x>

P4

Ambientes de
Desenvolvimento Avancados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm
Aula 13

Engenharia Informatica

2006/2007

José Anténio Tavares
jrt@isep.ipp.pt

2006/2007

Herancga versus Composicao

2% Como implementar a
~~ composicao

ADAV
Ambientes de Desenvolvimento Avangados

Formas de Heranca

e Three facets of inheritance

e Implementation inheritance
(sub-classing) sharing of implementation
~ fragments
A\, e Interface inheritance
- (sub-typing) sharing of contract fragments
 Substitutivity
Promise of substitutability

e How to avoid inheritance ?

2006/2007 ADAV 3
Ambientes de Desenvolvimento Avancados

Problema da classe base fragil

e can super-class (base class) evolve
~ without breaking subclasses?

====___,eg old applications with new revision of

2006/2007 ADAV
Ambientes de Desenvolvimento Avancados

% Problema da classe base fragil

/] Semantic

How can a subclass remain valid in the presence
~of different version of its super-classes ?

» Parameters

e Methods name

e i?g_j[urn type

2006/2007 ADAV 5
Ambientes de Desenvolvimento Avancados

Contracts Versions

Re-entrance

e Das classes a composicéo de
objectos

2006/2007 ADAV 6
Ambientes de Desenvolvimento Avancados

Das classes a composicéao de
objectos

e Kiczales and Lamping, 1992
e specialization interface is the special interface between
~ class and subclass
o eg in Java, client interface (outside package) includes only
\ " public features; specialization interface includes also
\ I protected features
. restricts access to interfaces, but doesn't restrict usage by
_those with access
'V distinction between client and descendent interfaces
~ important for controlling implementation inheritance
e sub-class needs to know something about implementation
of class

2006/2007 ADAV 7
Ambientes de Desenvolvimento Avancados

Das classes a composicéao de
objectos

reuse

~eimproving super-class improves sub-classes? re-entrance
- and up-calls make this difficult

éﬁject composition a simpler alternative (‘has-a’ instead of
is-a’)

ute:r:.lﬁquect has the only reference to inner object

ter object forwards messages to inner object

|rﬁ:"proving inner object improves outer object

e Object composition and forwarding a close approximation to
implementation inheritance, without some of the problems

%o motivation for implementation inheritance is flexible code

2006/2007 ADAV 8
Ambientes de Desenvolvimento Avancados

Das classes a composicéao de
objectos

e Object composition is a much simpler form of composition
than implementation inheritance;

. Shares several of the often quoted advantages of
~ . implementation inheritance;

mé’s}sz_ages to other objects, asking for support, and if the
elping object is a part of the helped object, this is called
object composition;

N
" ‘o An object is part of another one if references to it do note
leave that object.

2006/2007 ADAV

Ambientes de Desenvolvimento Avancados

Das classes a composicéao de
objectos

e Sending a message on from one object to another
is called forwarding (re-encaminhamento);

‘e The combination of object composition and

. forwarding comes fairly close to what is achieved by
implementation inheritance;

| However, it does not get so close that it also has
b ~ the disadvantages of implementation inheritance.

2006/2007

ADAV

10
Ambientes de Desenvolvimento Avancados

Das classes a composicao de
objectos

e An outer object does not re-implement the
functionality of the inner object when it forwards
messages;

It reuses the implementation of the inner object;

If the implementation of the inner object is changed,
- then this change will “spread” to the outer object;

The difference between object composition with

- forwarding and implementation inheritance is called
~ “implicit self-recursion” or “possession of a common
self”

2006/2007 ADAV 11
Ambientes de Desenvolvimento Avancados

Das classes a composicao de
objectos

outer object

e <<message>
TN \ Object B

’ Difference between Inheritance and Forwarding? ‘ Delegation?

2006/2007 ADAV 12
Ambientes de Desenvolvimento Avancados

Das classes a composicéao de
objectos

Possession of a common self

~e instance of sub-class shares identity with that of its
~._super-class;

- control can return from a super-class back to a sub-
- class — invocation of the last overriding version of the
nethod;

] :‘ mposition of objects has no single identity;

e ‘once control passed from outer to inner object, outer
object cannot interfere.

