# Distributed Systems Development

Paulo Gandra de Sousa psousa@dei.isep.ipp.pt

MSc in Computer Engineering DEI/ISEP

# Programação de Sistemas Distribuidos

Paulo Gandra de Sousa psousa@dei.isep.ipp.pt

Mestrado em Engenharia Informática DEI/ISEP

#### Disclaimer

- Parts of this presentation are from:
  - Tannembaum
  - Coulouris
  - Marta Kwiatkowska (06-06798)
  - Ciarán O'Leary (DT249-4)
  - Scott Shenker and Doug Terry (CS 294)
  - Daniel Ortiz-Arroyo (DE7)

# **Today's lesson**

- Introduction to DS
  - Definition
- Characterization
  - Motivation
  - Pros and cons
  - Issues



# INTRODUCTION

# What is a Distributed system?

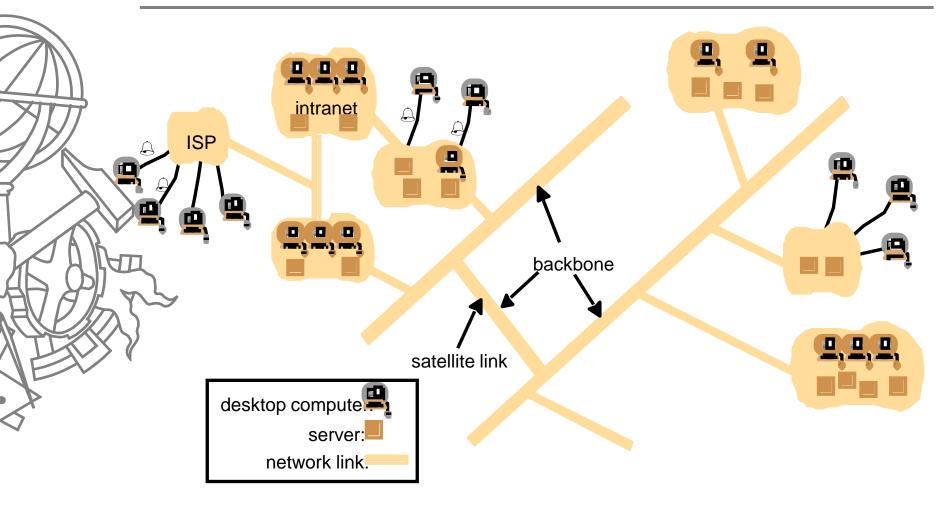


### An example DS



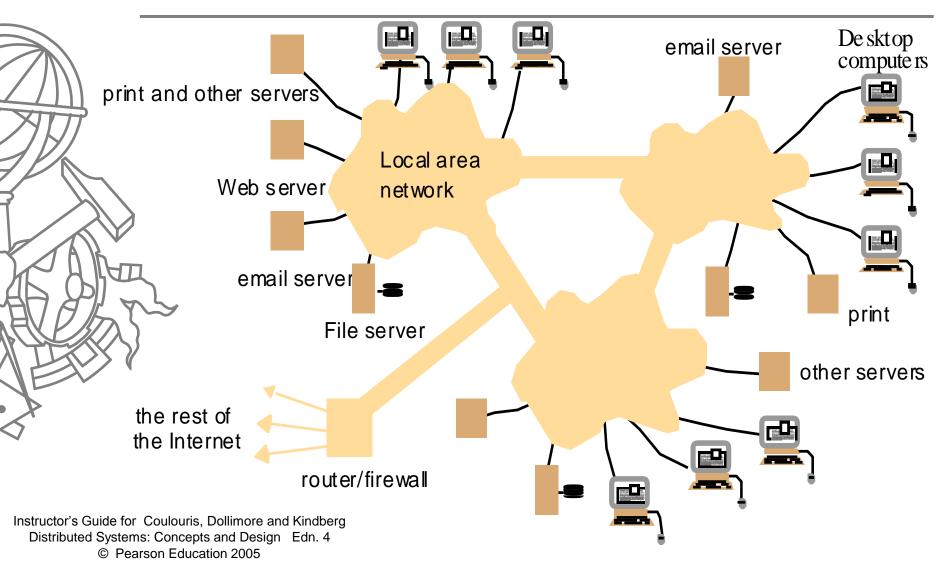
6 ISEP/IPP

source: http://www.uweb.ucsb.edu/~fkart/research.htm

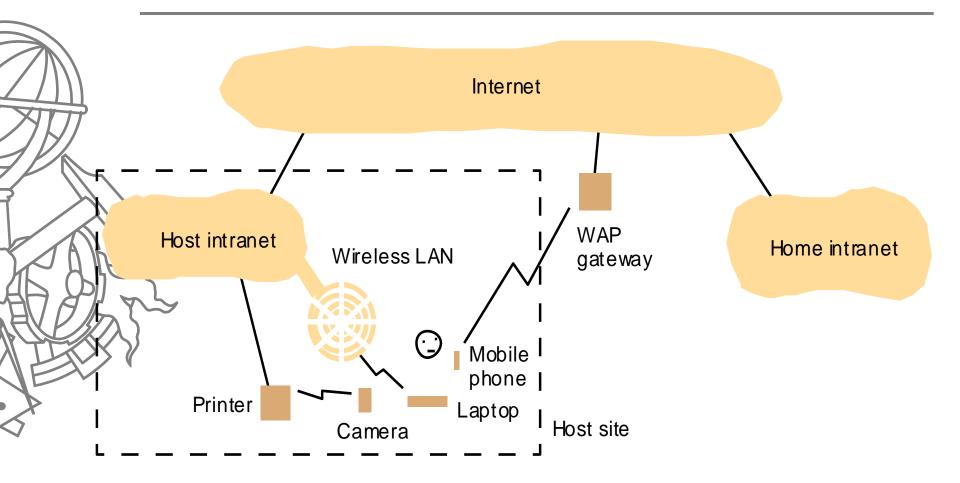

# What is a Distributed System (DS)?

- A collection of independent computers that appears to its users as a single coherent system
  - A. Tanenbaum
- One in which components located at networked computers communicate and coordinate their actions by message passing
