
1

1

Ambientes de 
Desenvolvimento Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 7
Engenharia Informática

2006/2007

José António Tavares
jrt@isep.ipp.pt

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

2

Projecto de Componentes da Camada de 
Acesso a Dados e Passagem de Dados entre 
Camadas



2

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

3

Conteúdo
Introdução
Componentes Lógicos de Acesso a Dados
Representação de Entidades de Negócio
Mapeamento de Dados Relacionais a Entidades de Negócio
Implementação de Componentes Lógicos de Acesso a Dados
Implementação de Entidades de Negócio
Transacções
Validações
Gestão de Excepções
Autorização e Segurança
Distribuição e Instalação (Deployment)

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

4

Intodução

Camadas comuns numa 
aplicação distribuída



3

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

5

Componentes Lógicos de Acesso 
a Dados (DALC)

Data Access Logic Component (DALC) 
provides methods to perform the following tasks 
upon a database:

Create records in the database.
Read records in the database, and return 
business entity data to the caller.
Update records in the database, by using revised 
business entity data supplied by the caller.
Delete records in the database.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

6

DALC

The methods that perform the preceding 
tasks are often called “CRUD” methods;
CRUD is an acronym based on the first 
letter of each task 
The DALC also has methods to implement 
business logic against the database.

Ex: a DALC might have a method to find the 
highest-selling product in a catalog for this 
month.



4

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

7

DALC

Typically, a DALC accesses a single 
database and encapsulates the data-related 
operations for a single table or a group of 
related tables in the database. 

Ex: you might define one DALC to deal with the 
Customer and Address tables in a database, and 
another DALC to deal with the Orders and 
OrderDetails tables.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

8

Representação de Entidades de 
Negócio

Each DALC deals with a specific type of 
Business Entity (BE). 
For example, the Customer DALC deals with 
Customer BE. 
There are many different ways to represent 
BE, depending on different factors:



5

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

9

Representação de Entidades de 
Negócio

Such factors are as the following:
need to bind BE data to controls in a WinForm or on a 
ASP.NET page?
need to sort or search operations on the BE data?
application deals with BE one at a time, or does it typically 
deal with sets of BE?
deploy your application locally or remotely?
will the BE be used by XML Web services?
how important are nonfunctional requirements, such as 
performance, scalability, maintainability, and programming 
convenience?

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

10

Representação de Entidades de 
Negócio

Technical considerations 
that influence the design of 
data access logic 
components and Business 
Entities



6

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

11

Mapeamento de Dados Relacionais 
a Entidades de Negócio

Databases typically contain many tables, 
with relationships implemented by primary 
keys and foreign keys in these tables. When 
you define BE to represent this data in your 
application, you must decide how to map 
these tables to BE.

An hypothetical retailer’s database

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

12

Mapeamento de Dados Relacionais 
a Entidades de Negócio

Typical operations in the hypothetical retailer’s 
application are as follows:

Get (or update) information about a customer, 
including his or her addresses.
Get a list of orders for a customer.
Get a list of order items for a particular order.
Place a new order.
Get (or update) information about a product or a 
collection of products.



7

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

13

Mapeamento de Dados Relacionais 
a Entidades de Negócio

There are three logical BE that the application will handle: 
a Customer, an Order, and a Product. 
For each BE, a separate DALC will be defined, as follows:

Customer DALC. This class will provide services to retrieve 
and modify data in the Customer and Address tables.
Order DALC. This class will provide services to retrieve and 
modify data in the Order and OrderDetails tables.
Product DALC. This class will provide services to retrieve and 
modify data in the Product table.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

14

Mapeamento de Dados Relacionais 
a Entidades de Negócio

The relationships between the data access logic components 
and the tables that they represent in the database.



8

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

15

Recomendações para mapear dados 
relacionais com entidades de negócio

Take the time to analyze and model the logical BE of 
your application, rather than defining a separate BE for 
every table. One of the ways to model how your 
application works is to use UML.

Do not define separate BE to represent many-to-many 
tables in the database; these relationships can be 
exposed through methods implemented in your DALC. 

EX: the OrderDetails table in the preceding example is not 
mapped to a separate BE; instead, the Orders DALC 
encapsulates the OrderDetails table to achieve the many-to-
many relationship between the Order and Product tables.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

16

Recomendações para mapear dados 
relacionais com entidades de negócio

If you have methods that return a particular type of BE, 
place these methods in the DALC for that type. 

EX: if you are retrieving all orders for a customer, implement that 
function in the Order DALC because your return value is of the 
type Order. Conversely, if you are retrieving all customers that
have ordered a specific product, implement that function in the 
Customer DALC.

DALC typically access data from a single data source. 
If aggregation from multiple data sources is required, it 
is recommended to define a separate DALC to access 
each data source.



