é C02619484.fm Page 9 Friday, February 13,2004 11:18 AM

t

Test-Driven Development In
.NET—By Example

In this chapter, we’ll demonstrate how to implement a Stack using Test-Driven
Development (TDD). We have found that the best way to understand TDD is to
see it practiced and follow along step by step. The following are the steps we
used to build a Stack using this method.

The Task

The task is to implement an unbounded Stack, which is a data structure in
which access is restricted to the most recently inserted item.

An unbounded Stack doesn’t have to be presized, and you can
insert an unlimited number of elements onto it.

The operations include Push, Pop, Top, and IsEmpty. The Push function
inserts an element onto the top of the Stack. The Pop function removes the top-
most element and returns it; the 7op operation returns the topmost element but
does not remove it from the Stack. The IsEmpty function returns true when there
are no elements on the Stack. Figure 2-1 shows the Push operation in action, Fig-
ure 2-2 shows the Pop operation, and Figure 2-3 shows the Top operation.

ﬁ%

rs

6%5 C02619484.fm Page 10 Friday, February 13,2004 11:18 AM

t

10 Part| Test-Driven Development Primer

Initial Final
State ~ OPertion gipe

P
1|

Unbounded Unbounded
Stack Stack
(IsEmpty = false) (IsEmpty = false)

Figure 2-1 Push operation

Initial Final
sate Opention oo

Pop
returns
Unbounded Unbounded
Stack Stack
(IsEmpty = false) (IsEmpty = true)

Figure 2-2 Pop operation

Initial Final
State ~ OPertion e

‘

Unbounded Unbounded
Stack Stack
(IsEmpty = false) (IsEmpty = false)

Figure 2-3 Top operation

Test List!

In Chapter 1, “Test-Driven Development Practices,” we stated that the first step
is to brainstorm a list of tests for the task. The goal of this activity is to create a

1. Beck, Kent. Test-Driven Development: By Example. Addison-Wesley, 2003.

ﬁ%

—®

rs

é C02619484.fm Page 11 Friday, February 13,2004 11:18 AM

t

Chapter 2 Test-Driven Development in .NET—By Example 11

test list that verifies the detailed requirements and describes the completion cri-
teria. One thing to keep in mind is that the list is not static. As you implement
each test, you might have to revisit the list to add new tests or delete them as
appropriate.

Let’s try to write the test list for the unbounded Stack.

Unbounded Stack Test List

B Create a Stack and verify that IsEmpty is true.

B Push a single object on the Stack and verify that IsEmpty is false.

B Push a single object, Pop the object, and verify that IsEmpty is true.
|

Push a single object, remembering what it is; Pop the object, and ver-
ify that the two objects are equal.

B Push three objects, remembering what they are; Pop each one, and
verify that they are removed in the correct order.

B Pop a Stack that has no elements.
B Push a single object and then call Top. Verify that IsEmpty is false.

B Push a single object, remembering what it is; and then call Top. Ver-
ify that the object that is returned is the same as the one that was
pushed.

B Call Top on a Stack with no elements.

Choosing the First Test

There are differing opinions about which test to choose first. One says that you
should choose the simplest test that gets you started and solves a small piece of
the problem. Another says that you should choose a test that describes the
essence of what you are trying to accomplish. For example, looking at the test
list in the previous section, the simplest test is the first one: Create an empty
Stack and verify that IsEmpty is true. This operation looks as if it would be easy
to implement, but it does not provide a great deal of useful feedback when
developing a Stack because the IsEmpty function is a supporting function.

A test in the list that is closer to the essence of the problem is the follow-
ing: Push a single object, remembering what it is; Pop the object, and verify that
it is equal to the object that was pushed. In this test, you are verifying that the
Push and Pop methods work as expected. Which style to use really is a matter
of personal preference because both will work.

ﬁ%

—®

—®

rs

é C02619484.fm Page 12 Friday, February 13,2004 11:18 AM

12

Part| Test-Driven Development Primer

There are times when the essence approach can take too much time to
implement. If that is the case, you should choose a simpler test to get started.
The suggestion that we give people who are learning TDD is to choose the sim-
plest test approach and graduate to the essence approach after becoming famil-
iar with the technique. Therefore, the first test that we chose to implement is
“Create an empty Stack and verify that IsEmpty is true.”