2006/2007 ADAV 13
Ambientes de Desenvolvimento Avancados

Das classes a composicéao de
objectos

Delegation

e Composition + forwarding lacks the notion of a
- common “self;

¢ If a common identity is required, it has to be
~ designed in;

e If an object was not designed for composition under
_acommon identity, it cannot be used in such
. context — mechanisms build in to resend messages
" to an outer object;

e Object composition supports dynamic and late
composition.

2006/2007 ADAV 14
Ambientes de Desenvolvimento Avancados

Das classes a composicéao de
objectos

Delegation (cont)

e The concept of message passing by delegation is
relatively simple;
a Each message-send is classified either as regular
send (forwarding) or self-recursive one (delegation)
| Whenever a message is delegated (instead of
7 ‘!;'ff“)‘FWarded), the identity of the first delegator in the
~current message is remembered;
e Any subsequently delegated message is dispatched

back to the original delegator.

2006/2007 ADAV 15
Ambientes de Desenvolvimento Avancados

Re-encaminhamento x Delegacao

Forwarding Delegation
Client --1 niceText: Text: Client: |---{ niceText: Text:
i InsertChar i
i 3 EE InsertChar ﬁ
i = ' SetCaret ' !]
ﬁ ! InsertChar
i i : delegate(InsertChar)
' ‘ 3 [delegate(SetChar)
ﬁ i resend(SetChar)

2006/2007 ADAV 16
Ambientes de Desenvolvimento Avancados

Re-encaminhamento x Delegacao

Resumo

_e Forwarding
e Regular Message
Delegation
Self-recursive one
e Strengthened
“-»I-iae’ntity is remembered

hat the difference between Forwarding and Delegation?

2006/2007 ADAV 17
Ambientes de Desenvolvimento Avancados

Delegacédo x Heranca

Gamma et al. (1995)

“Delegation has a disadvantage that it shares with
~other techniques that make software more flexible
\\ through object composition: dynamic, highly
A\, ' parameterized software is harder to understand than

\'more static software. [...] Delegation is a good design
/21 choice only when it simplifies more than it

mplicates. [...] Delegation works best when it is
- used in highly stylized ways — that is, in standard
patterns.”

2006/2007 ADAV 18
Ambientes de Desenvolvimento Avancados

Das classes a composicao de
objectos

Exemplo : Heranca

%ﬁﬁ%Ss Fruit

pple extends Fruit

2006/2007 ADAV 19
Ambientes de Desenvolvimento Avangados

Das classes a composicao de
objectos

Exemplo : Composicéao

NN

class Fruit

_private Fruit fruit = new Fruit(Q);
/7. ..

2006/2007 ADAV 20
Ambientes de Desenvolvimento Avangados

10

Das classes a composicéao de
objectos

2006/2007

e Changing the super-class interface
In an inheritance relationship,

. super-classes are often said to be
< - "fragile," because one little change to a
| I\ super-class can ripple out and require

hanges in many other places in the

/< application’s code.

ADAV 21

Ambientes de Desenvolvimento Avancados

2006/2007

Das classes a composicéao de
objectos

e The composition alternative

e Given that the inheritance relationship makes
it hard to change the interface of a super-
class, it is worth looking at an alternative

approach provided by composition.

It turns out that when your goal is code
reuse, composition provides an approach
that yields easier-to-change code.

ADAV 22

Ambientes de Desenvolvimento Avancados

11

}

Das classes a composicao de
objectos

“class Fruit {

// Return int number of pieces of peel that

// resulted from the peeling activity.

blic int peel({

System.out.printIn("'Peeling is appealing.');
return 1;

sSkAﬁble extends Fruit {

s Examplel {
‘public static void main(String[] args) {
’ Apple apple = new Apple();
int pieces = apple.peel();
3

2006/2007 ADAV 23

Ambientes de Desenvolvimento Avancados

Das classes a composicao de
objectos

Change the return value of peel () to type Peel,
will break the code for Examplel

“class Peel {

ﬁ% private int peelCount;

~ public Peel(int peelCount) {
this.peelCount = peelCount;

public int getPeelCount() {
j return peelCount;

