
1

1

Ambientes de 
Desenvolvimento Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 9
Engenharia Informática

2006/2007

José António Tavares
jrt@isep.ipp.pt

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

2

PARTE 3
Projecto de Componentes da Camada de 
Acesso a Dados e Passagem de Dados entre 
Camadas



2

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

3

Conteúdo
Introdução
Componentes Lógicos de Acesso a Dados
Representação de Entidades de Negócio
Mapeamento de Dados Relacionais a Entidades de Negócio
Implementação de Componentes Lógicos de Acesso a Dados
Implementação de Entidades de Negócio
Transacções
Validações
Gestão de Excepções
Autorização e Segurança
Distribuição e Instalação (Deployment)

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

4

Enquadramento:
Resumo aulas 7 e 8



3

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

5

Intodução

Camadas comuns numa 
aplicação distribuída

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

6

DALC vs BE

DALC (Data Access Logic Component) has methods 
to implement business logic against the database.

BE (Business Entity) –
Data is used to represent real world business entities, 
such as products or orders. There are numerous ways to 
represent these business entities in your application —
for example, XML or DataSets or custom object-oriented 
classes — depending on the physical and logical design 
constraints of the application.



4

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

7

Mapeamento de Dados Relacionais 
a Entidades de Negócio

Databases typically contain many tables, 
with relationships implemented by primary 
keys and foreign keys in these tables. When 
you define BE to represent this data in your 
application, you must decide how to map 
these tables to BE.

An hypothetical retailer’s database

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

8

Mapeamento de Dados Relacionais 
a Entidades de Negócio

The relationships between the data access logic components 
and the tables that they represent in the database.



5

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

9

Implementação das classes de um 
DALC

DALC use ADO.NET to 
execute SQL statements or 
call stored procedures. 
If your application contains 
multiple DALC, you can 
simplify the implementation of 
DALC classes by using a data 
access helper component.
Design your DALC classes to 
provide a consistent interface 
for different types of clients.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

10

How to Define a DALC Class

Sample

The code is a sample definition of a class named 
CustomerDALC, which is the DALC class for 
Customer BE. The CustomerDALC class 
implements the CRUD operations for the Customer 
BE and provides additional methods to encapsulate 
business logic for this object.

Pág 50-51



6

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

11

Implementação das Entidades de 
Negócio

Continuação da aula anterior (aula 9)

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

12

Implementação das Entidades de 
Negócio

Characteristics:
Provide stateful programmatic access to business data and 
(in some designs) related functionality.
Can be built from data that has complex schemas. The data 
typically originates from multiple related tables in the DB.
Data can be passed as part of the I/O parameters of business 
processes.
Can be serializable, to persist the current state of the entities.
Do not access the DB directly. All DB access is provided by 
the associated DALC.
Do not initiate any kind of transaction. Transactions are 
initiated by the application or business process that is using 
the BE.



7

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

13

Implementação das Entidades de 
Negócio

There are various ways to represent business 
entities in your application, ranging from a 
data-centric model to a more object oriented 
representation:

XML
Generic DataSet (.NET Framework)
Typed DataSet (.NET Framework)
Custom BE components
Custom BE components with CRUD behaviors

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

14

Representing BE as XML

<?xml version="1.0"?>

<Product xmlns="urn:aUniqueNamespace">

<ProductID> 1 </ProductID>

<ProductName>Chai</ProductName>

<QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>

<UnitPrice> 18.00 </UnitPrice>

<UnitsInStock> 39 </UnitsInStock>

<UnitsOnOrder> 0 </UnitsOnOrder>

<ReorderLevel> 10 </ReorderLevel>

</Product>

Example: The BE consists of a single product



8

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

15

Representing BE As a Generic 
DataSet

A generic DataSet is an instance of the DataSet class, 
which is defined in the System.Data namespace in 
ADO.NET. 
A DataSet object contains one or more DataTable objects 
to represent information that the DALC retrieves from the 
DB.