  - G. Coulouris
  - You know you have one when the crash of a computer you have never heard of stops you from getting any work done
    - Leslie Lamport
  - A distributed system is a system designed to support the development of applications and services which can exploit a physical architecture consisting of multiple, autonomous processing elements that do not share primary memory but cooperate by sending asynchronous messages over a communication network
    - Blair & Stefani

#### **Caracterization of DS**

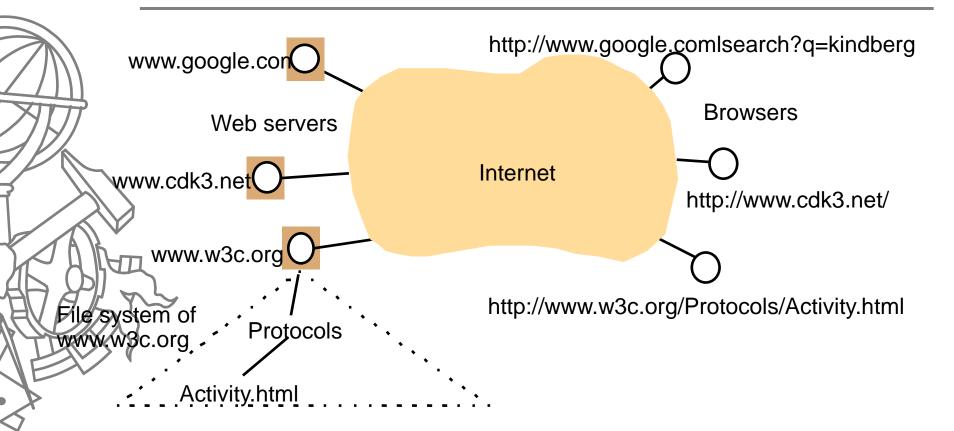

- According to P. Enslow [Computer 1978] a distributed processing system must have:
  - multiple general-purpose resource components that can be dynamically reassigned.
  - physical distribution of components using a two-party network protocol for communication.
  - high-level operating system, built on top of local operating systems, for unified control.
  - system transparency permitting services to be requested by name only.
  - cooperative **autonomy** characterizing the interactions between resources.

