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CAN YOU IMAGINE A 
WORLD WITHOUT

MULTIMEDIA CONTENT?
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BUT ONLY IF YOU CAN FIND IT

AN IMAGE IS WORTH A THOUSAND WORDS
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MOTTO

Data, data, data. The capacity of producing information creates tremendous opportunities but introduces also 
new challenges: how can humans process so much information? 

When dealing with multimedia content, the concept of big data is even more relevant than in other domains.
How can I find in my archive, containing thousands of photos, the ones that are really relevant for producing 
the video clip that I need to publish in the social networks to announce the fashion show that I intend to 
promote? And how can I re-purpose content, decreasing production costs, while still creating intelligent 
context-aware an appealing media?
How can I find, in the all the thousands of hours of broadcasted TV programs, the exact instant (video 
timecode) where the President appears? Or, how can I go directly to the goals of Cristiano Ronaldo in the 90 
min video file? 

Computer Vision, Artificial Intelligence and Multimedia Technologies can outperform Humans in such tasks. 
In this talk, I will present ongoing work and results that try to cope with some common problems in the area of 
multimedia content annotation and management.
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FOTOINMOTION

Repurposing and enriching images for immersive 
video storytelling

➔ H2020-ICT-Research and Innovation Action

➔ 8 Partners

➔ academia, users, content owners, software integrators
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WHAT ARE WE TRYING TO 

ACHIEVE?
➔ Turn static images - photographs - into rich, appealing and engaging 

multimedia stories

➔ Make photos searchable

HOW? 
➔ By developing tools that can identify the most relevant aspects 

of the photo so that this information can be used to enable 
automatic creation mechanisms
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HOW?
➔ Computer Vision

➔ Machine Learning

➔ Crowdsourcing

WHAT INFORMATION CAN WE PROVIDE?
➔ Contextual Information collected together with the photo

➔ Location, sound classification, activity, voice recognition, 
weather, …

➔ Object Identification

➔ People Recognition

➔ Perceptually important areas
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OVERALL APPROACH
➔ Analysis focused on use cases

➔ Fashion: Genre, Clothing (Jacket, Bottoms, Tops, …), Accessories (Necklace, 
Purse and Bags, ...)

➔ Photojournalism: Protest rallies, Flags, Personalities

➔ Festivals: Personalities, Logos

➔ Using different Machine Learning models optimised for each case

➔ Optimising Datasets for training

➔ Fusing information to filter erroneous detection or to adapt to the 
scenario 
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MACHINE LEARNING

Image: Linked In | Machine Learning vs Deep learning
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MACHINE LEARNING AIM
➔ Enable the computers to learn from data without being 
explicitly programmed

➔ Building algorithms that can receive input data and use 
statistical analysis to predict an output

➔ Outputs are updated when new data becomes available

HOW
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(MAIN) CLASSES OF MACHINE LEARNING
➔ Supervised Learning

➔ Requires labelled data to be input (ground-truth)

➔ Unsupervised Learning

➔ No need for labelled data

Image: Ayush Pant, Machine Learning for Beginners
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SUPERVISED LEARNING

➔ Classification
➔ given an input, classify (output) in one of the 

available classes (categories): “man”, 
“woman”, “kid”

➔ Regression
➔ map input to a continuous output (the output 

variable is a real value): weather forecast, 
estimate life expectancy, etc.

Image: Devin Soni, Supervised vs. Unsupervised Learning



Paula Viana

UNSUPERVISED LEARNING

➔ Clustering
➔ try to find similarities/patterns within the 

data to group entities: “ducks” and “not 
ducks”

➔ Dimensionality Reduction
➔ try to learn relationships between individual 

features, and represent data in a more 
compact away (Representation Learning)
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SUPERVISED LEARNING: CHALLENGES

➔ Datasets for training (ground-truth)

➔ Costy (manually annotating/labelling)

➔ Complexity of the model

➔ Computational costs

➔ Overfitting vs learning the full structure of the data

➔ Small amount of data -> simple model

➔ Large amount of data  -> more complex models



Paula Viana

OVERFITTING

➔ Responds very well to the training data

➔ If we input an image used in the training phase, it will get the solution 
right

➔ Does not generalize to other (slightly different) data

➔ The model is not really learning the actual structure in the data that 
leads to a given output

➔ It will fail if we input a somehow different image
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LEARNING ALWAYS FROM SCRATCH?

