
1

1

Ambientes de
Desenvolvimento Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 14
Engenharia Informática

2005/2006

José António Tavares
jrt@isep.ipp.pt

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

2

Herança versus Composição

Capítulo 7 de:
Szyperski, Clemens et al. Component Software - Beyond

Object-Oriented Programming. Second Edition

2

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

3

Conteúdo

Visão geral
Vários aspectos da Herança
Problemas

Problemas da classe base frágil

Abordagens para disciplinar a herança
Das classes à composição de objectos

Reencaminhamento x Delegação

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

4

Formas de Herança
Three facets of inheritance

Implementation inheritance
(sub-classing) sharing of implementation
fragments
Interface inheritance
(sub-typing) sharing of contract fragments
Substitutivity
Promise of substitutability

How to avoid inheritance ?

3

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

5

Herança
Simula 67 - 1970

Inheritance of implementation
Inheritance of interfaces
Establishment of substitutability

Smalltalk - 1983
Inheritance of implementation
Inheritance of interfaces

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

6

Herança
Eiffel

Possible to undefined inheritance interface feature

Emerald (1987), Java, C#

Interface and implementation inheritance have been
separated

COM and OMG IDL
Interface definition language

4

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

7

More flavors to the soup
Multiple Inheritance

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

8

More flavors to the soup

Multiple Inheritance
Establish compatibility with multiple independent context is
important. Multiple interface is one way to achieve this.
OMG IDL, Java, C# → support multiple interface
inheritance
COM → not support multiple interface inheritance, but
permit that a component support multiple interface
simultaneous (that is much the same thing).
Multiple interface inheritance does not introduce any major
technical problems beyond those already introduced by
single interface inheritance.

5

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

9

More flavors to the soup
Mixing implementation fragments…

Do both superclasses
B1 and B2 get their own

copy of the state
defined by the
superclass A?

Diamond inheritance problem

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

10

More flavors to the soup

Mixing implementation fragments…

Diamond inheritance problem

About C class ?

• State...

• Methods ...

6

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

11

More flavors to the soup

Some approaches to discipline…
CLOS (Common Lisp Object System)

Linear order of inheritance
C++

Maintaining the integrity of sub-objects
Java

Limited to single implementation inheritance
OMG IDL and COM

Not support implementation inheritance at all

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

12

More flavors to the soup
Mixins

E

The idea is that a class inherits interfaces from one superclass
and implementations from several superclasses, each focusing
on distinct parts of the inherited interface.

7

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

13

More flavors to the soup

Mixins

interface B

{

void X ();

void Y ();

}

abstract class X1 implements B

{

void X () {

... // X2.Y ();

}

}

abstract class X2 implements B

{

void Y () {

...

}

}

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

14

Back to basic ingredients…
The Fragile Base Class (FBC) problem

SO

Application

Base Class(es)

Application Application

8

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

15

Problema da classe base frágil

can super-class (base class) evolve
without breaking subclasses?

eg old applications with new revision of
OS

two issues: syntactic and semantic fragile
base class problem

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

16

Problema da classe base frágil

The problem is that the ‘contract’ between components in an
implementation hierarchy is not clearly defined. When the
parent or child component changes its behavior unexpectedly,
the behavior of the related components may become undefined.

By completely encapsulating the implementation of an object,
SOM overcomes what Microsoft refers to as the ‘fragile base
class problem’, i.e., the inability to modify a class without
recompiling clients and derived classes dependent upon that
class.

9

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

17

Problema da classe base frágil
Syntactic

a matter of binary compatibility of compiled sub-classes with new
binary releases of super-classes
‘release-to-release binary compatibility’
nothing to do with semantics of inherited code
sub-class should not need recompilation, just because of ‘syntactic’
changes to super-class’s interface
e.g. moving methods up the class hierarchy
IBM’s SOM solves this problem by initializing method dispatch tables
at load time
cannot address all ‘syntactic’ changes, e.g. splitting a method in two,
or joining two methods into one, or changing a parameter list

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

18

Problema da classe base frágil
Semantic

How can a subclass remain valid in the presence
of different version of its super-classes ?