A generic DataSet object for the Product BE.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

16

Representing BE as a Typed 
DataSet

A typed DataSet is a class that contains 
strongly typed methods, properties, and 
type definitions to expose the data and 
metadata in a DataSet.



9

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

17

Representing BE as a Typed 
DataSet - Advantages

Code readability. 
To access tables and columns in a typed DataSet, you can use typed 
methods and properties, as shown in the following code:

...

// Get the product name for the product in the 

// first row of a typed DataSet called

// dsProducts. Note the collections are 

// zero-based.

String str = dsProducts.Products[0].ProductName;

...

Compile type checking. 
Invalid table names and column names are detected at compile time 
rather than at run time.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

18

Representing BE as a Typed 
DataSet – Disadvantages 1/2

Deployment. 
The assembly containing the typed DataSet class must 
be deployed to all tiers that use the BE.

Support of Enterprise Services (COM+) callers. 
If a typed DataSet will be used by COM+ clients, the 
assembly containing the typed DataSet class must be 
given a strong name and must be registered on client 
computers. Typically, the assembly is installed in the 
GAC (Global Assembly Cache).



10

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

19

Representing BE as a Typed 
DataSet – Disadvantages 2/2

Extensibility issues. 
If the DB schema is modified, the typed DataSet class 
might need to be regenerated. The regeneration process 
will not preserve any custom code that was implemented 
in the typed DataSet class. 

Instantiation. 
You cannot instantiate the type by using the new operator.

Inheritance. 
Your typed dataset must inherit from DataSet, which 
precludes the use of any other base classes.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

20

Defining Custom BE Components 
1/2

Custom classes that represent BE typically contain the 
following:

Private fields to cache the BE data locally. These fields hold 
a snapshot of the data in the DB at the time the data was 
retrieved from the DB by the DALC.

Public properties to access the state of the entity, and to 
access sub-collections and hierarchies of data inside the 
entity. 

The properties can have the same names as the database 
column names, but this is not an absolute requirement. 
Choose property names according to the needs of your application, 
rather than the names in the database.



11

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

21

Defining Custom BE Components 
2/2

Custom classes that represent BE typically 
contain the following - Continuation:

Methods and properties to perform localized 
processing by using the data in the entity 
component.

Events to signal changes to the internal state of 
the entity component.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

22

Defining Custom BE Components 
– Recommendations 1/6

Choosing between structs and classes. 
For simple BE that do not contain hierarchical data 
or collections, consider defining a struct to represent 
the BE. For complex BE, or for BE that require 
inheritance, define the entity as a class instead.

Representing the BE’s state. 
For simple values such as numbers and strings, 
define fields by using the equivalent .NET data type.



12

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

23

Defining Custom BE Components 
– Recommendations 2/6

Representing sub-collections and hierarchies in a custom 
BE Component. 
There are two ways to represent sub-collections and 
hierarchies of data in a custom entity:

A .NET collection such as ArrayList. The .NET collection classes 
offer a convenient programming model for resizable collections, and 
also provide built-in support for data binding to user interface 
controls.

A DataSet. DataSets are well suited for storing collections and 
hierarchies of data from a relational database or from an XML 
document. Additionally, DataSets are preferred if you need to be 
able to filter, sort, or data bind your sub-collections.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

24

Defining Custom BE Components 
– Recommendations 3/6

Supporting data binding for user interface clients. 
If the custom entity will be consumed by user interfaces and you
want to take advantage of automatic data binding, you may need 
to implement data binding in your custom entity:

Data binding in Windows Forms. 
You can data bind an entity instance to controls without 
implementing data binding interfaces in your custom entity. You can 
also data bind an array or a .NET collection of entities.
Data binding in Web Forms. 
You cannot data bind an entity instance to controls in a Web Form 
without implementing the IBindingList interface. However, if you 
want to data bind only sets, you can use an array or a .NET 
collection without needing to implement the IBindingList
interface in your custom entity.