➔ Humans Learning

➔ don’t learn everything from the “beginning”

➔ use previous knowledge to learn new thinks

➔ Machine Learning

➔ use this same paradigm to reduce the resources needed for 
implementing a new task

➔ utilize knowledge acquired for one task to solve related ones

Transfer Learning
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TRANSFER LEARNING

Image: Dipanjan (DJ) Sarkar | Hands-on Guide to TL
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DEEP LEARNING: PARADIGM SHIFT

Automatically 
learn 

hierarchical
features 

directly from 
data 
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DEEP LEARNING: FEATURE EXTRACTION
Low-level features

e.g edges

Mid-level features
e.g object parts, combined 

edges

High-level features
e.g object models
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TRANSFER LEARNING IN DEEP LEARNING

➔ What is considered 
knowledge from 
previous tasks?

Features that can be used as 
a baseline to build 
representations for both tasks 
(generic feature detectors) –
Simple features such as Sobel 
Filters which are extracted in 
the first layers of CNNs

Image: Dipanjan (DJ) Sarkar | Hands-on Guide to TL
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COMBINING THE BEST FROM TWO WORLDS

➔ Use small amount of labeled data + a large amount of 
unlabeled data

➔ Avoids the challenges of finding a large amount of labeled 
data

SUPERVISED + UNSUPERVISED LEARNING

Labeled Data

Unlabeled Data

HOW?

SEMI-SUPERVISED LEARNING
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➔ Use the labeled data to (partially) train a model

➔ Use this (partially) trained model and label the unlabeled data, 
creating ‘pseudo-labelled’ data.

➔ Combine labelled and pseudo-labelled datasets are combined, 
creating a unique algorithm that combines both the descriptive 
and predictive aspects of supervised and unsupervised 
learning.

SEMI- SUPERVISED LEARNING

Labeled Data

Unabeled Data
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SOME APPROACHES
➔ Pick some pre-existing models that do not cope with all the 

requirements

➔ Use Transfer Learning for new classes of objects

➔ Without requiring large datasets

➔ Without requiring large computational resources

➔ Use a semi-supervised + power of the crowd

➔ Label datasets

➔ Improve the quality of the datasets
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AND WHAT ABOUT USING THE POWER OF THE 
CROWD TO HELP?

This can be used for two purposes

1. Use crowdsourcing approaches to reduce the AI mistakes

➔ In a 1st step let the computers do their job

➔ In a 2nd step let the humans correct the computers

2. Use AI to reduce content annotation time by providing a first clue

➔ ML approaches require a lot of data for training

➔ This requires a tremendous human effort to create the ground-truth

➔ Then, let AI work even if not in good shape and then correct AI
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HOW DO WE COMPARE?
Google Vision API Clarifai

Not region based

Not the required classes
Require upload (security!!) Only objects
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THREE COMPUTER VISION TASKS
➔ Image Classification

➔ Input: an image 

➔ Output: class labels

➔ Object Localization

➔ Input: an image 

➔ Output:  one or more bounding boxes

➔ Object Recognition

➔ Input: an image 

➔ Output: one or more bounding boxes and a class label for each

CAT

DOG CAT DUCK
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FEATURE EXTRACTION

➔ Image Classification

➔ Generate image features of the full image

➔ Object Recognition

➔ Generate image features on a more fine-grained, granular, 
regional level of the image
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R-CNN: REGION BASED CONVOLUTION NEURAL NETWORKS
➔ 1st Step: Region Proposal

➔ Generate category independent region proposals (candidate bounding boxes)

➔ 2nd Step: Feature Extractor

➔ Extract feature from each candidate region, e.g. using a deep convolutional neural network

➔ 3rd Step: Classifier

➔ Classify features as one of the known class ( e.g. SVM classifier)

Image: A Gentle Introduction to Object Recognition With Deep Learning
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R-CNN AND FAST R-CNN
➔ R-CNN drawbacks

➔ (Low) Speed of training and prediction

➔ Training a CNN on a lot of region proposals per image

➔ Make predictions using a CNN on a lot of region proposals

➔ Fast R-CNN and Faster R-CNN

➔ 1st Step: Region Proposal Network. 