Parameters
Methods name
Return type

Contracts Versions

Re-entrance

10

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

19

Problema da classe base frágil
Semantic

how can subclasses remain valid in the face of
evolution of the implementation of super-classes?
syntactic FBC addresses problems with immature
libraries, but evolution of mature libraries more likely
to raise semantic FBC
to answer this question, it is necessary to understand
the semantics of implementation inheritance
subject of the remainder of this section

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

20

Up-calls via Herança
implementation inheritance usually combined with overriding
selected inherited methods are overridden with new
implementations
new implementations may call overridden code at arbitrary
point; abstract methods, or methods of interfaces, may have
implementations provided
invocation of overridden method similar to up-call (method in
super-class calling implementation in a sub-class)
calls span sub-class and super-class in both directions
but: every method is now potentially a callback
similar problems arise (practical!)
how to control complexity?

11

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

21

Inheritance – more knots than
meet the eye

abstract class Text

{

...

void write (pos, ch)

{

....

setCaret(pos);

}

void setCaret (int pos)

{

caret = pos;

}

...

}

class SimpleText extends Text

{

...

void setCaret (int pos)

{

int old = caretPos();

if (old != pos)

{

hideCaret();

super.setCaret(pos);

showCaret();

}

}

....

}

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

22

Inheritance – more knots than
meet the eye

abstract class Text

{

...

void write (pos, ch)

{

....

pos++;

}

void setCaret (int pos)

{

caret = pos;

}

...

}

class SimpleText extends Text

{

...

void setCaret (int pos)

{

int old = caretPos();

if (old != pos)

{

hideCaret();

super.setCaret(pos);

showCaret();

}

}

....

}

12

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

23

Abordagens para disciplinar a
herança

these problems known for a while:
inheritance breaks encapsulation (Snyder, 1986)

early attempts at solution addressed language weaknesses
but still, sub-class can interfere with and break super-class
implementation
likewise, evolution of super-class can break sub-classes
some attempts to control use of implementation inheritance:

specialization interface
partitioning objects
reuse contracts (covered in book, not here)

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

24

Abordagens para disciplinar a
herança

The specialization interface

13

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

25

Abordagens para disciplinar a
herança

The specialization interface
Kiczales and Lamping, 1992
specialization interface is the special interface
between class and sub-class
C++, Java and C#, for example, client interface
(outside package) includes only public features;
specialization interface includes also protected
features
Protected - Accessible only to sub-classes

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

26

Abordagens para disciplinar a
herança

The specialization interface (cont)
private features can be used to solve problems
pointed by Snyder
In C++, Java and C#, a private feature is private to
a class, not an object
Java, C# and Component Pascal also support the
important notion of package-private (or internal)
interfaces.

14

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

27

Abordagens para disciplinar a
herança

Typing the specialization interface

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

28

Abordagens para disciplinar a
herança

Typing the specialization interface
What are the legal modifications a sub-class can apply?

Protected interface
1993, John Lamping

Statically
Acyclic - Arranged in layers
Cyclic - Form a group

The idea is declare statically which other methods of
the same class a given method might DEPEND on.

15

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

29

Abordagens para disciplinar a
herança

Typing the specialization interface (cont)
Where dependencies form acyclic graphs, methods can be
arranged in layers;
Where dependencies form cycles, all the methods in the cycle
together form a group;
If a method need to call another method, it either has to be a
member of the called method’s group or of a higher layer’s
group;
In such an approach, a sub-class has to override methods group
by group – either all methods of a group are overridden or none.

Grouping and layering of methods is seen as a design activity.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

30

Abordagens para disciplinar a
herança

Typing the specialization interface (cont)
The developer determines the groups or layers

Today no language directly supports Lamping’s
specialization interface typing

specialization interface Text {

state caretRep

state textRep

abstract posToXCoord

abstract posToYCorrd
concrete caretPos {caretPos}

concrete setCaret {caretRep}

concrete write {textRep, caretPos, setCaret}

concrete delete {textRep, caretPos, setCaret}

...