L

2006/2007 ADAV 24

Ambientes de Desenvolvimento Avancados

12

Das classes a composicao de
objectos

=Y

_class Fruit {

1 // Return a Peel object that

- // results from the peeling activity.

public Peel peel() {

. System.out._printIn("'Peeling is appealing.');
“_ return new Peel(1);

Apple still compiles and works fine
ss.Apple extends Fruit {

pbroken and won"t compile.
ss Examplel {

~_public static void main(String[] args) {
Apple apple = new Apple(Q);

int pieces = apple.peel();

Ambientes de Desenvolvimento Avancados

2060672007 DAY 5

Das classes a composicao de
objectos

e Code reuse via composition

e Composition provides an alternative way for
Apple to reuse Fruit's implementation of
peel).

e Instead of extending Fruit, Apple can hold
‘areference to a Fruit instance and define
its own peel () method that simply invokes
peel () onthe Fruit.

2006/2007 ADAV 26
Ambientes de Desenvolvimento Avancados

Das classes a composicao de

% objectos

class Fruit {

~ // Return int number of pieces of peel that

// resulted from the peeling activity.

public int peel() {

System.out.printIn("'Peeling is appealing.');
return 1;

Original

eturn fruit.peel();

class Examplel {

public static void main(String[] args) {
Apple apple = new Apple(Q);
int pieces = apple.peel();

Das classes a composicao de
objectos

Change the return value of peel () to type Peel,
will break the code for Examplel

class Peel {

/ @ﬁfprivate int peelCount;

~ public Peel(int peelCount) {
this._peelCount = peelCount;

, ‘public int getPeelCount() {
W return peelCount;

2006/2007 ADAV 28
Ambientes de Desenvolvimento Avancados

14

Das classes a composicao de
objectos

peel { Alterado
= fruit.peel();
“peel.getPeelCount();

static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();

200612007 DAY 25

Ambientes de Desenvolvimento Avancados

Das classes a composicao de
objectos

e The composition approach to code reuse
provides stronger encapsulation than

_inheritance, because a change to a back-end

- class needn't break any code that relies only on

the front-end class.

'For example, changing the return type of

- Fruit's peel () method from the previous
~example doesn't force a change in Apple's
interface and therefore needn't break
Example2's code.

2006/2007 ADAV 30
Ambientes de Desenvolvimento Avancados

Das classes a composicéao de
objectos

Possession of a common self

‘e instance of sub-class shares identity with that of its
_super-class;

<, ® control can return from a super-class back to a sub-
| class — invocation of the last overriding version of the
ethod;

composition of objects has no single identity;

‘once control passed from outer to inner object, outer
object cannot interfere.

2006/2007 ADAV 31
Ambientes de Desenvolvimento Avancados

Das classes a composicéao de

% objectos
] ‘Delegation
e Although object composition is very useful, one may question whether it is
’ as powerful for reuse as inheritance.
'Sgecifically, using inheritance, an inherited method can always refer to
e receiving object using the this member variable in C++ or C#.
In delegation, the receiving object delegates operations to a delegate
ne of the objects it is composed of).
Thg_si;a_r_pe effect (as this) is achieved by having the receiving object
pass areference to itself to the delegate.
. sjfﬂg delegation, a method can always refer to the original recipient of
the message, regardless of the number of indirections due to object
~ composition.

e Delegation allows object composition to be as powerful for reuse as
inheritance. Several design patterns make use of this strategy.

2006/2007 ADAV 32
Ambientes de Desenvolvimento Avancados

16

}

2006/2007

Das classes a composicao de
objectos

Object outer = null;
Fruit(Object 0) {
outer = o0;

_public int peel() {

- outer.method();
- System.out.printIn(‘'Peeling is appealing.");
return 1;

ple {
vate Fruit fruit = new Fruit(this);
ublic int peel(Q {

return fruit._peel();

3
public void method() { ... }

ADAV 33
Ambientes de Desenvolvimento Avancados

Re-encaminhamento x Delegacao

Resumo

_ e Forwarding

2006/2007

ADAV 34
Ambientes de Desenvolvimento Avancados

17

Questoes

[t 3,
2006/2007 ADAV 35
Ambientes de Desenvolvimento Avancados

18