### A typical portion of the Internet



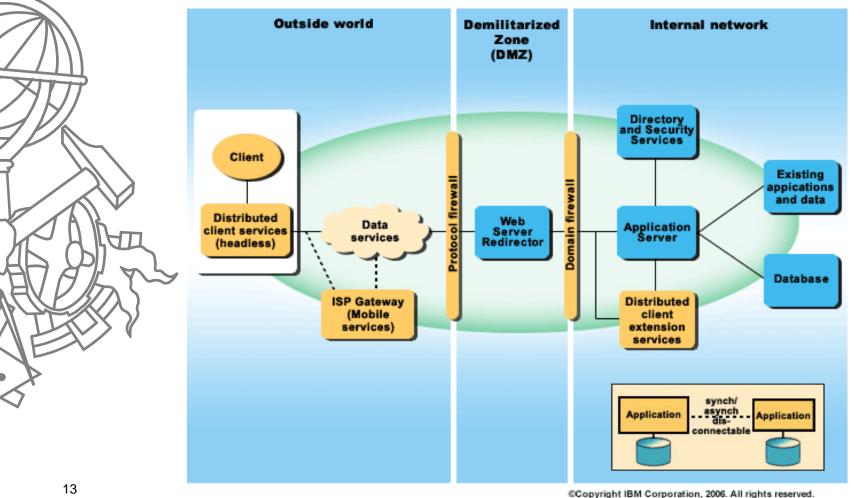

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

# **A typical intranet**




# Portable and handheld devices in a DS




Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

# Web servers and web browsers



Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

# A typical DS: business web application



13 ISEP/IPP

source: http://www.ibm.com/developerworks/patterns/access/at7-runtime.html

# Layered applications vs. Distributed systems

- Layered (e.g., 3 layers) applications divide the application logically not necessarilly physically
- Distributed systems divide physically

Typically a layered (distributed) application needs that the whole application (layers) is available

# **3-Layered application**

|     |       | $\bigcirc$ |                       |                   |                         | 11.0      |
|-----|-------|------------|-----------------------|-------------------|-------------------------|-----------|
| TIT | (     |            |                       | Application       |                         |           |
|     |       |            | Presentation<br>Logic | Business<br>Logic | Data<br>Access<br>Logic |           |
| ANT | 1     |            |                       |                   |                         | Microsoft |
|     |       |            |                       |                   |                         | ORACLE    |
|     | • Lay | /er ≠ Tie  | er                    |                   |                         |           |

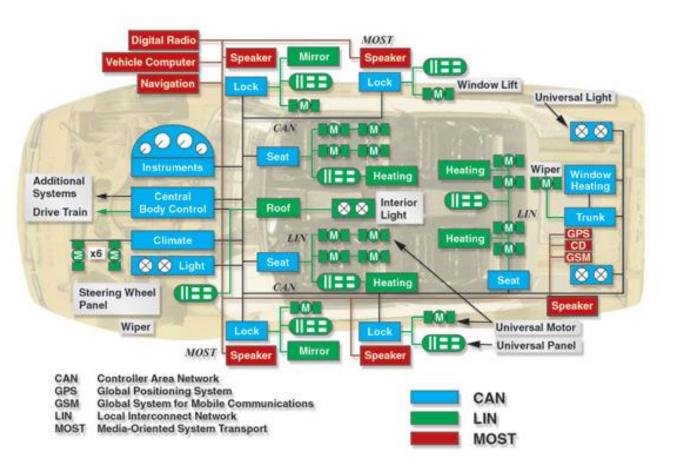
# Distributed applications vs. Distributed systems

- A distributed application is a distributed system
- A system is also a collection of applications / hardware
  - System ≥ application

- Electronic mail
  - emphasis on interpersonal communication
- Distributed name servers
  - emphasis on locating objects
  - Distributed file servers
    - emphasis on sharing data
  - Transaction processing
    - emphasis on reliability and recovery
- Programming languages for distributed computing

- Information superhighway
  - emphasis on high-speed networks and coverage
- Enterprise middleware
  - emphasis on coherence, interoperability, vendorindependence, standards (e.g. CORBA, DCE)
  - Networks of workstations
    - emphasis on resource sharing
  - Mobile Computing
    - emphasis on portable computers and wireless networks

- Autonomic computing
  - emphasis on self-configuration, selfmonitoring, ...
- Peer-to-peer computing
  - emphasis on protocols and resource sharing
- Sensor and ad-hoc wireless networks
  - emphasis on small, self-organizing devices
- Ubiquitous computing
  - emphasis on anytime, anywhere access


- Data center computing
  - emphasis on scalability, fault-tolerance, manageability
- Autonomic computing
  - emphasis on self-configuration, selfmonitoring, ...
- Social networks
  - emphasis on casual information sharing

# **Some Recent Applications**

- Drive by wire, TTP, CAN
- Sensor Networks:
  - A computer wireless network of spatially distributed devices using sensors to monitor temperature, sound, vibration, pressure, motion or pollutants
  - Intelligent Dust
  - Smart Labels:
    - Identification of packages
    - Get power from radio waves

# Distributed, embeded, realtime system





#### source: http://www.future-mag.com/0611/061113.asp

# Give examples of a Distributed system you use?



# CARACTERIZATION OF DISTRIBUTED SYSTEMS

# **Caracterization of DS**

- Main features
  - geographical distribution of autonomous computers
  - communication through cable/fibre/wireless/... connections
- Advantages
  - interaction, co-operation and sharing of resources
- Benefits
  - reduced costs, improved availability and performance

# **Caracterization of DS (2)**

- Advantages over centralized systems:
  - naturally distributed information
  - Autonomy
  - availability/reliability
  - modular growth
  - integration of existing systems
  - Capacity
  - cost/performance
  - resource sharing
  - guaranteed response
- Note: these are only potential advantages!