Red/Green/Refactor

The following is the implementation of each test in the test list.

Test 1: Create a Sfack and verify that IsEmply is true.

This test requires creating a Stack and then calling the IsEmpty property. The
IsEmpty property should return true because we haven’t put any elements into
the Stack. Let’s create a file called StackFixture.cs, in which we write a test fix-
ture class, called StackFixture, to hold the tests.

using System;
using NUnit.Framework;

[TestFixture]
public class StackFixture
{ /% =/}

There are a few things of interest about this class. The line using
NUnit. Framework; is needed to reference the custom attributes defined in
NUnit that are used to mark the test fixture. The [TestFixture/ attribute can be
associated only with a class. This attribute is an indicator to NUnit that the class
contains test methods.

The next activity is to write the method that does the test. (Here, the test
method name is Empty.)

[Test]
public void Empty()
{
Stack stack = new Stack();
Assert.IsTrue(stack.IsEmpty);
}

The test method is marked with the attribute /7est/. The first thing is to cre-
ate a Stack object. After creating the object, we use the Assert.IsTrue(...)
method to verify that the return value of IsEmpty is true.

ﬁ%

—®

rs

é C02619484.fm Page 13 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 13

Although the class used in the test, Stack, and the property IsEmpty do not
exist, we are writing test code as if they do. We are thinking about how the class
and its methods are used instead of how to implement it, which is an important
distinction. This is why many people refer to test-driven development as much a
design technique as a testing technique. Many times, class library designers
implement a library and then figure out how to use it, which can lead to libraries
that require a lot of initialization, complex method interactions, and increased
dependencies. Thinking about how to use the library before implementing it
places a greater emphasis on usage, which often leads to better design.

Because the Stack class does not exist, the test does not compile. That’s
easy enough to fix. What is the smallest amount of work that needs to be done
to get this to compile?

using System;

public class Stack
{
private bool isEmpty = true;

public bool IsEmpty
{
get
{
return isEmpty;

This implementation is certainly small; in fact, it might seem surprising.
Remember that the goal is to do the smallest amount of work possible to get the
code to compile. Some people might say that this code is too complicated:
given the test, they might argue that the following code would be sufficient:

public bool IsEmpty
{
get
{
return true;

There is a balance to achieve between anticipating future tests and imple-
mentation and being totally ignorant of the next test. In the beginning, you
should focus on the test you are writing and not think about the other tests. As
you become familiar with the technique and the task, you can increase the size
of the steps. You should always keep in mind that large steps are harder to

ﬁ%

é C02619484.fm Page 14 Friday, February 13,2004 11:18 AM

14 Part| Test-Driven Development Primer

debug than smaller steps. Also, if your code is too complicated or provides
functionality that is not tested, additional refactorings can result later.

This discussion is also relevant to the earlier discussion about the test list.
It is very clear from the test list that you have to store multiple items. Should
you go ahead and use an ArrayList because you might need it later? No—the
current tests do not support the need for an ArrayList. Wait and see what the
tests look like before making that decision.

Now that the code compiles, it is time to run the test in NUnit. The green bar
displays, which indicates success. We can check off the first test and move on.

Which test should we choose next? Perhaps we should stay focused on
the IsEmpty property because it is probably the smallest increment over what
we have now. Let’s look at “Push a single object on the Stack and verify that
IsEmpty is false.”

Test 2: Push a single object on the Stack and verify that IsEmpty is
false.

Test 2 says to Push an object onto the Stack and then verify that IsEmpty returns
false. Let’s try and write a test that does this. We’ll call the method PushOne:

[Test]
public void PushOne()
{
Stack stack = new Stack();
stack.Push("first element");
Assert.IsFalse(stack.IsEmpty,
"After Push, IsEmpty should be false");

The test, like the previous one, creates a Stack object. Then, using a
method named Push puts a String object onto the Stack. Finally, we call the
IsEmpty property on Stack and verify that it returns false.