}

No dependencies

16

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

31

Abordagens para disciplinar a
herança

Behavioral specification of the
specialization interface

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

32

Abordagens para disciplinar a
herança

Behavioral specification of the specialization interface
Lamping’s proposal improves information available to
sub-classers, but does not address semantic issues of
inheritance
behavioral aspects of inheritance (Stata and Guttag,
1995)

1995, Stata & Guttag
Class as a combined definition of interacting parts objects

Method groups
Algebraic specification techniques
Notion of behavioral sub-typing

17

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

33

Abordagens para disciplinar a
herança
Behavioral specification of the specialization interface (cont)
to transform ordinary object to Stata-Guttag object group: use only a
single sub-object
Sub-class may change nothing or everything; implementation
inheritance useless
might as well share interface, provide new implementation

Inheritance Independent classes

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

34

Abordagens para disciplinar a
herança

Behavioral specification of the specialization interface (cont)
conversely, transform object group into collection of objects
‘self’ is lost; how to refer to peers?
provide each sub-object with references to the others
to handle object identity, nominate one sub-object the ‘main part’

A
B
C

Class Three groups

18

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

35

Abordagens para disciplinar a
herança

Reuse and cooperation contracts

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

36

Reuse and cooperation contracts
1996, Steyaert, et. al.

Returned to the idea of statically verifiable annotations
Reuse contract reuse contract Text {

abstract

posToXCoord

posToYCorrd

concrete

caretPos

setCaret

write {caretPos, setCaret}

delete {caretPos, setCaret}

...

}

Only among methods

Abordagens para disciplinar a
herança

19

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

37

Reuse and cooperation contracts (cont)
Real innovation - Set of modification operators

Concretization - replace abstract methods by concrete methods (its is
inverse is abstraction)
Extension - add new method that depend on new or existing methods
Refinement - override methods, introducing new dependencies to
possibly new methods.

Abordagens para disciplinar a
herança

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

38

Abordagens para disciplinar a
herança

Representing invariants and method
refinements

20

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

39

Representation invariants and methods refinements
1996, Edwards

Generalization of the Stata & Guttag
Overriding a method in a method group
Associating invariants with a class

• Protected

• Public

• Private

• Etc.

Abordagens para disciplinar a
herança

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

40

Representation invariants and methods
refinements (cont)

Demonstrate that the overriding of individual
methods in a method is permissible if the subclass
maintains the representation invariant of the group’s
variables.
The idea is to explicitly associate invariants with a
class specification that refers to protected variables,
which are variables that are only accessible by class
and sub-class code (but not external client code)

Abordagens para disciplinar a
herança

21

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

41

Abordagens para disciplinar a
herança

Disciplined inheritance to avoid FBC
problems

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

42

Disciplined inheritance to avoid fragile
base class problems

1998, Mikhajlov & Sekerinski
Construir a sub-classe baseada na
especificação da super classe, assim a
sub-classe ainda será valida mesmo que a
implementação da super-classe mude.

Abordagens para disciplinar a
herança

22

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

43

Abordagens para disciplinar a
herança

Creating correct sub-classes without
seeing the super-class code

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

44

Creating correct subclasses without seeing
superclass code

2000, Ruby & Leavens
Inverse problem of the semantic FBC problem

Inverse problem FBC problem

Abordagens para disciplinar a
herança

23

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

45

Creating correct subclasses without seeing
superclass code (cont)

2000, Ruby & Leavens
Inverse problem of the semantic FBC problem

Inverse problem FBC problem

Fragile subclass problem

Abordagens para disciplinar a
herança

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

46

Creating correct subclasses without seeing superclass
code (cont)

Provide 3 parts to a class specification - for the
sub-class can be safely created without requiring access to the
source code of the base class

Public
Protected – reveals information such invariants over
protected variables and conditions on protected methods
Automatic analysis of the initial source code of the base class
– provides information on which variables are accessed and
which methods are called by any given method.