9

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

17

Recomendações para mapear dados 
relacionais com entidades de negócio

There are two reasons for separate DALC:
Transaction management is centralized to the business 
process component and does not need to be controlled 
explicitly by the DALC. If you access multiple data sources 
from one DALC, you will need the DALC to be the root of 
transactions, which will introduce additional overhead on 
functions where you are only reading data.
Aggregation is usually not a requirement in all areas of 
the application, and by separating the access to the data, 
you can let the type stand alone as well as be part of an 
aggregation when needed.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

18

Implementação dos Componentes 
Lógicos de Acesso a Dados

A DALC is a stateless class, meaning that all 
messages exchanged can be interpreted 
independently. 
DALC provides methods for accessing one or 
more related tables in a single database, or in 
some instances, multiple databases as in the 
case of horizontal database partitioning.
Typically, the methods in a DALC invoke stored 
procedures to perform their operations.



10

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

19

Implementação dos Componentes 
Lógicos de Acesso a Dados

One of the key goals of DALC is to hide the invocation and format 
idiosyncrasies of the database from the calling application. 
Specifically, a DALC handle the following implementation details:

Manage and encapsulate locking schemes
Handle security and authorization issues appropriately
Handle transaction issues appropriately
Perform data paging
Perform data-dependent routing if required
Implement a caching strategy if appropriate, for queries of 
nontransactional data
Perform data streaming and data serialization

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

20

Cenários para 
os DALC

DALC can be called
from a variety of 
application types:

• Windows Forms 
applications,

• ASP.NET 
applications, 

• XML Web services
• Business processes.

These calls might
be local or remote, 
depending on how you 
deploy your applications.



11

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

21

Implementação das classes de um 
DALC

DALC use ADO.NET to execute 
SQL statements or call stored 
procedures. 
If an application contains multiple 
DALC, you can simplify the 
implementation of DALC classes by 
using a data access helper 
component.
Design your DALC classes to 
provide a consistent interface for 
different types of clients.

Microsoft provides Data Access Application Block

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

22

Implementação das classes de um 
DALC

To support a diverse range of business processes and 
applications, consider the following techniques to pass 
data to and from DALC methods:

Passing BE data into methods in the DALC – you can pass 
the data in several different formats: as a series of scalar 
values, as an XML string, as a DataSet, or as a custom BE 
Component.
Returning BE data from methods in the DALC – you can 
return the data in several different formats: as output-
parameter scalar values, as an XML string, as a DataSet, 
as a custom BE Component, or as a data reader.

Pág. 12-14 – Advantages/Disadvantages



12

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

23

Utilização de Stored Procedures
com DALC

Vantagens
Improved performance
Can individually secured within the database
Easier maintenance
Add an extra level of abstraction from the underlying database schema
Can reduce network traffic

Desvantagens
Excessive load on the server if the logic implemented entirely in stored 
procedures
Maintenance and the agility becomes an issue when you must modify 
business logic in T-SQL
Stored procedures is most often a specialized skill

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

24

Utilização de Stored Procedures
com DALC

Recommendations for Using Store Procedures (SP) 
with DALC – p15-16:

Exposing SP – Only DALC
Each SP should be called by only one DALC and 
associated with the DALC that owns the action
Naming SP – choose SP names that emphasize the 
DALC to witch they pertain
Addressing security issues – ex: do not create a 
string by concatenating values without parameters



13

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

25

Gestão de Locking e 
Concorrência

Some applications take the “Last in Wins” approach when it 
comes to updating data in a database. 
With the “Last in Wins” approach, the database is updated, 
and no effort is made to compare updates against the original 
record, potentially overwriting any changes made by other 
users since the records were last refreshed.
However, at times it is important for the application to 
determine if the data has been changed since it was initially 
read, before performing the update.
Data access logic components implement the code to manage 
locking and concurrency

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

26

Gestão de Locking e 
Concorrência

Using Pessimistic Concurrency
Pessimistic concurrency is primarily used in environments 
where there is heavy contention for data, and where the cost 
of protecting data through locks is less than the cost of 
rolling back transactions if concurrency conflicts occur. 
Pessimistic concurrency is best implemented when lock 
times will be short, as in programmatic processing of 
records.
Pessimistic concurrency requires a persistent connection to 
the database and is not a scalable option when users are 
interacting with data, because records might be locked for 
relatively large periods of time.



14

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

27

Gestão de Locking e 
Concorrência

Using Optimistic Concurrency (p17-21)
Optimistic concurrency is appropriate in environments 
where there is low contention for data, or where read-only 
access to data is required. Optimistic concurrency 
improves database performance by reducing the amount of 
locking required, thereby reducing the load on the 
database server.
Optimistic concurrency is used extensively in .NET to 
address the needs of mobile and disconnected 
applications, where locking data rows for prolonged periods 
of time would be infeasible. Also, maintaining record locks 
requires a persistent connection to the database server, 
which is not possible in disconnected

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

28

Interoperabilidade - COM

If you want your DALC class to be callable 
from COM clients, the recommended 
approach is to define your DALC by using 
the preceding guidelines and provide a 
wrapper component. 



15

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

29

Interoperabilidade - COM
However, if you want COM clients to be able to access your 
DALC, consider the following recommendations:

Define the class and its members as public.
Avoid using static members.
Define event-source interfaces in managed code.
Provide a constructor that does not use parameters.
Do not use overloaded methods. Use methods with different names 
instead.
Use interfaces to expose common operations.
Use attributes to provide extra COM information for your class and 
members.
Include HRESULT values in any exceptions thrown from .NET code.
Use automation-compatible data types in method signatures.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

30

Questões

?