13

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

25

Defining Custom BE Components 
– Recommendations 4/6

Exposing events for internal data changes. 
Exposing events is useful for rich client user 
interface design because it enables data to be 
refreshed wherever it is being displayed. 

The events should be for internal state only, not 
for data changes on a server.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

26

Defining Custom BE Components 
– Recommendations 5/6

Making your business entities serializable.
Making business entities serializable enables the business 
entity’s state to be persisted in interim states without database 
interactions. 
The result can be to ease offline application development and 
design of complex user interface processes that do not affect 
business data until they are complete. There are two types of 
serialization:

XML serialization by using the XmlSerializer class.

Formatted serialization by using the BinaryFormatter or 
SoapFormatter class.



14

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

27

Defining Custom BE Components 
– Recommendations 6/6

XML serialization by using the XmlSerializer class.
Use XML serialization when you need to serialize only public 
fields and public read/write properties to XML. 
Note that if you return BE data from a Web service, the object is 
automatically serialized to XML through XML serialization.

Formatted serialization by using the 
BinaryFormatter or SoapFormatter class.

Use formatted serialization when you need to serialize all the 
public and private fields and object graphs of an object, or if you 
will pass an entity component to or from a remoting server.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

28

Defining Custom BE Components 
– Advantages 1/3

Code readability.
To access data in a custom entity class, you can use typed methods and 
properties;

// Create a ProductDALC object

ProductDALC dalcProduct = new ProductDALC();

// Use the ProductDALC object to create and populate a 

// ProductEntity object. This code assumes the ProductDALC class

// has a method named GetProduct, which takes a Product ID as a

// parameter (21 in this example) and returns a ProductEntity

// object containing all the data for this product.

ProductEntity aProduct = dalcProduct.GetProduct(21);

// Change the product name for this product

aProduct.ProductName = "Roasted Coffee Beans";



15

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

29

Defining Custom BE Components 
– Advantages 2/3

Encapsulation. 
Custom entities can contain methods to encapsulate 
simple business rules. These methods operate on the 
business entity data cached in the entity component, rather 
than accessing the live data in the database.

Consider the following example:

// Call a method defined in the ProductEntity class.

aProduct.IncreaseUnitPriceBy(1.50);

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

30

Defining Custom BE Components 
– Advantages 3/3

Modeling of complex systems. 
If you are modeling a complex domain problem that has many 
interactions between different BE, it may be beneficial to define 
custom entity classes to absorb the complexity behind well-defined 
class interfaces.

Localized validation. 
Custom entity classes can perform simple validation tests in their 
property accessors to detect invalid BE data. 

Private fields. 
You can hide information that you do not want to expose to the 
caller.



16

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

31

Defining Custom BE Components 
– Disadvantages 1/3
Collections of business entities. 
A custom entity represents a single BE, not a collection of 
BE. The calling application must create an array or a 
collection to hold multiple BE.

Serialization. 
You must implement your own serialization mechanism in a 
custom entity. You can use attributes to control how entity 
components are serialized, or you can implement the 
ISerializable interface to control your own serialization.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

32

Defining Custom BE Components 
– Disadvantages 2/3

Representation of complex relationships and hierarchies. 
You must implement your own mechanism for representing 
relationships and hierarchies of data in a BE Component. As 
described previously, DataSets are often the easiest way to 
achieve this effect.

Searching and sorting of data.
You must define your own mechanism to support searching and 
sorting of entities.

Deployment. 
You must deploy, on all physical tiers, the assembly containing 
the custom entity.



17

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

33

Defining Custom BE Components 
– Disadvantages 3/3

Support for Enterprise Services (COM+) clients. 
If a custom entity will be used by COM+ clients, the assembly 
containing the entity must be given a strong name and must 
be registered on client computers. Typically, the assembly is 
installed in the GAC.

