
1

2006/2007 1

Ambientes de 
Desenvolvimento 

Avançados

http://www.dei.isep.ipp.pt/~jtavares/ADAV/ADAV.htm

Aula Teórico-Prática
Engenharia Informática

2006/2007

José António Tavares
jrt@isep.ipp.pt

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

2

Design Guidelines for Class 
Library Developers

http://msdn.microsoft.com/library/defa
ult.asp?url=/library/en-
us/cpgenref/html/cpconnetframeworkdesi
gnguidelines.asp



2

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

3

Design Guidelines for Class 
Library Developers

Capitalization Styles

Use the following conventions for capitalizing identifiers.

Pascal case

The first letter in the identifier and the first letter of each subsequent concatenated 
word are capitalized. You can use Pascal case for identifiers of three or more 
characters. For example:

BackColor

Camel case

The first letter of an identifier is lowercase and the first letter of each subsequent 
concatenated word is capitalized. For example:

backColor

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

4

Design Guidelines for Class 
Library Developers

Capitalization Styles

Uppercase

All letters in the identifier are capitalized. Use this convention only for identifiers 
that consist of two or fewer letters. For example:

System.IO

System.Web.UI

You might also have to capitalize identifiers to maintain compatibility with existing, 
unmanaged symbol schemes, where all uppercase characters are often used for 
enumerations and constant values. In general, these symbols should not be 
visible outside of the assembly that uses them.



3

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

5

Design Guidelines for Class 
Library Developers

RedValue
Note Rarely used. A property is preferable to using a public 

instance field.

PascalPublic instance field

redValue
Note Rarely used. A property is preferable to using a protected 

instance field.

CamelProtected instance field

BackColorPascalProperty

typeNameCamelParameter

System.DrawingPascalNamespace

ToStringPascalMethod

IDisposable
Note Always begins with the prefix I.

PascalInterface

RedValuePascalRead-only Static field

WebException
Note Always ends with the suffix Exception.

PascalException class

ValueChangePascalEvent

FatalErrorPascalEnum values

ErrorLevelPascalEnum type

AppDomainPascalClass

ExampleCaseIdentifier

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

6

Design Guidelines for Class 
Library Developers

Case Sensitivity
To avoid confusion and guarantee cross-language interoperation, follow 
these rules regarding the use of case sensitivity: 

Do not use names that require case sensitivity. Components must be fully 
usable from both case-sensitive and case-insensitive languages. Case-
insensitive languages cannot distinguish between two names within the same 
context that differ only by case. Therefore, you must avoid this situation in the 
components or classes that you create. 

Do not create two namespaces with names that differ only by case. For example, 
a case insensitive language cannot distinguish between the following two 
namespace declarations.

namespace ee.cummings;

namespace Ee.Cummings;



4

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

7

Design Guidelines for Class 
Library Developers

Case Sensitivity
Do not create a function with parameter names that differ only by case. 
The following example is incorrect. 

void MyFunction(string a, string A)

Do not create a namespace with type names that differ only by case. In 
the following example, Point p and POINT p are inappropriate type 
names because they differ only by case. 

System.Windows.Forms.Point p

System.Windows.Forms.POINT p

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

8

Design Guidelines for Class 
Library Developers

Case Sensitivity

Do not create a type with property names that differ only by 
case. 
In the following example, int Color and
int COLOR are inappropriate property names because they 
differ only by case. 

int Color {get, set}

int COLOR {get, set}



5

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

9

Design Guidelines for Class 
Library Developers

Case Sensitivity

Do not create a type with method names that differ only by 
case. 
In the following example, calculate and Calculate are 
inappropriate method names because they differ only by 
case. 

void calculate()

void Calculate()

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

10

Design Guidelines for Class 
Library Developers

Abbreviations
To avoid confusion and guarantee cross-language interoperation, 
follow these rules regarding the use of abbreviations: 

Do not use abbreviations or contractions as parts of identifier 
names. For example, use GetWindow instead of GetWin. 

Do not use acronyms that are not generally accepted in the 
computing field. 

Where appropriate, use well-known acronyms to replace lengthy 
phrase names. For example, use UI for User Interface and 
OLAP for On-line Analytical Processing. 



6

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

11

Design Guidelines for Class 
Library Developers

Abbreviations
Other rules regarding the use of abbreviations: 

When using acronyms, use Pascal case or camel case for 
acronyms more than two characters long. For example, use 
HtmlButton or htmlButton. However, you should capitalize 
acronyms that consist of only two characters, such as System.IO
instead of System.Io. 