Of course, this code does not compile because we have not defined the
Push method. Once again, what is the minimal amount of work needed to get
this code to compile?

public void Push(object element)
{
}

That is as small as it gets. Now, we can run the test. Running the tests
yields the following result:

—®

rs

é C02619484.fm Page 15 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 15

Tests run: 2, Failures: 1, Not run: @, Time: 0.015627 seconds

Failures:
1) StackFixture.PushOne : After Push, IsEmpty should be false
at StackFixture.PushOne() in c:\stackfixture.cs:1ine 19

The test failed because it was expecting the IsEmpty property of the Stack
to return false and it returned true. Now that we have a failing test, we can
implement Push correctly. Clearly, we need to change the isEmpty member
variable to be false when an element is pushed onto the Stack. The Push
method also implies that we have to store the elements in some collection to
satisfy the other operations, but there are no tests for this, so we will wait until
we have tests to implement this behavior. Let’s change the Push method to
implement this correctly.

public void Push(object element)
{
isEmpty = false;

Before we decide which test to implement next, we need to make sure
that there is no code duplication. The StackFixture class has some duplicated
test code. The test code is just as important as the production code; it is critical
to the overall communication and it also serves as an example of how the client
code should work. Both the PushOne and Empty tests create a Stack in the first
line of their methods. So, let’s move the creation of the Stack object from the
test methods to a new method called Init. After the modifications are com-
pleted, the StackFixture class looks like this:

using System;
using NUnit.Framework;

[TestFixture]
public class StackFixture
{

private Stack stack;

[SetUp]
public void Init()
{
stack = new Stack();
}
[Test]

public void Empty()

é C02619484.fm Page 16 Friday, February 13,2004 11:18 AM

16

Part |

Test-Driven Development Primer

{
Assert.IsTrue(stack.IsEmpty);

}

[Test]

public void PushOne()

{
stack.Push("first element");
Assert.IsFalse(stack.IsEmpty,

"After Push, IsEmpty should be false");
}
}

We had to create a private instance variable called stack so that all the
methods of the class could access the same object. The function nit is marked
with an attribute called [SetUp]. NUnit uses this attribute to ensure that this
method is called prior to each test being run, which means that each test
method gets a newly created Stack, instead of one modified from a previous
test.

This is an excellent example of the second rule of TDD: eliminate dupli-
cation. Prior to the refactoring, there was a small amount of duplicated code in
StackFixture. It may seem trivial, but it serves as an example of how following
red/green/refactor leads to code that is cleaner and easier to understand. It also
has the added benefit of making the tests easier to maintain because changes to
the initialization code would be made in one place.

Because the code compiled and passed the tests, it’s time to move on to
the next test. We want to stay focused on the IsEmpty property, so Push a single
object, Pop the object and verify that IsEmpty is true seems like a natural.

Test 3: Push a single object, Pop the object, and verify that IsEmply is

true.

This test introduces a new method called Pop, which returns the topmost ele-
ment and removes it from the Stack. To test that behavior, we need to insert an
element onto the Stack and then remove it. After that sequence is completed,
calling IsEmpty on the Stack should be true. Let’s see what that test looks like:

[Test]
public void Pop()
{
stack.Push("first element™);
stack.Pop();
Assert.IsTrue(stack.IsEmpty,
"After Push - Pop, IsEmpty should be true™);

ﬁ%

é C02619484.fm Page 17 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 17

Of course, the code does not compile because we haven’t defined the
method Pop. So we'll fake it:>

public void Pop()
{
}

The code compiles, but the tests fail with the following message:

Tests run: 3, Failures: 1, Not run: @, Time: 0.0156336 seconds

Failures:
1) StackFixture.Pop : After Push - Pop, IsEmpty should be true
at StackFixture.Pop() in c:\stackfixture.cs:1ine 33

We now need to implement the Pop method so that it passes the test. We
will simply change IsEmpty to be true when Pop is called.

public void Pop()
{
isEmpty = true;

The code compiles and we run the tests. The tests pass, so we can check
off Test 3 on the test list.

Notice that the implemented Pop method returns void. The requirements
stated previously said that Pop should also return the topmost element. Because
we do not have a test that tests that functionality, we will leave it that way until
we have a failing test.

So far, we have been concerned with verifying that the IsEmpty property
on the Stack is correct in regard to the Push and Pop operations. However, this
is leading to code that does not further our understanding of the problem. In
fact, we have written three tests that manage a Boolean variable. It is now time
to change direction and look at the actual objects that are pushed and popped
onto the Stack.

