Continuous Integration & Code Quality

MINDS-ON

NUNO BETTENCOURT (NMB@ISEP.IPP.PT)

@DEI, 11 APRIL 2017
Continuous Integration

- THE THEORY -
Standard Software Development

• Individual code development

• Minimum code overlap
 ◦ Individuals focus on their “part” of the code

• Integration is performed manually

• Functional testing is achieved by means of manual procedures to ensure application is running
Continuous Software Development [1]

• Continuous Integration
 ◦ Continuously add new code commits
 ◦ Unit Testing & possibly Integration Testing

• Continuous testing
 ◦ Manual exploratory tests
 ◦ User acceptance testing

• Continuous delivery
 ◦ Functional Testing
 ◦ Regression Testing
 ◦ Pre-Generated Acceptance Tests
 ◦ Stage Environment

• Continuous deployment
 ◦ Production Environment
 ◦ Web & App Development

LAPR2, 3, 4
ODSOFT

ODSOFT

?
Continuous Integration

- THE TOOLS -
Basic Configuration
Continuous Integration

- THE VERSION CONTROL SYSTEM -
Git Repository [2]

• It is a distributed version/revision control system
• Focus on Data integrity
• Works in a Distributed Manner
• Allows non-linear workflows
 ◦ Centralized Workflow
 ◦ Feature Branch Workflow
 ◦ Gitflow Workflow
 ◦ Forking Workflow
Bitbucket [3] (i)

- **Team**
 - Big groups of users and repositories
 - Examples
 - lei-isep, mei-isep, dei-isep
 - Allows group definition of classes or students groups
 - Examples
 - LAPR2-2016-TEACHERS
 - LAPR4-2016-2DA
 - LAPR4-2016-TEACHERS

- **Project**
 - Dynamic groups of projects
 - One for each course edition, containing all students repositories
 - Examples
 - LAPR2-2016, LAPR3-2016

- **Repository**
 - Git Repositories
 - Example:
 - LAPR2-2016-G001, LAPR4-2016-2DA
Bitbucket (ii)

• Cloud Hosted
 ◦ https://bitbucket.org/ - Secure

• Project Template
 ◦ Group projects are forked from this one
 ◦ Forks must be performed MANUALLY for each group

• Users are added to repositories automatically
 ◦ Using REST API through a Jenkins Job using a Gradle script

• Future Work
 ◦ Automatically fork repositories based on a repository template
 ◦ Optimize Jenkins Job to automatically adds users to repositories
Bitbucket: Setup Workflow

- Create a Project for the Course
- Create a Template Git Repository and add it to the Project
 - Configure teachers’ permissions
- Fork the Template Repository for each group/class
 - Configure students’ permissions
Continuous Integration

- THE DEVELOPMENT PC -
Development PC

- Java Development Kit
 - JDK8

- Favourite IDE
 - NetBeans
 - Eclipse
 - IntelliJ Idea

- Normally included in any IDE
 - Maven Client
 - Git Client

- Browser
 - Jenkins
 - SonarQube
 - HipChat
 - Maven Repository

- HipChat Client
 - Optional

- Git Client
 - TortoiseGit, SourceTree, IDE Embedded
Apache Maven

• It is a software project management tool to manage a project's build, reporting and documentation
 ◦ Project Object Model (POM)

• Build Lifecycle
 ◦ validate - validate the project is correct
 ◦ compile - compile the source code
 ◦ test - test the compiled source code using unit testing framework
 ◦ package - package the compiled code in its distributable format e.g. JAR
 ◦

• Maven Repository
 ◦ https://mvnrepository.com
Continuous Integration

- THE INTEGRATION SERVER -
Jenkins

• DEI Hosted
 ◦ https://jenkins.dei.isep.ipp.pt
 ◦ Secure, yet with self-signed certificate

• Allows the configuration of Jobs
 ◦ Each Job performs a set of pre-defined automatic tasks
 ◦ Maven tasks, Shell scripts, etc.

