
1

1

Ambientes de
Desenvolvimento Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 17
Engenharia Informática

2005/2006

José António Tavares
jrt@isep.ipp.pt

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

2

Agenda

Introduction to EJB

Java 2 Platform, Enterprise Edition (J2EE)
http://java.sun.com/j2ee/index.jsp

2

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

3

Componentes e a Tecnologia
JAVA

Composição e especialização
(herança) de classes

Composição por terceiros

Referência ao ficheiro JAR no
CLASSPATH

Reutilização

InterfacesContrato explicito

ClassesFornecimento de serviços

Ficheiro JARUnidade de distibuíção
binária

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

4

Enterprise JavaBeans

The Enterprise JavaBeans architecture is a
component architecture for the development and
deployment of component-based distributed
business applications. Applications written using the
Enterprise JavaBeans architecture are scalable,
transactional, and multi-user secure. These
applications may be written once, and then deployed
on any server platform that supports the Enterprise
JavaBeans specification.

(Sun Microsystems’ definition)

… and it is Java based

3

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

5

JavaBeans

JavaBeans define a software component model for
Java

third party ISVs can create and ship Java components that
can be composed together into applications by end users.

Granularity of JavaBeans components
Some JavaBean components will be used as building blocks
in composing applications.
Some JavaBean components will be more like regular
applications, which may then be composed together into
compound documents

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

6

JavaBeans
What is a Bean?

“A Java Bean is a reusable software component that can be
manipulated visually in a builder tool.”.

Unifying features supported
“introspection” so a builder tool can analyze how a bean works.
“customization” so users can customize appearance and
behaviour.
“events” as a simple communication metaphor than can be used to
connect up beans.
“properties”, both for customization and for programmatic use.
“persistence”, so a bean can be customized and have its
customized state saved away and reloaded later.

4

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

7

Goal
Let developer focus on the business logic

In the context of EJB the notion of component is played by
‘beans’ that implement certain business logic.

An EJB provides:

mechanisms that allows beans to be deployed in a
distributed setting

managing services such as transactions, persistence,
concurrency, and security

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

8

Context: Three-tier architectures

Presentation Business Logic Backend

Database

Database

First Tier Middle Tier Third Tier

5

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

9

Implementing Distributed Objects
using Stubs and Skeletons

Client

STUB

Server

SKELETON

Object
ServerNETWORK

2. Communicate
method invoked

4. Communicate
return value

1. Client invokes
a method

5. Return result 3. Invoke on server

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

10

Encapsulation of business logic
OO languages are used to improve development of GUIs, simplify access
to data and to encapsulate business logic.
By encapsulating business models into objects you increase:

flexibility
extensibility
reusability

…and therefore the software can evolve as the business evolves

There are 2 types of business logic:
Business processes
Business data

6

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

11

Different types within business
logic

A bean implements business logic:

Business process SessionBean

Business data EntityBean

Remote Interface

Home Interface

Primary Key

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

12

Enterprise JavaBeans
architecture

Client EJB Server
EJB Container

Home interface

Remote interface Bean class
EJB object

EJB home

Red: define your self
Purple: automatically generated

Client code

7

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

13

Enterprise JavaBeans
architecture

To implement an enterprise bean you need to define two interfaces
and one or two classes :

Interfaces:
Home interface
Remote interface

Classes
Bean class
Primary key class (only for the entity bean)

The client never interacts with a bean class directly; it always uses
the methods of the bean’s home and remote interfaces to do its work,
interacting with the stubs that are generated automatically.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

14

Enterprise JavaBeans
architecture

There are a lot of interactions between a bean and its server.
These interactions are managed by a container, which is responsible for
presenting a uniform interface between the bean and the server.
The container is responsible for creating new instances of beans, making sure
that they are stored properly by the server.
Tools provided by the container’s vendor do a tremendous amount of work
behind the scenes.
At least one tool will take care of creating the mapping between entity beans
and records in your database.
Other tools generate a lot of code based on the home interface, the remote
interface, and the bean class itself.
The code generated does things like create the bean, store it in the database,
and so on.
This code is what actually implements the Home and Remote interface, and is
the reason your bean class only has to implement the business methods.

8

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

15

Bean deployment

Beans are deployed using JAR (Java ARchive) files.
JAR file

Deployment descriptor

Class files

A JAR file containing one or more enterprise beans include the bean classes, remote
interfaces, home interfaces, and primary keys (Entity Beans only), for each bean. It also
contains one deployment descriptor, which is used for all the beans in the JAR file. When
a bean is deployed, the JAR’s path is given to the container’s deployment tools, which
read the JAR file. The container uses the deployment descriptor to learn about the beans
contained in the JAR file.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

16

Resource Management

One of the benefits of EJB servers is that they are able to
handle heavy workloads while maintaining a high level of
performance.

EJB servers increase performance by

synchronizing object interactions

sharing resources

9

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

17

Resource Management
Instance pooling

Home stub

EJB
Home EJB

Object

Bean
pool

Create() newInstance()

Assign instance to EJB

Home stub

EJB
Home

EJB
Object

Bean
pool

Remote reference

1.