Test 4: Push a single object, remembering what it is; Pop the object,
and verify that the two objects are equal.

In this test, we need to create an object (in this case, an int), push the object
onto the Stack, pop the Stack, and verify that the object that is returned is equal
to the object pushed on the Stack. The following is the test method PushPop-
ContentCheck:

2. Beck, Kent. Test-Driven Development: By Example. Addison-Wesley, 2003.

ﬁ%

—®

rs

é C02619484.fm Page 18 Friday, February 13,2004 11:18 AM

18

Part |

Test-Driven Development Primer

[Test]

public void PushPopContentCheck()

{
int expected = 1234;
stack.Push(expected);
int actual = (int)stack.Pop();
Assert.AreEqual(expected, actual);

Of course, this code does not compile. The Pop method returns void, not
object. So let’s change the Pop method to return an object. The simplest code is
to have it return null:

public object Pop()
{
isEmpty = true;
return null;

Let’s compile and run the tests. The code compiles, but the tests fail with
the following message:

Tests run: 4, Failures: 1, Not run: @, Time: 0.0156311 seconds
Failures:

1) StackFixture.PushPopContentCheck : System.NullReferenceException : Object
reference not set to an instance of an object.
at StackFixture.PushPopContentCheck() in c:\stackfixture.cs:Tine 42

The test failed because we did not return the value that was on the top of
the Stack. In order for this test to pass, we have to change the Push method to
retain the object and alter the Pop method to return the object. The following
code is our next attempt:

using System;
public class Stack
{

private bool isEmpty = true;
private object element;

public bool IsEmpty

{
get
{
return isEmpty;
}
}

é C02619484.fm Page 19 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 19

public void Push(object element)
{
this.element = element;
isEmpty = false;

public object Pop()

{
isEmpty = true;
object top = element;
element = null;
return top;

}

Let’s compile and run the tests. All the tests pass, so we can now mark this
test off the list. Before we move on, let’s do a little refactoring because there is
a change that could be made related to the isEmpty member variable. The
change that we will make is to remove the isEmpty member variable and
replace it with a conditional expression using the element member variable.
Here is the modified code for the Stack:

using System;

public class Stack

{
private object element;
public bool IsEmpty
{
get
{
return (element == null);
}
}
public void Push(object element)
{
this.element = element;
}
public object Pop()
{
object top = element;
element = null;
return top;
}
}

ﬁ%

é C02619484.fm Page 20 Friday, February 13,2004 11:18 AM

20

Part |

Test-Driven Development Primer

This is much better because we use the element variable itself to represent
whether the Stack is empty or not. Prior to this, we had to update two variables;
now we use only one variable, which makes this solution better and we can
move on. One of the key behaviors of the Stack is that when you push an ele-
ment onto the Stack, it becomes the topmost element. Therefore, if you push
more than one item, the Stack should push the top item down and replace the
top item with the newly pushed item. This behavior should be consistent, no
matter how many items have been pushed.

We want the next test to verify that the Stack works as expected.

Test 5: Push three objects, remembering what they are; Pop each one,
and verify that they are correct.

The previous test, PushPopContentCheck, pushed and popped only one item.
In this test, we have to push three items to ensure that the Stack behaves in the
correct fashion:

[Test]
public void PushPopMultipleElements()
{
string pushedl = "1";
stack.Push(pushedl);
string pushed2 = "2";
stack.Push(pushed?2);
string pushed3 = "3";
stack.Push(pushed3);

string popped = (string)stack.Pop();
Assert.AreEqual(pushed3, popped);
popped = (string)stack.Pop();
Assert.AreEqual(pushed2, popped);
popped = (string)stack.Pop();
Assert.AreEqual(pushedl, popped);

In the PushPopMultipleElements method, we push 3 items onto the Stack
and then pop them off and verify that they are in the correct order. In this
example, we push “7”, “2”7 and “3” in that order and verify that when we call
Pop repeatedly, the strings come off “3”, “2” and “7”.