• Users are manually configured in Jenkins

• Users and permissions are manually configured for each Jenkins Job

• Future Work
 ◦ Automatically configure new users in Jenkins
 ◦ Automatically configure Jenkins Jobs’ users and permissions
Jenkins Plugins

- Most relevant plugins for this setup
 - Bitbucket Build Status Notifier Plugin
 - Bitbucket Plugin
 - Hipchat Plugin
 - SonarQube Scanner for Jenkins
 - PIT Mutation Plugin
Jenkins: Setup Workflow

- Create a Jenkins Template Job
 - Configure Bitbucket Repository
 - Configure Bitbucket Notify Build Status
 - Configure Teachers permissions
 - Configure SonarQube
 - Configure build process
 - Maven Build
 - Maven Test
 - Maven SonarQube Scanner

- Duplicate the Template Job for each group
 - Configure HipChat Notifications
 - Configure Students permissions

- Future Work
 - Automate HipChat Notifications configurations
Continuous Integration

- THE INTEGRATION PROCESS -
Bitbucket <-> Jenkins

• On Bitbucket
 ◦ For each Git Repository configure a Jenkins WebHook
 ◦ \texttt{https://jenkins.dei.isep.ipp.pt/bitbucket-hook/}
 ◦ Must skip certificate verification, because Jenkins@DEI uses a self-signed certificate
 ◦ Trigger: Repository Push
 ◦ MANUALLY configured for each repository
 ◦ Configure an SSH access for Jenkins to access the repository

• On Jenkins
 ◦ Add SSH credentials to access Bitbucket’s Git Repositories

• Future Work
 ◦ Automatic Webhook configuration tool
 ◦ Add a valid certificate to Jenkins
Workflow
Code Quality
- THE THEORY -
Code Quality

• Software Functional Quality
 ◦ reflects how well the code complies with or conforms to a given design
 ◦ based on functional requirements or specifications

• Software structural quality
 ◦ refers to how it meets non-functional requirements that support the delivery of the functional requirements
 ◦ e.g. robustness, maintainability, complexity, etc.
 ◦ the degree to which the software was produced correctly
Code Quality

- THE TOOLS -
Code Quality: Basic Configuration
Code Analysis

• Unit Testing & PIT Mutation Testing
 ◦ Coverage

• Static Code Analysis
 ◦ Code Analysers
 ◦ PMD
 ◦ CheckStyle
 ◦ FindBugs
 ◦ Code Duplication
 ◦ Complexity
 ◦ Documentation
SonarQube

• DEI Hosted
 ◦ https://sonarqube.dei.isep.ipp.pt
 ◦ Secure, yet with self-signed certificate

• Dashboards
 ◦ Technical Debt
 ◦ Code Coverage
 ◦ Code Duplication
 ◦ Issues
 ◦ Quality Gate
 ◦ Code Structure
 ◦ PIT Mutation Testing
SonarQube Plugins

- C#
- CheckStyle
- Cobertura
- FindBugs
- GIT
- Jira
- JAVA
- JavaScript
- PMD
- SVN
- PIT
SonarQube: Setup Workflow

• Create one Project for each Jenkins Job
 ◦ Preferably with the same name

• For each repository configure users permissions
 ◦ Students should be configured as a group
 ◦ Teachers should be configured as a group
 ◦ Configure the students and teachers’ group access to the project by adding them “Browse”, “See Source Code”, “Administer Issues” and “Execute Analysis” permissions
 ◦ Configure exclusion rules (e.g. Code Coverage on UI)

• Future Work
 ◦ Solve a bug in the workflow that requires to manually add each group
 ◦ Improve the current Excel/SQL scripts generator tool
Workflow

1. Commit
2. Trigger Build
3. Request Repository
4. Request Code Quality Profile
5. Publish Code Quality Report

LAPR2, 3
Issue Management - THE TOOLS -
Jira

• DEI Hosted
 ◦ Insecure: Lacks HTTPs, passwords sent in clear text over insecure network (e.g. ISEPWLAN)

• Issue Management
 ◦ When used in combination with Agile (Scrum), each issue describes a User Story
 ◦ Each Issue is given a unique identifying token

• Allows the tracking of code changes to solve an issue
 ◦ By using the token in the commit message
Workflow
Notifications & Teamwork

- THE TOOLS -
Hipchat

- Cloud Hosted
 - https://www.hipchat.com
 - Secure
- Each group is assigned a room
- Rooms are manually created
- Users are manually added to rooms
- Jenkins build Notifications
 - Success
 - Failed
- Future Work
 - Automatic creation of rooms
 - Automatically adding users to rooms
Bitbucket Notifications

- Build Notifications for Repositories
Workflow
There’s more...

• GitInspector
• Dependency Structure Matrix (DSM)
• Code Review
• ...
Questions?
References

• 1 - http://searchsoftwarequality.techtarget.com/definition/Continuous-Software-Development

• 2 - https://en.wikipedia.org/wiki/Git