Extensibility issues. 
If the database schema is modified, you might need to modify 
the custom entity class and redeploy the assembly.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

34

Defining Custom BE Components 
with CRUD Behaviors

When you define a custom entity, you can provide methods to 
completely encapsulate the CRUD operations on the 
underlying DALC.
This is the more traditional object-oriented approach, and may 
be appropriate for complex object domains. The client 
application no longer accesses the DALC class directly.

Instead, the client application creates an entity component and 
calls CRUD methods on the entity component. These methods 
forward to the underlying DALC.



18

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

35

Defining Custom BE Components 
with CRUD Behaviors

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

36

Defining Custom BE Components 
with CRUD Behaviors - Advantages

Encapsulation. 
The custom entity encapsulates the operations defined 
by the underlying DALC.

Interface to caller. 
The caller must deal with only one interface to persist BE 
data. There is no need to access the DALC directly.

Private fields. 
You can hide information that you do not want to expose 
to the caller.



19

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

37

Defining Custom BE Components with 
CRUD Behaviors - Disadvantages

Dealing with sets of BE. 
The methods in the custom entity pertain to a single BE 
instance. To support sets of BE, you can define static
methods that take or return an array or a collection of 
entity components.

Increased development time. 
The traditional object-oriented approach typically 
requires more design and development

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

38

Recommendations for Representing 
Data and Passing Data Through Tiers 1/3

The way in which you represent data throughout your 
application, and the way in which you pass that data through 
the tiers, do not necessarily need to be the same. 
However, having a consistent and limited set of formats yields 
performance and maintenance benefits that reduce your need 
for additional translation layers.

The data format that you use should depend on your specific 
application requirements and how you want to work with the 
data. There is no universal way to represent your data, 
especially because many of today’s applications are required 
to support multiple callers.



20

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

39

Recommendations for Representing 
Data and Passing Data Through Tiers 2/3

However, it is recommended that you follow these general 
guidelines to represent your data:

If your application mainly works with sets and needs 
functionality such as sorting, searching, and data binding, 
Datasets are recommended. 

However, if your application works with instance data, 
scalar values will perform better.

If your application mainly works with instance data, custom 
BE components may be the best choice because they 
prevent the overhead caused when a DataSet represents 
one row.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

40

Recommendations for Representing 
Data and Passing Data Through Tiers 3/3

In most cases, design your application to use a data-centric 
format, such as XML documents or DataSets:

you can use the flexibility and native functionality provided by the 
DataSets to support multiple clients more easily;

reduce the amount of custom code;

and use a programming API that is familiar to most developers.

Although working with the data in an object-oriented fashion 
provides some benefits, custom coding complex BE increases 
development and maintenance costs in proportion to the 
amount of features you want to provide.



21

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

41

How to Define a BE Component

Sample

The example shows how to define a 
custom entity class for the Product BE.

Pág 54-55

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

42

How to Represent Collections and 
Hierarchies of Data in a BE Component

Sample

The example shows how to define a custom 
entity class for the Order BE. Each order 
comprises many order items; these order items 
are stored in a DataSet in the OrderEntity
class.

Pág 55-56



22

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

43

How to Expose Events in a BE 
Component

Sample

Custom entities can raise events when the BE state is 
modified. These events are useful for rich client, user-
interface design because data can be refreshed 
wherever it is being displayed. The sample shows how 
to raise BE related events in the OrderEntity class.

Pág 58-59

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

44

Others “How to...”

How to Use XML to Represent Collections and 
Hierarchies of Data
How to Apply a Style Sheet Programmatically in a 
.NET Application
How to Create a Typed DataSet
How to Bind BE Components to User Interface 
Controls
How to Serialize BE Components to XML Format
How to Serialize BE Components to SOAP Format
How to Serialize BE Components to Binary Format



23

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

45

Transações

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

46

Transações
Most of today’s applications need to support transactions for 
maintaining the integrity of a system’s data. There are several 
approaches, however, each approach fits into one of two basic 
programming models:

Manual transactions. 
Write code that uses the transaction support features of either 
ADO.NET or Transact-SQL directly in your component code or 
stored procedures, respectively.