Let’s compile and run the tests. The code compiles, but NUnit fails with
the following message:

Tests run: 5, Failures: 1, Not run: @, Time: 0.031238 seconds

Failures:

ﬁ%

é C02619484.fm Page 21 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 21

1) StackFixture.PushPopMultipleETlements :
expected:<"2">
but was:<(null)>
at StackFixture.PushPopMultipleETements() in c:\stackfixture.cs:1ine 59

Clearly, something is wrong. In fact, we can no longer use the simplistic
implementation of the Stack with a single element. We need to use a collection
to hold the elements inside the Stack. After making a series of changes, here is
the refactored Stack code:

using System;
using System.Collections;

public class Stack

{
private ArraylList elements = new ArraylList();
public bool IsEmpty
{
get
{
return (elements.Count == 0);
}
}
public void Push(object element)
{
elements.Insert(0, element);
}
public object Pop()
{
object top = elements[0];
elements.RemoveAt(0);
return top;
}
}

Let’s compile and run the tests. The code compiles and all the tests pass,
so we can move on. You should notice that we made big changes to the entire
implementation, and no tests were broken afterward. This is a good example of
building confidence in the code that we have tests for. We are assured that,
based on our tests, the code is no worse than it was previously (which is the
best the tests can demonstrate).

This example shows very well the benefits of delaying implementation
decisions while writing tests. Some would argue that we should have started
out using an ArraylList to hold the elements of the Stack because it was a fore-

ﬁ%

é C02619484.fm Page 22 Friday, February 13,2004 11:18 AM

22

Part |

Test-Driven Development Primer

gone conclusion that we would need a collection to hold the elements. We did
not do this because we are trying to let the tests drive the need for functionality
instead of us thinking we know what is needed and then writing tests that verify
that thinking. It is a difference that this test demonstrates very clearly.

So far, we have been careful to call Pop on a Stack only when it contains
elements. In the next test, we need to look at what happens when we call Pop
on a Stack that has no elements.

Test 6: Pop a Stack that has no elements.

What should happen if we call Pop on the Stack and there are no elements?
There are a number of options:

B We could return null for the value (although we could never store
null on the Stack).

B We could use an in/out parameter to indicate success or failure of the
Pop operation. This procedure is clumsy and requires the user to
check the value to determine whether the method was successful.

B We could throw an exception because it’s an error we don’t expect
to occur.

Reviewing the options, it seems to make the most sense to have the Pop
method throw an exception if there are no elements on the Stack. Let's write a
test that expects the Pop operation to throw an exception:

[Test]
[ExpectedException(typeof(InvalidOperationException))]
public void PopEmptyStack()
{

stack.Pop();

This test uses another attribute in NUnit that allows the programmer to
declare that the execution of the test is expected to throw an exception. We
could define a new exception, but we choose to use InvalidOperationExcep-
tion in this example. It is in the System namespace and is defined as “The
exception that is thrown when a method call is invalid for the object’s current
state.”

We compiled and ran the tests. The test failed with the following message:

3. .NET SDK Documentation, System.InvalidOperationException

ﬁ%

é C02619484.fm Page 23 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 23

Tests run: 6, Failures: 1, Not run: O, Time: 0.0156248 seconds

Failures:
1) StackFixture.PopEmptyStack : Expected: InvalidOperationException but was Arg
umentOQutOfRangeException

at System.Collections.ArraylList.get_Item(Int32 index)

at Stack.Pop() in c:\projects\book\stack\stack.cs:Tine 23

at StackFixture.PopEmptyStack() in c:\stackfixture.cs:1ine 68

Not surprisingly, it does not work; we never changed the Pop method to
return the exception. However, we did get an exception, just not the right one.
The ArgumentOutOfRangeException occurs when you access an array outside
of the allowable range of values. In this case, there were no elements in the
array. Clearly, we need to modify the Pop method to check to see whether there
are any elements in the Stack and if not, throw the InvalidOperationException.
Let’s modify the Pop method to throw the correct exception:

public object Pop()

{
if(IsEmpty) throw new
InvalidOperationException("”cannot pop an empty stack");
object top = elements[0];
elements.RemoveAt(0);
return top;
}

That works. We can now check this test off the list and figure out which
test to do next.

As we were implementing this test, a few additional tests came to mind, so
we need to add them to our fest /ist. We want to add tests to verify that the Stack
works when the arguments are equal to null. The new tests are as follows:

B Push null onto the Stack and verify that IsEmpty returns false.

