation at all subtypes of a
given type

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

34

Questões

?