Automatic transactions. 
Using Enterprise Services (COM+), you add declarative attributes
to your classes to specify the transactional requirements of your 
objects at run time. You can use this model to easily configure 
multiple components to perform work within the same transaction.



24

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

47

Implementação de Transações

In most circumstances, the root of the transaction is the 
business process rather than a DALC or a BE 
Component. The reason is that business processes 
typically require transactions that span multiple BE, not 
just a single BE.

However, situations may arise where you need to 
perform transactional operations on a single BE without 
the assistance of a higher-level business process.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

48

Implementação de Transações
For example, to add a new customer to the DB discussed 
earlier, you must perform the following operations:

Insert a new row in the Customer table.
Insert a new row or rows in the Address table.

Both of these operations must succeed. 
If the Customer BE will never be a part of a larger business 
process that will initiate the transaction, use manual 
transactions within the Customer BE. 
Manual transactions are significantly faster than automatic 
transactions because they do not require any inter-process 
communication with the Microsoft Distributed Transaction 
Coordinator (DTC).



25

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

49

Implementação de Transações

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

50

Recomendações para Utilização de 
Transações Manuais nos DALC

Where possible, perform your processing in stored 
procedures. Use the Transact-SQL statements BEGIN 
TRANSACTION, END TRANSACTION, and 
ROLLBACK TRANSACTION to control transactions. 

If you are not using stored procedures, and the DALC 
will not be called from a business process, you can 
control transactions programmatically by using 
ADO.NET.



26

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

51

Recomendações para Utilização de 
Transações Automáticas nos DALC 1/4

Despite the overhead associated with COM+ 
transactions, automatic transactions provide a 
simpler programming model;

They are necessary when your transactions span 
multiple distributed data sources as they work in 
conjunction with the DTC. 

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

52

Recomendações para Utilização de 
Transações Automáticas nos DALC 2/4

If you implement automatic transactions in DALC, consider:
The DALC must inherit from the ServicedComponent class in 
the System.EnterpriseServices namespace. Note that any 
assembly registered with COM+ services must have a strong 
name.
Annotate the DALC with the 
Transaction(TransactionOption.Supported) attribute so 
that you can perform read and write operations in the same 
component. This option avoids the overhead of transactions where
they are not required — unlike 
Transaction(TransactionOption.Required), which 
always requires a transaction.



27

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

53

Recomendações para Utilização de 
Transações Automáticas nos DALC 3/4

The following code sample shows how to support 
automatic transactions in a DALC class:

using System.EnterpriseServices;

[Transaction(TransactionOption.Supported)]

public class CustomerDALC : ServicedComponent

{

...

}

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

54

Recomendações para Utilização de 
Transações Automáticas nos DALC 4/4

If you use automatic transactions, your DALC should 
vote in transactions to indicate whether the operation 
succeeded or failed.

To vote implicitly, annotate your methods by using the 
AutoComplete attribute and throw an exception if the 
operation fails.

To vote explicitly, call the SetComplete or SetAbort
method on the ContextUtil class.



28

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

55

Utilização de Transações 
Automáticas nos Componentes BE

If you implement custom BE components that have 
behaviors, you can use automatic transactions to 
specify the transactional behavior of these objects.

The recommendations for using automatic 
transactions to specify the transactional behavior of 
BE components are the same as the previously 
listed recommendations for implementing automatic 
transactions in DALC.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

56

Validações



29

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

57

Validações

Data validation can be performed at many tiers in an 
application. 
Different types of validation are appropriate in each 
tier:

The client application can validate BE data locally, before 
the data is submitted.
Business processes can validate business documents as 
the documents are received by using an XSD schema.
DALC and stored procedures can validate data to ensure 
referential integrity and to enforce constraints and 
nontrivial business rules.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

58

Tipos de Validações
Point-in-time validation.
This is a validation that is performed at a specific 
point in time. For example, a business process 
validates an XML document when the document is 
received.

