
Paulo Gandra de Sousa
psousa@dei.isep.ipp.pt

Mestrado em Engenharia Informática

mailto:psousa@dei.isep.ipp.pt

 Parts of this presentation are from:

 Miguel Losa (INTS)

 The content of this presentation is exclusively
from the book:

 Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions

 Gregor Hohpe, Bobby Woolf

 www.eaipatterns.com

1

http://www.eaipatterns.com/

 Introduction to Enterprise Integration
Patterns

2

 How does one application communicate with another using
messaging?

 Connect the applications using a Message Channel, where
one application writes information to the channel and the

other one reads that information from the channel.

 How can two applications connected by a message
channel exchange a piece of information?

 Package the information into a Message, a data
record that the messaging system can transmit
through a message channel.

 How can we perform complex processing on a message
while maintaining independence and flexibility?

 Use the Pipes and Filters architectural style to divide a
larger processing task into a sequence of smaller,
independent processing steps (Filters) that are connected
by channels (Pipes).

 How can you decouple individual processing steps so that
messages can be passed to different filters depending on a set of
conditions?

 Insert a special filter, a Message Router, which consumes a
Message from one Message Channel and republishes it to a
different Message Channel depending on a set of conditions.

http://www.eaipatterns.com/Messaging.html
http://www.eaipatterns.com/Messaging.html
http://www.eaipatterns.com/Messaging.html

 How can systems using different data formats
communicate with each other using messaging?

 Use a special filter, a Message Translator,
between other filters or applications to translate
one data format into another.

9

 How does an application connect to a messaging
channel to send and receive messages?

 Connect an application to a messaging channel
using a Message Endpoint, a client of the
messaging system that the application can then
use to send or receive messages.

Widgets & Gadgets ‘r Us

11

 Widgets & Gadgets R’ US

 Take Orders
 Customers can place orders via Web, phone or fax

 Process Orders
 Processing an order involves multiple steps, including

verifying inventory, shipping the goods and invoicing
the customer

 Check Status
 Customers can check the order status

 Change Address
 Customers can use a Web front-end to change their

billing and shipping address

13

 New Catalogue
 The suppliers update their catalogue periodically.

WGRUS needs to update its pricing and availability
based in the new catalogues.

 Announcements
 Customers can subscribe to selective announcements

from WGRUS.
 Testing and Monitoring
 The operations staff needs to be able to monitor all

individual components and the message flow
between them.

14

15

Packaged
app.

J2EE custom
app.

Manual
introduction

thru access app.

Originally only
sold widgets.

Bougth gadgets
recently

Packaged
apps.

Document
message

 Message endpoint
 A way to connect na application to a message

channel to send and/or receive messages
 Message gateway
 isolate the application code from the messaging-

specific code
 Channel adapter
 attach to an application and publish messages to a

Message Channel whenever an event occurs inside the
application

 Point-to-point channel
 Guarantees only one receiver will receive the message

17

 Message translator
 Translates between two data formats

 Canonical data model
 Common data model independent of any specific

application
 Datatype channel
 All the messages in the channel are of the same type

(format)
 Document message
 Represents the data; the receiver will decide what to

do with it.

18

19

20

command
messages

21

 Which messages belong together?

 “correlation”

 How do we determine that all messages are
received?

 the “completeness condition”

 How do we combine the individual messages
into one result message?

 the “aggregation algorithm”

22

23

 How can you maintain the overall message flow when processing
a message consisting of multiple elements, each of which may
require different processing?

 The Composed Message Processor splits the message up, routes
the sub-messages to the appropriate destinations and re-
aggregates the responses back into a single message.

24

 Publish-Subscribe channel
 One application sends a message and the Pub-Sub channel delivers it

to all active receivers
 Aggregator
 Generates a single message distilled from several input messages

 Content-based router
 Delivers each message to the correct receipient based on message

content
 Command message
 Represents the data and the operation that is beeing requested to the

receiver
 Splitter
 Splits a single message and its content into several messages

 Content Enricher
 Adds content to a message (tipically a correlation id)

26

27

 If we were using a point-to-point channel (not
a pub-sub)

28

29

 Wire-Tap
 Creates a detour in a point-to-point message channel to

publish the same message to more than one recipient
 Message-Store
 Allows reporting against message information without

disturbing the loosely coupled and transient nature of a
messaging system

 Process Manager
 Allows routing a message through multiple processing

steps when the required steps may not be known at
design-time and may not be sequential thru a central
processing unit that maintains the state of the sequence
and determine the next processing step based on
intermediate results

30

 Alternative 1

 Include the billing and shipping address with
every message

31

 Alternative 2

 Address is saved in every system and changes are
replicated

32

 Message Filter

 eliminates undesired messages from a channel
based on a set of criteria to avoid receiving
uninteresting messages

33

 File Transfer

 each application produces files containing
information that other applications need to
consume. Integrators take the responsibility of
transforming files into different formats. Produce
the files at regular intervals according to the
nature of the business.

35

36

 Recipient List

 Publishes one message to several known
recipients (as opposed to pub-sub)

 Dynamic Router

 a Router that can self-configure based on special
configuration messages from participating
destinations.

37

38

39

 Return Address

 The request message contains a Return Address that
indicates where the replier should send the reply
message

 Control Bus

 Uses the same messaging infrastructure with specific
channels for transmitting control information

 Test Message

 A message designed to check the “health” of the
executing system

40

 How can you track messages on a service that publishes reply
messages to the Return Address specified by the requestor?

 Use a Smart Proxy to store the Return Address supplied by the
original requestor and replace it with the address of the Smart
Proxy. When the service sends the reply message route it to the
original Return Address.

41

42

43
www.eaipatterns.com

http://www.eaipatterns.com/

 Remember the
example DS you
provided in the last
session.

 Define an hypothetical
SOA for that system

 Define contract

 Identify where you
would use the presented
patterns

 Hohpe, G. And Woolf, B. (2004) Enterprise
Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-
Wesley, ISBN 0321200683.

 www.eaipatterns.com

 Chapter 1, http://eaipatterns.com/Chapter1.html

45
ISEP/IPP

http://www.eaipatterns.com/
http://eaipatterns.com/Chapter1.html