Do not use abbreviations in identifiers or parameter names. If you 
must use abbreviations, use camel case for abbreviations that 
consist of more than two characters, even if this contradicts the 
standard abbreviation of the word.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

12

Design Guidelines for Class 
Library Developers

Word Choice
Avoid using class names that duplicate commonly 
used .NET Framework namespaces. For example, do not 
use any of the following names as a class name: System, 
Collections, Forms, or UI. See the Class Library for a 
list of .NET Framework namespaces.
In addition, avoid using identifiers that conflict with 
keywords



7

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

13

Design Guidelines for Class 
Library Developers

Avoiding Type Name Confusion
Different programming languages use different 
terms to identify the fundamental managed types. 
Class library designers must avoid using language-
specific terminology. Follow the rules described in 
this section to avoid type name confusion.
Use names that describe a type's meaning rather 
than names that describe the type. In the rare case 
that a parameter has no semantic meaning beyond 
its type, use a generic name. 

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

14

Design Guidelines for Class 
Library Developers

For example, a class that supports writing a variety of data types into a 
stream might have the following methods.

[Visual Basic]
Sub Write(value As Double);
Sub Write(value As Single);
Sub Write(value As Long);
Sub Write(value As Integer);
Sub Write(value As Short);

[C#]
void Write(double value);
void Write(float value);
void Write(long value);
void Write(int value);
void Write(short value);



8

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

15

Design Guidelines for Class 
Library Developers

Do not create language-specific method names, as in the following example.

[Visual Basic]
Sub Write(doubleValue As Double);
Sub Write(singleValue As Single);
Sub Write(longValue As Long);
Sub Write(integerValue As Integer);
Sub Write(shortValue As Short);

[C#]
void Write(double doubleValue);
void Write(float floatValue);
void Write(long longValue);
void Write(int intValue);
void Write(short shortValue);

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

16

Design Guidelines for Class 
Library Developers

In the extremely rare case that it is necessary to create a uniquely named method for 
each fundamental data type, use a universal type name. For example, a class that 
supports reading a variety of data types from a stream might have the following 
methods.

[Visual Basic]
ReadDouble()As Double
ReadSingle()As Single
ReadInt64()As Long
ReadInt32()As Integer
ReadInt16()As Short

[C#]
double ReadDouble();
float ReadSingle();
long ReadInt64();
int ReadInt32();
short ReadInt16();



9

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

17

Design Guidelines for Class 
Library Developers

The preceding example is preferable to the following 
language-specific alternative.

[Visual Basic]
ReadDouble()As Double
ReadSingle()As Single
ReadLong()As Long
ReadInteger()As Integer
ReadShort()As Short

[C#]
double ReadDouble();
float ReadFloat();
long ReadLong();
int ReadInt();
short ReadShort();

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

18

Design Guidelines for Class 
Library Developers

Namespace Naming Guidelines
The general rule for naming namespaces is to use the company name 
followed by the technology name and optionally the feature and design as 
follows.

CompanyName.TechnologyName[.Feature][.Design]

For example:
Microsoft.Media

Microsoft.Media.Design

Prefixing namespace names with a company name or other well-
established brand avoids the possibility of two published namespaces 
having the same name. 
For example, Microsoft.Office is an appropriate prefix for the Office 
Automation Classes provided by Microsoft.



10

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

19

Design Guidelines for Class 
Library Developers

Namespace Naming Guidelines
Use a stable, recognized technology name at the second level of a 
hierarchical name. Use organizational hierarchies as the basis for 
namespace hierarchies. Name a namespace that contains types that
provide design-time functionality for a base namespace with the 
.Design suffix. For example, the System.Windows.Forms.Design
Namespace contains designers and related classes used to design 
System.Windows.Forms based applications.
A nested namespace should have a dependency on types in the 
containing namespace. For example, the classes in the 
System.Web.UI.Design depend on the classes in System.Web.UI. 
However, the classes in System.Web.UI do not depend on the 
classes in System.Web.UI.Design.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

20

Design Guidelines for Class 
Library Developers

Namespace Naming Guidelines
You should use Pascal case for namespaces, and separate logical 
components with periods, as in Microsoft.Office.PowerPoint. If your 
brand employs nontraditional casing, follow the casing defined by 
your brand, even if it deviates from the prescribed Pascal case. For 
example, the namespaces NeXT.WebObjects and ee.cummings
illustrate appropriate deviations from the Pascal case rule.
Use plural namespace names if it is semantically appropriate. For 
example, use System.Collections rather than System.Collection. 
Exceptions to this rule are brand names and abbreviations. For 
example, use System.IO rather than System.IOs.



11

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

21

Design Guidelines for Class 
Library Developers

Namespace Naming Guidelines
Do not use the same name for a namespace and a class. For 
example, do not provide both a Debug namespace and a 
Debug class.
Finally, note that a namespace name does not have to 
parallel an assembly name. For example, if you name an 
assembly MyCompany.MyTechnology.dll, it does not 
have to contain a MyCompany.MyTechnology namespace.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

22

Design Guidelines for Class 
Library Developers

Class Naming Guidelines
The following rules outline the guidelines for 
naming classes: 

Use a noun or noun phrase to name a class. 
Use Pascal case. 
Use abbreviations sparingly. 
Do not use a type prefix, such as C for class, on a 
class name. For example, use the class name 
FileStream rather than CFileStream. 
Do not use the underscore character (_). 