2.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

18

Resource Management
Instance swapping

stub

stub

PA E
C

D

Client
EJB server

bean instances

EJB object

Instance pool

stub

stub

E C

D

Client

stub

stub A

E C

D

Client

Q

P
Q

P
QA

Works only
for stateless
beans!

10

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

19

Resource Management
Bean Instance
activation and
passivation

stub PA

Client

EJB Server

secondary storage

stub P

Client

EJB Server
secondary storage

stub PB

Client

EJB Server
secondary storage

bean instance
eviction

1.

2.

3.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

20

Resource Management
Session beans reduce network traffic and thin down clients

EJB SERVER

Client using only Entity beans
Logic is in client
Clients does lots of small updates

on entity beans

Client using Session beans
Logic is in the session beans
Client only gives small number of

commands to Session beans

11

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

21

Conclusion EJB is about hiding
EJB hides a lot of things for the developer. Such that the developer can
focus on the business logic of the application.
EJB hides:

Distribution of objects
Resource Management
Transactions
Security
Concurrency

So the developer doesn’t have to know about skeletons, stubs, creation
of beans, etc. He will only define the Home interface (for creation) and
the Remote Interface (implemented) by the bean and can then focus on
implementing the business logic.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

22

Enterprise JavaBeans properties

Control Flow: Managed by EJB container / EJB server

Beans are passive (do a transaction and stop)

Distribution: Bean resides on a Enterprise Bean Server

Topology: Dynamic (bean creation/destruction/replacement/activation/…)

Interaction Style: Remote Method Invocation

Binding Time: Binding at Run Time

Binding Type: External and Internal binding
(Client and bean can do binding)

Multiplicity: Multiple occurrences of a bean can be created.

12

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

23

References

Enterprise Java Beans (2nd ed) (2000)

Richard Monson-Haefel

ISBN: 1-56592-869-5

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

24

COM – Enterprise Java Beans -
.NET

Deploy the class as a Dynamic Link Library or Executable
Deploy bean as a JAR file
Deploy assembly as a Dynamic Link Library or Executable

Notion of interfaces and implementations

Notion of interfaces (Remote Interface & Home Interface) and implementation
(bean)

Notion of exposed methods (Described in Web Service Description Language)

Use abstract base class to define binary interfaces

Enterprise Java Bean Server / Container specification

Use intermediate language, common type system, common language
specification

13

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

25

COM – Enterprise Java Beans -
.NET

Techniques for dynamically selecting implementations

Use Java Naming and Directory Interface for locating Beans (actually
home object)

DISCO (Discovery of Web Services) protocol

Dynamic discovery of implemented interfaces

??? Not applicable because you never talk to bean directly.

??? Use Web Service Description Language

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

26

Agenda

Comparison of component models
(COM, EJB and .NET)

14

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

27

Which component model serves
you best?

Depending on your wishes / requirements you can choose the
component model that serves you best. In this presentation I will
discuss some criteria which can influence your choice.

For example:

Performance

Language independence

Platform independence

Desire to use existing components

Type of application

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

28

Performance

+-.NET

-EJB

++COM

Binary code.
Little overhead on method call.

(especially on local components)

Java byte code needs interpretation.
Network/Server overhead is large.
(when # beans increases there are
optimalizations)

IL code needs compilation.
Performance of web services will
depend on the used protocols and
formats.

15

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

29

Language independence

+.NET

-EJB

+COM

C++, JAVA, VB, etc
can be mixed

Just Java

C++, C#, VB, etc
can be mixed

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

30

OS independence

+-.NET

++EJB

+-COM

Works on different platforms
Components of one platform
cannot be used on another.

Due to the fact that Java is OS
independent EJB is also OS
independent.

I see no fundamental reason why
.NET could not be OS independent,
however currently it is very Microsoft
Windows oriented.

16

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

31

Reusing existing components

++.NET

+EJB

+COM

All the component models support easy reuse of
components, this is basically what they were designed for !

.NET contains a large class library containing standard
component you can reuse.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

32

Type of application

Embedded systems
Transaction systems
Web application
Database application
Graphical application

COM
EJB
.NET
EJB / .NET
.NET

17

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

33

Conclusions 1/3

Component models try to give solutions for the following problems:

Reusability
Language / Platform independence
Separation of interface and implementation

Distribution
Deployment of components
Location of components
Take care of communication

Easy and Fast development
Providing standard components / functionality

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

34

Conclusions 2/3

Component models have differences:
Language / Platform independence

Binary interface, Intermediate language
IDL, Common Language Specification, EJB container specification

Separation of interface and implementation
Explicit interfaces (COM, EJB) and more implicit interfaces (.NET)

Exploration of component features
QueryInterface, Deployment descriptor, Webservice description

Deployment of components
Exe, Dll, JAR

Location of components
Registry, Java Naming and Directory Interface, Disco files

18

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

35

Conclusions 3/3

Component models have differences (part II):

Communication
MS RPC, Java RMI and default protocols like HTTP, SMTP in
combination with SOAP.

Standard components / functionality
Communication, database, security, .NET Framework class library

The choice of the component model you will use will depend on the type of
application you are developing and the requirements on the application.

2005/2006 ADAV
Ambientes de Desenvolvimento Avançados

36

Questões

?