B Push null onto the Stack, Pop the Stack, and verify that the value
returned is null.

B Push null onto the Stack, call Top, and verify that the value returned
is nudl.

Reviewing the test list indicates that we have not done anything yet with
the Top method, so let’s focus on that next.

é C02619484.fm Page 24 Friday, February 13,2004 11:18 AM

t

24 Part| Test-Driven Development Primer

Test 7: Push a single object and then call Tap. Verify that IsEmpty
returns false.

The Top method does not change the state of the Stack; it simply returns the
topmost element. This test verifies that IsEmpty is not affected by the call to Top.
Let’s write that test:

[Test]
public void PushTop()
{
stack.Push("42");
stack.Top();
Assert.IsFalse(stack.IsEmpty);
}

Of course, this code does not compile. We have not written the Top
method, so we'll fake it:

public object Top()
{

return null;
}

That works. So we’ll check off another item on the list and decide which
test to implement next.

Not so fast! There are a couple of tests that we need to add to the test list
that we thought of while doing this test.

B Push multiple items onto the Stack and verify that calling 7op returns
the correct object.

B Push an item on the Stack, call Top repeatedly, and verify that the
object returned each time is equal to the object that was pushed onto
the Stack.

The test list now contains 14 items. These last two tests are important
because they verify that Top works as expected. We didn’t think of them at the
beginning, but they came to mind when we started working on Top.

The next test we will implement verifies that 7op returns the correct object.

Test 8: Push a single object, remembering what it is; and then call Top.
Verify that the object that is returned is equal to the one that was
pushed.

In the previous test, we checked to see whether the IsEmpty property was cor-
rect after we called Top. In this test, we verify that the object pushed onto the
Stack is equal to the one we get back when we call Top:

ﬁ%

—®

.

é C02619484.fm Page 25 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 25

[Test]
public void PushTopContentCheckOneETement()
{
string pushed = "42";
stack.Push(pushed);
string topped = (string)stack.Top();
Assert.Equals(pushed, topped);

Let’'s compile and run the tests. NUnit protests with the following message:

Tests run: 8, Failures: 1, Not run: @, Time: 0.0312442 seconds

Failures:
1) StackFixture.PushTopContentCheckOneElement :
expected:<"42">
but was:<(null)>
at StackFixture.PushTopContentCheckOneElement()
in c:\stackfixture.cs:1ine 84

In the previous test, we faked the implementation of Top by just returning
null. Looks like we have to implement (make) it correctly for this test to pass:

public object Top()
{
return elements[0];

That works. Although 7op seems similar to Pop, let’s wait and see whether
it gets more obvious as we add additional tests. Let's write another test.

Test 9: Push multiple objects, remembering what they are; call Top, and
verify that the last item pushed is equal to the one returned by Top.

This test states that we need to push more than one object onto the Stack and
then call Top. The return value of Top should be equal to the last value that was
pushed onto the Stack. Let’s give it a try:

[Test]
public void PushTopContentCheckMultiples()
{
string pushed3 = "3";
stack.Push(pushed3);
string pushed4 = "4";
stack.Push(pushed4);
string pushed5 = "5";
stack.Push(pushed5);

string topped = (string)stack.Top();
Assert.AreEqual(pushed5, topped);

ﬁ%

é C02619484.fm Page 26 Friday, February 13,2004 11:18 AM

26 Part| Test-Driven Development Primer

That works. This one just happens to work, so good for us. The next test
verifies that calling Top repeatedly always returns the same object.

Test 10: Push one object and call Top repeatedly, comparing what is
returned to what was pushed.

As stated previously, the Top method is not supposed to change the state of the
object, so we should be able to push an object onto the Stack and then call Top
as many times as we want—and it should always return the same object. Let’s
code it and see whether it works:

[Test]
public void PushTopNoStackStateChange()
{
string pushed = "44";
stack.Push(pushed);

for(int index = @; index < 10; index++)
{
string topped = (string)stack.Top();
Assert.AreEqual(pushed, topped);

That works, too.
Let’'s move on. The next test determines what happens when we call Top
on a Stack that has no elements.

Test 11: Call Top on a Stack that has no elements.

