
1

1

Ambientes de
Desenvolvimento Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula 13
Engenharia Informática

2006/2007

José António Tavares
jrt@isep.ipp.pt

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

2

Herança versus Composição

Como implementar a
composição

2

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

3

Formas de Herança
Three facets of inheritance

Implementation inheritance
(sub-classing) sharing of implementation
fragments
Interface inheritance
(sub-typing) sharing of contract fragments
Substitutivity
Promise of substitutability

How to avoid inheritance ?

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

4

Problema da classe base frágil

can super-class (base class) evolve
without breaking subclasses?

eg old applications with new revision of
OS

two issues: syntactic and semantic fragile
base class problem

3

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

5

Problema da classe base frágil
Semantic

How can a subclass remain valid in the presence
of different version of its super-classes ?

Parameters
Methods name
Return type

Contracts Versions

Re-entrance

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

6

Das classes à composição de
objectos

4

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

7

Das classes à composição de
objectos

Kiczales and Lamping, 1992
specialization interface is the special interface between
class and subclass
eg in Java, client interface (outside package) includes only
public features; specialization interface includes also
protected features
restricts access to interfaces, but doesn’t restrict usage by
those with access
distinction between client and descendent interfaces
important for controlling implementation inheritance
sub-class needs to know something about implementation
of class

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

8

Das classes à composição de
objectos

motivation for implementation inheritance is flexible code
reuse
improving super-class improves sub-classes? re-entrance
and up-calls make this difficult
object composition a simpler alternative (‘has-a’ instead of
‘is-a’)
outer object has the only reference to inner object
outer object forwards messages to inner object
improving inner object improves outer object
object composition and forwarding a close approximation to
implementation inheritance, without some of the problems

5

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

9

Das classes à composição de
objectos
Object composition is a much simpler form of composition
than implementation inheritance;
Shares several of the often quoted advantages of
implementation inheritance;
The idea is very simple – whenever an object does not
have the means to perform some task locally, it can send
messages to other objects, asking for support, and if the
helping object is a part of the helped object, this is called
object composition;
An object is part of another one if references to it do note
leave that object.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

10

Das classes à composição de
objectos

Sending a message on from one object to another
is called forwarding (re-encaminhamento);
The combination of object composition and
forwarding comes fairly close to what is achieved by
implementation inheritance;
However, it does not get so close that it also has
the disadvantages of implementation inheritance.

6

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

11

Das classes à composição de
objectos

An outer object does not re-implement the
functionality of the inner object when it forwards
messages;
It reuses the implementation of the inner object;
If the implementation of the inner object is changed,
then this change will “spread” to the outer object;
The difference between object composition with
forwarding and implementation inheritance is called
“implicit self-recursion” or “possession of a common
self”

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

12

Object A

Object B

<<message>>

Forwarding

Delegation?

inner object

outer object

Difference between Inheritance and Forwarding?

Das classes à composição de
objectos

7

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

13

Das classes à composição de
objectos

Possession of a common self
instance of sub-class shares identity with that of its
super-class;
control can return from a super-class back to a sub-
class – invocation of the last overriding version of the
method;
composition of objects has no single identity;
once control passed from outer to inner object, outer
object cannot interfere.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

14

Das classes à composição de
objectos

Delegation
Composition + forwarding lacks the notion of a
common “self;
If a common identity is required, it has to be
designed in;
If an object was not designed for composition under
a common identity, it cannot be used in such
context – mechanisms build in to resend messages
to an outer object;
Object composition supports dynamic and late
composition.

8

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

15

Das classes à composição de
objectos

Delegation (cont)
The concept of message passing by delegation is
relatively simple;
Each message-send is classified either as regular
send (forwarding) or self-recursive one (delegation)
Whenever a message is delegated (instead of
forwarded), the identity of the first delegator in the
current message is remembered;
Any subsequently delegated message is dispatched
back to the original delegator.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

16

Re-encaminhamento x Delegação

InsertChar

InsertChar

SetCaret
InsertChar

delegate(InsertChar)

delegate(SetChar)

resend(SetChar)

Forwarding Delegation

9

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

17

Re-encaminhamento x Delegação

Resumo
Forwarding

Regular Message
Delegation

Self-recursive one
Strengthened
Identity is remembered

What the difference between Forwarding and Delegation?

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

18

Delegação x Herança
Gamma et al. (1995)

“Delegation has a disadvantage that it shares with
other techniques that make software more flexible
through object composition: dynamic, highly
parameterized software is harder to understand than
more static software. [...] Delegation is a good design
choice only when it simplifies more than it
complicates. [...] Delegation works best when it is
used in highly stylized ways – that is, in standard
patterns.”

10

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

19

Das classes à composição de
objectos

Exemplo : Herança

class Fruit
{

//...
}

class Apple extends Fruit
{

//...
}

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

20

Das classes à composição de
objectos

Exemplo : Composição

class Fruit
{

//...
}

class Apple
{

private Fruit fruit = new Fruit();
//...