# **Should I build a DS?**

- Why distribute?
  - Sharing
    - Resources
    - Devices
  - Reliability/Availability
    - Performance
  - Load balancing
  - Scalability
  - Openness

# Should I build a DS? (2)

- Why not distribute?
  - System management
  - Overall complexity
  - Communication overhead
  - Security

# Distributed vs. Centralized Systems

- What makes distributed systems harder:
  - variations in communication bandwidth/delay
  - absence of global knowledge
  - no global clock
  - partial failures
  - heterogeneous components
  - insecure communication
  - multiple administrative domains
  - size and complexity

# **Distributed Systems' Issues**

- Heterogeneity
- Security
- Scalability
- Failure handling
- Concurrency
- Message passing
- Naming
- Transparency

# **Issues : Heterogeneity**

- Diversity of
  - Networks / network protocols
  - Computer hardware
  - Operating systems
  - Programming languages
  - Developers
  - Middleware

# **Issues : Security**

- Encryption
- Authentication
- Access rights
- Denial of service
- 🖲 Mobility

# **Issues : Failure handling**

- Failures in distributed systems are partial
- Detecting failures
- Masking failures
- Tolerating failures
- Failure recovery
- Redundency

# **Issues : Concurrency**

- Services are shared by clients
- Multiple, concurrent access to the same service/data
- ACID Transactions
  - Atomicity
  - Consistency
  - Isolation
  - Durability

# **Issues : Message passing**

- Shared memory
- Shared database
- Blackboard
- Communication API (e.g., sockets)
  - RPC
- Remote Objects
- Unicast/multicast

# **Issues : Naming**

- Identify resources
- URLs
- IP addresses
- Naming services
- Lookup

### **Issues : Transparency**

- Access transparency
  - Local and remote resources can be accessed using identical operations
- Location transparency
  - Resources can be accessed without knowledge of their physical or network location
  - Concurrency transparency
    - Several processes can operate concurrently using shared resources without interference between them

# Issues : Transparency (2)

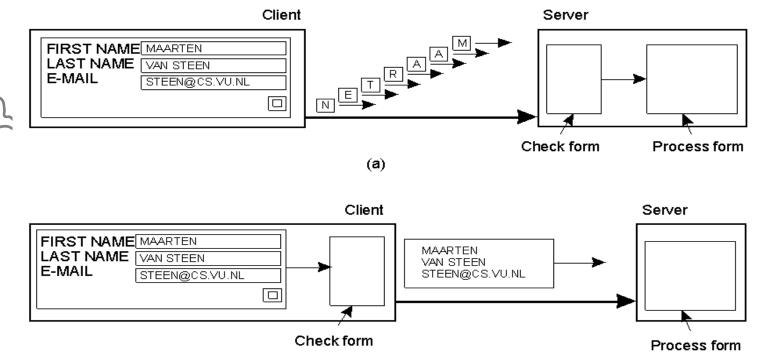
- Replication transparency
  - Multiple instances of resources can be used to increase reliability and performance without knowledge of the replicas by users or application programmers
  - Failure transparency
    - Concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components
- Mobility transparency
  - Allows movement of resources and clients within a system

# **Issues : Transparency (3)**

- Performance transparency
  - Allows the system to be reconfigured to improve performance as loads vary
- Scaling transparency
  - Allows the system and applications to expand in scale without change to the system structure or the application algorithms

### **Issues : Scalability**

- System remains operational and effective despite changes in numbers of resources and users
  - Performance loss
  - Availability of hw/sw resources
    - Performance bottlenecks


# **Scalability Problems**

| Concept                | Example                                     |  |  |
|------------------------|---------------------------------------------|--|--|
| Centralized services   | A single server for all users               |  |  |
| Centralized data       | A single on-line telephone book             |  |  |
| Centralized algorithms | Doing routing based on complete information |  |  |

Examples of scalability limitations.

# **Scaling Techniques**

- The difference between letting:
  - a server or
  - a client check forms as they are being filled



# **Can you identify these issues in na example DS?**



# Bibliography

- Chapter 1 Tanenbaum
- Chapter 1 & 2 Coulouris
- Wikipedia, "Distributed computing" <u>http://en.wikipedia.org/wiki/Distributed\_computing</u>

Enslow, P. (1978) *What is a "Distributed" Data processing System?*, **Computer**, January 1978.