Consistency is a key component of designing a class library. Because we chose
to throw an InvalidOperationException when we called Pop, we should be con-
sistent and throw the same exception when we call Top. Let’s write the test:

[Test]
[ExpectedException(typeof(InvalidOperationException))]
public void TopEmptyStack()
{

stack.Top();

Of course, this does not work. NUnit provides the details:

Tests run: 11, Failures: 1, Not run: @, Time: 0.031263 seconds

Failures:
1) StackFixture.TopEmptyStack : Expected: InvalidOperationException but was

ﬁ%

é C02619484.fm Page 27 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 27

ArgumentOutOfRangeException
at System.Collections.ArraylList.get_Item(Int32 index)
at Stack.Top() in c:\projects\book\stack\stack.cs:1ine 33
at StackFixture.TopEmptyStack() in c:\stackfixture.cs:Tine 119

You would think we would learn something—this is the same failure we
got when we first implemented Pop. We need something similar in Top:

public object Top()

{
if(IsEmpty) throw new
InvalidOperationException(”cannot top an empty stack");
return elements[0];
}

This works. However, the similarity between Top and Pop is very apparent
and needs to be refactored. They both check to see whether there are elements
in the list and throw an exception if there aren’t any. The best solution seems
to have Pop call Top. Let’s give that a try:

public object Pop()

{
object top = Top();
elements.RemoveAt(0);
return top;

}

public object Top()

{
if(IsEmpty)
throw new InvalidOperationException("Stack is Empty");
return elements[0];
}

This works: the duplication has been removed. We did have to make a
change to the message that was in the exception—it is more generic now,
which is a small price to pay for consistency in the code. We can now check
this test off the list. (There are only three more to go, so the end is in sight.)

Test 12: Push null onto the Stack and verify that /sEmpiy is false.

This is the first test that was added when we wrote the test that called Pop on
an empty Stack. As you might recall, one of the options was to return a null to
indicate that there were no elements in the Stack. If we had chosen that route,

i | ®

é C02619484.fm Page 28 Friday, February 13,2004 11:18 AM

t

—®

28 Part| Test-Driven Development Primer

the programmer couldn’t have stored null on the Stack, so the interface would
be less explicit.

This test pushes nu/l onto the Stack and verifies that IsEmpty is false:

[Test]
public void PushNull1()
{

stack.Push(null);

Assert.IsFalse(stack.IsEmpty);
}

This works just fine. Let’s do the next test.

Test 13: Push null onto the Stack, Pop the Stack, and verify that the
value returned is null.

The previous test verified that IsEmpty was correct after pushing nu/l onto the
Stack. In this test, we push a null object onto the Stack and then call Pop to

retrieve the element and remove it from the Stack. The value returned from Pop
should be equal to null.

[Test]

public void PushNull1CheckPop()

{
stack.Push(null);
Assert.IsNull(stack.Pop());
Assert.IsTrue(stack.IsEmpty);

}

Let's compile and run the test. It works! This test has two asserts: one to
check whether the return value is nu/l, and one to check that IsEmpty is true.
They could be done separately, but we chose to combine them because they
are associated with the same test setup.

Now there is only one test left. Does the Top method work when we push
null onto the Stack?

Test 14: Push null onto the Stack, call Top, and verify that the value
returned is null.

In this test, we push a null object onto the Stack and then call Top to retrieve

the element from the Stack. The value returned from 7op should be equal to
null.

[Test]

public void PushNull1CheckTop()
{

rs

i -

é C02619484.fm Page 29 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 29

stack.Push(null);
Assert.IsNull(stack.Top());
Assert.IsFalse(stack.IsEmpty);

Compiling and running the tests indicate success. This is the last test on
the list, and we can’t think of any others. Although there are probably things we
missed, we can’t think of any for now—so the task is complete. We can check
the code into the repository and work on the next task. As bugs are found, we
will add other tests to cover the cases; this ensures that the test coverage will
improve over time.

Summary

In this chapter, we built a Stack as an example of Test-Driven Development,
and our version resulted in 14 tests. Reviewing the code shows that there is
much more test code than actual code.

If you study the individual steps, you probably notice that we spent most
of our time writing tests instead of writing the Stack code. This is because when
we write tests, we focus on what the class does and how it is used instead of
how it is implemented. This emphasis is very different from other ways of writ-
ing software, in which the code is written and then we figure out how to use it.