12

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

23

Design Guidelines for Class 
Library Developers

Class Naming Guidelines
Other rules for naming classes: 

Occasionally, it is necessary to provide a class name that begins with the 
letter I, even though the class is not an interface. This is appropriate as 
long as I is the first letter of an entire word that is a part of the class name. 
For example, the class name IdentityStore is appropriate. 
Where appropriate, use a compound word to name a derived class. The 
second part of the derived class's name should be the name of the base 
class. For example, ApplicationException is an appropriate name 
for a class derived from a class named Exception, because 
ApplicationException is a kind of Exception. Use reasonable 
judgment in applying this rule. For example, Button is an appropriate 
name for a class derived from Control. Although a button is a kind of 
control, making Control a part of the class name would lengthen the name 
unnecessarily.

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

24

Design Guidelines for Class 
Library Developers

Class Naming Guidelines
The following are examples of correctly named classes.

[Visual Basic]

Public Class FileStream

Public Class Button

Public Class String

[C#]

public class FileStream

public class Button

public class String



13

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

25

Design Guidelines for Class 
Library Developers

Interface Naming Guidelines
The following rules outline the naming guidelines for interfaces:

Name interfaces with nouns or noun phrases, or adjectives that describe 
behavior. For example, the interface name IComponent uses a descriptive 
noun. The interface name ICustomAttributeProvider uses a noun 
phrase. The name IPersistable uses an adjective. 
Use Pascal case. 
Use abbreviations sparingly. 
Prefix interface names with the letter I, to indicate that the type is an interface. 
Use similar names when you define a class/interface pair where the class is a 
standard implementation of the interface. The names should differ only by the 
letter I prefix on the interface name. 
Do not use the underscore character (_).

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

26

Design Guidelines for Class 
Library Developers

Interface Naming Guidelines
The following are examples of correctly named interfaces.

[Visual Basic]
Public Interface IServiceProvider
Public Interface IFormatable

[C#]
public interface IServiceProvider
public interface IFormatable



14

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

27

Design Guidelines for Class 
Library Developers

Interface Naming Guidelines
The following code example illustrates how to define the interface 
IComponent and its standard implementation, the class Component.

[C#]
public interface IComponent 
{

// Implementation code goes here.
}
public class Component: IComponent
{

// Implementation code goes here.
}

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

28

Design Guidelines for Class 
Library Developers

Relationship to the Common Type System and the Common
Language Specification
Describes the role of the common type system and the Common
Language Specification in class library development. 
Naming Guidelines
Describes the guidelines for naming types in class libraries. 
Class Member Usage Guidelines
Describes the guidelines for using properties, events, methods, 
constructors, fields, and parameters in class libraries. 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/cpconnetframeworkdesignguidelines.asp



15

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

29

Design Guidelines for Class 
Library Developers

Type Usage Guidelines
Describes the guidelines for using classes, value types, delegates, 
attributes, and nested types in class libraries. 
Guidelines for Exposing Functionality to COM
Describes the guidelines for exposing class library types to COM. 
Error Raising and Handling Guidelines
Describes the guidelines for raising and handling errors in class
libraries. 
Array Usage Guidelines
Describes the guidelines for using arrays in class libraries and how to 
decide whether to use an array vs. a collection. 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

30

Design Guidelines for Class 
Library Developers

Operator Overloading Usage Guidelines
Describes the guidelines for implementing operator overloading in
base class libraries. 
Guidelines for Implementing Equals and the Equality Operator (==)
Describes the guidelines for implementing the Equals method and the
equality operator (==) in class libraries. 
Guidelines for Casting Types
Describes the guidelines for casting types in class libraries. 
Common Design Patterns
Describes how to implement design patterns for Finalize and Dispose
methods, the Equals method, callback functions, and time-outs.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/cpconnetframeworkdesignguidelines.asp



16

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

31

Design Guidelines for Class 
Library Developers

Security in Class Libraries
Describes the precautions to take when writing highly trusted class
library code, and how to help protect resources with permissions. 
Threading Design Guidelines
Describes the guidelines for implementing threading in class
libraries. 
Guidelines for Asynchronous Programming
Describes the guidelines for implementing asynchronous
programming in class libraries and provides an asynchronous
design pattern. 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

32

FxCop (http://www.gotdotnet.com/team/fxcop/)



17

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

33

FxCop (http://www.gotdotnet.com/team/fxcop/)

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

34

Exercício
public interface ISale
{

/// <pre> ... </pre>
/// <post> ... </post>
///
DataSet CreateDetails(string user, string pass);

/// <pre> ... </pre>
/// <post> ... </post>
///
ShopStatusEnum Add(string user, string pass, 

long customerID, DateTime date, 
DataSet dsDetails);

}



18

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

35

Pré & Post Conditions

2006/2007 ADAV
Ambientes de Desenvolvimento Avançados

36

Questões

?