}

11

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

21

Das classes à composição de
objectos

Changing the super-class interface
In an inheritance relationship,
super-classes are often said to be
"fragile," because one little change to a
super-class can ripple out and require
changes in many other places in the
application's code.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

22

Das classes à composição de
objectos

The composition alternative
Given that the inheritance relationship makes
it hard to change the interface of a super-
class, it is worth looking at an alternative
approach provided by composition.
It turns out that when your goal is code
reuse, composition provides an approach
that yields easier-to-change code.

12

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

23

Das classes à composição de
objectos

class Fruit {
// Return int number of pieces of peel that
// resulted from the peeling activity.
public int peel() {

System.out.println("Peeling is appealing.");
return 1;

}
}

class Apple extends Fruit {
}

class Example1 {
public static void main(String[] args) {

Apple apple = new Apple();
int pieces = apple.peel();

}
}

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

24

Das classes à composição de
objectos

Change the return value of peel() to type Peel,
will break the code for Example1
class Peel {

private int peelCount;

public Peel(int peelCount) {

this.peelCount = peelCount;

}

public int getPeelCount() {

return peelCount;

}

//...

}

13

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

25

Das classes à composição de
objectos

class Fruit {
// Return a Peel object that
// results from the peeling activity.
public Peel peel() {

System.out.println("Peeling is appealing.");
return new Peel(1);

}
}
// Apple still compiles and works fine
class Apple extends Fruit {
}
// This old implementation of Example1
// is broken and won't compile.
class Example1 {

public static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();

}
}

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

26

Das classes à composição de
objectos

Code reuse via composition
Composition provides an alternative way for
Apple to reuse Fruit's implementation of
peel().
Instead of extending Fruit, Apple can hold
a reference to a Fruit instance and define
its own peel() method that simply invokes
peel() on the Fruit.

14

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

27

Das classes à composição de
objectos

class Fruit {
// Return int number of pieces of peel that
// resulted from the peeling activity.
public int peel() {

System.out.println("Peeling is appealing.");
return 1;

}
}

class Apple {
private Fruit fruit = new Fruit();
public int peel() {

return fruit.peel();
}

}

class Example1 {
public static void main(String[] args) {

Apple apple = new Apple();
int pieces = apple.peel();

}
}

Original

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

28

Das classes à composição de
objectos

Change the return value of peel() to type Peel,
will break the code for Example1
class Peel {

private int peelCount;

public Peel(int peelCount) {

this.peelCount = peelCount;

}

public int getPeelCount() {

return peelCount;

}

//...

}

15

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

29

Das classes à composição de
objectos

class Fruit {
// Return int number of pieces of peel that resulted from the peeling activity.
public Peel peel() {

System.out.println("Peeling is appealing.");
return new Peel(1);

}
}
// Apple must be changed to accommodate the change to Fruit
class Apple {
private Fruit fruit = new Fruit();
public int peel() {

Peel peel = fruit.peel();
return peel.getPeelCount();

}
}
// This old implementation of Example2 - still works fine.
class Example1 {
public static void main(String[] args) {

Apple apple = new Apple();
int pieces = apple.peel();

}
}

Alterado

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

30

Das classes à composição de
objectos

The composition approach to code reuse
provides stronger encapsulation than
inheritance, because a change to a back-end
class needn't break any code that relies only on
the front-end class.
For example, changing the return type of
Fruit's peel() method from the previous
example doesn't force a change in Apple's
interface and therefore needn't break
Example2's code.

16

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

31

Das classes à composição de
objectos

Possession of a common self
instance of sub-class shares identity with that of its
super-class;
control can return from a super-class back to a sub-
class – invocation of the last overriding version of the
method;
composition of objects has no single identity;
once control passed from outer to inner object, outer
object cannot interfere.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

32

Das classes à composição de
objectos

Delegation
Although object composition is very useful, one may question whether it is
as powerful for reuse as inheritance.
Specifically, using inheritance, an inherited method can always refer to
the receiving object using the this member variable in C++ or C#.
In delegation, the receiving object delegates operations to a delegate
(one of the objects it is composed of).
The same effect (as this) is achieved by having the receiving object
pass a reference to itself to the delegate.
Using delegation, a method can always refer to the original recipient of
the message, regardless of the number of indirections due to object
composition.
Delegation allows object composition to be as powerful for reuse as
inheritance. Several design patterns make use of this strategy.

17

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

33

Das classes à composição de
objectos

class Fruit {
Object outer = null;
Fruit(Object o) {

outer = o;
}
public int peel() {

outer.method();
System.out.println("Peeling is appealing.");
return 1;

}
}

class Apple {
private Fruit fruit = new Fruit(this);
public int peel() {

return fruit.peel();
}
public void method() { ... }

}

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

34

Re-encaminhamento x Delegação

Resumo
Forwarding

Regular Message
Delegation

Self-recursive one
Strengthened
Identity is remembered

What the difference between Forwarding and Delegation?

18

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

35

Questões

?