Comparing the size of the two classes is interesting. The Stack class is 35
lines of code; the StackFixture class contains 144 lines of code. The test code is
more than four times the size of the Stack code. The following is the completed
code in its entirety:

StackFixture.cs

using System;
using NUnit.Framework;

[TestFixture]
public class StackFixture
{

private Stack stack;

[SetUp]
public void Init()
{

é C02619484.fm Page 30 Friday, February 13,2004 11:18 AM

30 Part| Test-Driven Development Primer

stack = new Stack();

[Test]
public void Empty()
{
Assert.IsTrue(stack.IsEmpty);

[Test]
public void PushOne()
{
stack.Push("first element™);
Assert.IsFalse(stack.IsEmpty,
"After Push, IsEmpty should be false");

[Test]
public void Pop()
{
stack.Push("first element");
stack.Pop();
Assert.IsTrue(stack.IsEmpty,
"After Push - Pop, IsEmpty should be true");

[Test]

public void PushPopContentCheck()

{
int expected = 1234;
stack.Push(expected);
int actual = (int)stack.Pop();
Assert.AreEqual(expected, actual);

[Test]
pubTic void PushPopMultipleETlements()
{
string pushedl = "1";
stack.Push(pushedl);
string pushed2 = "2";
stack.Push(pushed?2);
string pushed3 = "3";
stack.Push(pushed3);

string popped = (string)stack.Pop();
Assert.AreEqual(pushed3, popped);
popped = (string)stack.Pop();

i | ®

é C02619484.fm Page 31 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example

Assert.AreEqual(pushed2, popped);
popped = (string)stack.Pop();
Assert.AreEqual(pushedl, popped);

[Test]
[ExpectedException(typeof(InvalidOperationException))]
public void PopEmptyStack()

{
stack.Pop();
}
[Test]
public void PushTop()
{
stack.Push("42");
stack.Top();
Assert.IsFalse(stack.IsEmpty);
}
[Test]
public void PushTopContentCheckOneElement()
{
string pushed = "42";
stack.Push(pushed);
string topped = (string)stack.Top();
Assert.AreEqual(pushed, topped);
}
[Test]
public void PushTopContentCheckMultiples()
{
string pushed3 = "3";
stack.Push(pushed3);
string pushed4 = "4";
stack.Push(pushed4);
string pushed5 = "5";
stack.Push(pushed5);
string topped = (string)stack.Top();
Assert.AreEqual(pushed5, topped);
}
[Test]
public void PushTopNoStackStateChange()
{

string pushed = "44";
stack.Push(pushed);

ﬁ%

31

é C02619484.fm Page 32 Friday, February 13,2004 11:18 AM

32 Part| Test-Driven Development Primer

for(int index = 0; index < 10; index++)

{
string topped = (string)stack.Top();
Assert.AreEqual(pushed, topped);
}
}
[Test]

[ExpectedException(typeof(InvalidOperationException))]
public void TopEmptyStack()

{
stack.Top();

}

[Test]

public void PushNull1()

{
stack.Push(null);
Assert.IsFalse(stack.IsEmpty);

}

[Test]

public void PushNull1CheckPop()

{
stack.Push(null);
Assert.IsNull(stack.Pop());
Assert.IsTrue(stack.IsEmpty);

}

[Test]

public void PushNull1CheckTop()

{
stack.Push(null);
Assert.IsNull(stack.Top());
Assert.IsFalse(stack.IsEmpty);

}

}
Stack.cs

using System;
using System.Collections;

public class Stack
{

private ArrayList elements = new ArraylList();

public bool IsEmpty

i | ®

é C02619484.fm Page 33 Friday, February 13,2004 11:18 AM

Chapter 2 Test-Driven Development in .NET—By Example 33

{
get
{
return (elements.Count == 0);
}
}
public void Push(object element)
{
elements.Insert(0, element);
}

public object Pop()

{
object top = Top();
elements.RemoveAt(0);
return top;

}

public object Top()

{
if(IsEmpty)
throw new InvalidOperationException("Stack is Empty");
return elements[0];
}

C02619484.fm Page 34 Friday, February 13,2004 11:18 AM

@