Abordagens para disciplinar a
herança

24

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

47

Das classes à composição de
objectos

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

48

Das classes à composição de
objectos

Kiczales and Lamping, 1992
specialization interface is the special interface between
class and subclass
eg in Java, client interface (outside package) includes only
public features; specialization interface includes also
protected features
restricts access to interfaces, but doesn’t restrict usage by
those with access
distinction between client and descendent interfaces
important for controlling implementation inheritance
sub-class needs to know something about implementation
of class

25

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

49

Das classes à composição de
objectos

motivation for implementation inheritance is flexible code
reuse
improving super-class improves sub-classes? re-entrance
and up-calls make this difficult
object composition a simpler alternative (‘has-a’ instead of
‘is-a’)
outer object has the only reference to inner object
outer object forwards messages to inner object
improving inner object improves outer object
object composition and forwarding a close approximation to
implementation inheritance, without some of the problems

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

50

Das classes à composição de
objectos

Object composition is a much simpler form of
composition than implementation inheritance;
Shares several of the often quoted advantages of
implementation inheritance;
The idea is very simple – whenever an object does not
have the means to perform some task locally, it can
send messages to other objects, asking for support, and
if the helping object is a part of the helped object, this is
called object composition;
An object is part of another one if references to it do
note leave that object.

26

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

51

Das classes à composição de
objectos

Sending a message on from one object to another
is called forwarding (re-encaminhamento);
The combination of object composition and
forwarding comes fairly close to what is achieved by
implementation inheritance;
However, it does not get so close that it also has
the disadvantages of implementation inheritance.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

52

Das classes à composição de
objectos

An outer object does not re-implement the
functionality of the inner object when it forwards
messages;
It reuses the implementation of the inner object;
If the implementation of the inner object is changed,
then this change will “spread” to the outer object;
The difference between object composition with
forwarding and implementation inheritance is called
“implicit self-recursion” or “possession of a common
self”

27

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

53

Object A

Object B

<<message>>

Forwarding

Delegation?

inner object

outer object

Difference between Inheritance and Forwarding?

Das classes à composição de
objectos

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

54

Das classes à composição de
objectos

Possession of a common self
instance of sub-class shares identity with that of its
super-class;
control can return from a super-class back to a sub-
class – invocation of the last overriding version of the
method;
composition of objects has no single identity;
once control passed from outer to inner object, outer
object cannot interfere.

28

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

55

Das classes à composição de
objectos

Delegation
Composition + forwarding lacks the notion of a
common “self;
If a common identity is required, it has to be
designed in;
If an object was not designed for composition under
a common identity, it cannot be used in such
context – mechanisms build in to resend messages
to an outer object;
Object composition supports dynamic and late
composition.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

56

Das classes à composição de
objectos

Delegation (cont)
The concept of message passing by delegation is
relatively simple;
Each message-send is classified either as regular
send (forwarding) or self-recursive one (delegation)
Whenever a message is delegated (instead of
forwarded), the identity of the first delegator in the
current message is remembered;
Any subsequently delegated message is dispatched
back to the original delegator.

29

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

57

Re-encaminhamento x Delegação

InsertChar

InsertChar

SetCaret
InsertChar

delegate(InsertChar)

delegate(SetChar)

resend(SetChar)

Forwarding Delegation

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

58

Re-encaminhamento x Delegação

Resumo
Forwarding

Regular Message
Delegation

Self-recursive one
Strengthened
Identity is remembered

What the difference between Forwarding and Delegation?

30

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

59

Delegação x Herança
Gamma et al. (1995)

“Delegation has a disadvantage that it shares with
other techniques that make software more flexible
through object composition: dynamic, highly
parameterized software is harder to understand than
more static software. [...] Delegation is a good design
choice only when it simplifies more than it
complicates. [...] Delegation works best when it is
used in highly stylized ways – that is, in standard
patterns.”

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

60

Questões

?