Continuous validation.
This is validation that is performed on an ongoing 
basis at many different levels in your application. 



30

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

59

Tipos de Validações
Examples of Continuous validation include the 
following:

User interfaces can specify maximum field lengths to prevent 
the user from entering strings that are too long.

DataSets can specify the maximum length of data columns.

Custom BE components can perform range checks, length 
checks, non-null checks, and other simple tests on entity data.

DALC, stored procedures, and the DB itself can perform similar 
tests to ensure that data is valid before it is saved in the DB.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

60

Gestão de Excepções



31

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

61

Gestão de Excepções

When errors occur in .NET applications, the general 
advice is to throw exceptions rather than return error 
values from your methods. 
This advice has implications for the way you write 
DALC and BE components.

Isto é o que Microsoft recomenda …
Nem sempre se deve seguir esta recomendação …

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

62

Gestão de Excepções

There are two general kinds of exceptions 
that will occur:

Technical exceptions, which include:
ADO.NET
Connection to database
Resources (such as database, network share, and 
Message Queuing) are unavailable

Business logic exceptions, which include:
Validation errors
Errors in stored procedures that implement business logic



32

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

63

Gestão de Excepções nos DALC
public class CustomerDALC
{

public void UpdateCustomer(Dataset aCustomer)
{

try
{

// Update the customer in the database...
}
catch (SqlException se)
{

// Catch the exception and wrap, and rethrow
throw new DataAccessException(

"Database is unavailable", se);
}
finally
{

// Cleanup code
}

}
}

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

64

Gestão de Excepções nos 
Componentes BE

public class CustomerEntity
{

public void Update()
{

// Check that the user has provided the required
// data. In this case a first name for the customer
if (FirstName == "" )
{

// Throw a new application exception that 
// you have defined
throw new MyArgumentException(

"You must provide a First Name.);
}
...

}
}



33

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

65

Autorização e Segurança

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

66

Autorização e Segurança
The .NET CLR uses permissions objects to implement its 
mechanism for enforcing restrictions on managed code.
There are three kinds of permissions objects:

Code access security. 
These permissions objects are used to protect resources and 
operations from unauthorized use.
Identity. 
These permissions objects specify the required identity 
characteristics that an assembly must have in order to run.
Role-based security. 
These permissions objects provide a mechanism for discovering 
whether a user (or the agent acting on the user’s behalf) has a 
particular identity or is a member of a specified role.



34

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

67

Segurança nos DALC -
Recomendações

DALC are designed to be used by other application 
components, and are the last place in your application code 
where you can implement security before the caller has 
access to your data.

Often, DALC can rely on the security context set by the caller.

However, there are some situations where the DALC should 
perform its own authorization checks to determine whether a 
principal is allowed to perform a requested action.

Authorization occurs after authentication and uses information 
about the principal’s identity and roles to determine what 
resources the principal can access.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

68

Segurança nos DALC -
Recomendações

Perform authorization checks at the DALC level if you need to:
Share DALC with developers of business processes that you do 
not fully trust.
Protect access to powerful functions exposed by the data stores.

After you define identity and principal objects, there are three
different ways to perform role-based security checks:

Use the PrincipalPermission object to perform imperative 
security checks.
Use the PrincipalPermissionAttribute attribute to 
perform declarative security checks.
Use the properties and the IsInRole method in the Principal 
object to perform explicit security checks.



35

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

69

Windows Authentication
Ideally, you should use Windows Authentication, rather than using 
SQL Server Authentication, when you connect to the database.

However, you should use service accounts and avoid 
impersonating through to the database, because this will impede 
connection pooling.

Connection pooling requires identical connection strings; if you try 
to open the database by using different connection strings, you 
will create separate connection pools, which will limit scalability.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

70

Secure Communication 
Recommendations

To achieve secure communication between calling 
applications and DALC, consider the following 
recommendations:

If your DALC are called over the wire from diverse tiers, and the 
exchange involves sensitive information that needs to be 
protected, use Distributed Component Object Model (DCOM), 
Secure Sockets Layer (SSL), or Secure Internet Protocol (IPSec) 
secure communication technologies.