➔ CNN for proposing regions and the type of object to consider in the region.

➔ 2nd Step: Fast R-CNN

➔ CNN for extracting features from the proposed regions and outputting the bounding box and 
class labels.
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METHODOLOGY
➔ SoA NN Architectures 

➔ Faster R-CNN Resnet 101

➔ Faster R-CNN Inception-Resnet v2

➔ YOLO V2

➔ Relevant datasets

➔ COCO (Common objects in Context)

➔ Open Images

➔ LFW (Labeled faces in the wild)

➔ Pascal VOC

➔ Imagenet
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METHODOLOGY

➔ Baseline

➔ Faster R-CNN Resnet 101 w/ COCO

➔ Faster R-CNN Inception-Resnet v2 w/ Open Images

➔ Application of Transfer Learning to optimise the classifier for

➔ existing classes

➔ new use-case oriented classes
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BASELINE DATASETS CHARACTERIZATION
FASHION USECASE

Open Images datasetCOCO dataset
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FIM DATASET CHARACTERIZATION
FASHION USECASE

FiM dataset
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FASHION USECASE RESULTS

Before After
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SOME (VISUAL) RESULTS
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AND IF THE SYSTEM FAILS?

SALIENCY MAPS CAN HELP

➔ No known objects
➔ New application scenarios
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AND IF THE SYSTEM FAILS?

SPOTLIGHTS CAN BE RELEVANT

➔ No known objects
➔ New application scenarios
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AWARD

EUROPEAN COMMISSION INNOVATION RADAR

USE OF AUTOMATED ANNOTATION IN IMAGES



Paula Viana

CHIC
Cooperative View On Internet and Content

➔ P2020 “Projecto Mobilizador”

➔ 28 Partners

➔ academia, users, content owners, software integrators
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CHIC:  A.3. Ecossistema de produção e distribuição de televisão, 

centrado no consumidor, num ambiente cloud com recurso a contributos 

descentralizados

Main Partner: Porto Canal
Main Objective: exploit new approaches for timed annotation of
content
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WHAT ARE WE TRYING TO ACHIEVE?
➔ Make TV archives searchable

➔ Enable re-purposing of content

HOW? 
➔ Develop tools that enable timecoded video annotation

➔ 1st step: personality detection

➔ Make the process easy to adapt

➔ Computational cost

➔ Data
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WHAT WE AIM



Paula Viana



Paula Viana

OVERALL APPROACH
➔ Enhance que quality of the (training) dataset

➔ Choose the best images (increase diversity)

➔ A lot of facial metrics proposed in literature
➔ Make the problem easier by selecting the best 

metrics (dimensionality reduction)
➔ Make sure the approach is universal (genre, age, 

ethnicity, …)

➔ Use some post-processing to enhance the results
➔ One image - > One person
➔ We are dealing with video content -> Tracking 

HOW?



Paula Viana

HOW?

➔ Collect facial metrics for each image in the training set

➔ Group them by similarity

➔ Build a reduced dataset with the least number of images 
that have the most amount of information

From each cluster select only the 
image that is closer to the cluster 
centroid
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SPORTS, ADVERSTISING, SOCIAL 
STUDIES, CINEMA… AND SO ON

WHAT ABOUT OTHER APPLICATION AREAS WHERE
CONTENT ANNOTATION MAY HELP HUMANS?   

➔ Event Detection

➔ Advertising Impact

➔ Person Impact 

➔ Emotion Detection

➔ Content Relations
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