If data is stored encrypted in a DB, DALC are usually responsible 
for encrypting and decrypting the data. If the risk of exposing the 
information is high, strongly consider securing the communication 
channel to and from the DALC.



36

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

71

Recommendations for Security in 
BE Components

If you implement your BE as data structures (such as XML or 
DataSets), you do not need to implement security checks.
However, if you implement your BE as custom BE 
components with CRUD operations, consider the following 
recommendations:

If the entities are exposed to business processes that you do not 
fully trust, implement authorization checks in the BE 
components and in the DALC. If you do implement checks at 
both levels, however, you may encounter the maintenance issue 
of keeping the security policies synchronized.
BE components should not deal with communication security or 
data encryption. Leave these tasks to the corresponding DALC.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

72

Distribuição e Instalação 
(Deployment)



37

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

73

Distribuição e Instalação 
(Deployment)

Deploying DALC
Deploying BE

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

74

Deploying DALC 1/3
Deploy DALC together with the business process objects. This 
deployment method provides optimum performance for data 
transfers, and has several additional technical benefits:

Transactions can flow seamlessly between the business process 
objects and the DALC. However, transactions do not flow seamlessly 
across remoting channels. In the remoting scenario, you need to 
implement transactions by using DCOM. Furthermore, if the business 
process and the DALC were separated by a firewall, you would require 
firewall ports open between both physical tiers to enable DTC 
communication.
Deploying business process objects and DALC together reduces the
number of transaction failure nodes.
The security context flows automatically between the business process 
objects and the DALC. There is no need to set principal objects.



38

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

75

Deploying DALC 2/3
Deploy DALC together with the user-interface code. 
DALC are sometimes used directly from UI 
components and UI process components.

To increase performance in Web scenarios, you can 
deploy DALC together with the UI code; this 
deployment method enables the UI layer to take 
advantage of data reader streaming for optimum 
performance.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

76

Deploying DALC 3/3
However, if you do consider this deployment 
method, bear in mind the following:

A common reason for not deploying DALC together with UI 
code is to prevent direct network access to your data 
sources from your Web farms.
If your Web farm is deployed in a DMZ scenario, firewall 
ports must be opened to access SQL Server. If you are 
using COM+ transactions, additional firewall ports must be 
opened for DTC communication.



39

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

77

Deploying BE

BE are used at many different tiers in your 
application. Depending on how you 
implement your BE, you may need to 
deploy them to multiple locations if your 
application spans physical tiers. 

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

78

Deploying BE - Implementation
scenarios

Deploying BE implemented as typed DataSets. The typed DataSet
class must be accessed by the DALC and by the calling application. 
Therefore, the recommendation is to define typed DataSet classes in 
a common assembly to be deployed on multiple tiers.
Deploying BE implemented as custom business entity components. 
The custom entity class may need to be accessed by the DALC, 
depending on how you defined the method signatures in the DALC. 
Follow the same recommendation as for typed DataSets by defining 
custom entity classes in a common assembly to be deployed on 
multiple tiers.
Deploying BE implemented as generic DataSets or XML strings.
Generic DataSets and XML strings do not represent a separate data 
type. There are no deployment issues for BE implemented in these
formats.



40

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

79

Pet Shop Application

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

80

PetShop - Microsoft
Microsoft .NET Pet Shop

http://msdn.microsoft.com/library/en-us/dnbda/html/bdasamppet.asp

http://java.sun.com/developer/releases/petstore/



41

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

81

PetShop - Microsoft
.NET Pet Shop high-level logical architecture

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

82

PetShop - Microsoft
.NET Pet Shop 2.0 Architecture



42

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

83

PetShop - Microsoft
.NET Pet Shop 3.0 Architecture

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

84

PetShop - Microsoft
DAL factory implementation in .NET Pet Shop



43

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

85

Questões

?


