
Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 1

• UDP and TCP network applications development.

Redes de Computadores (RCOMP)

Lecture 07

2017/2018

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 2

User Datagram Protocol (UDP)
As the name point out, UDP is a datagram service, this means, it offers the

transportation of variable size data blocks.

Source and destination applications of each UDP datagram are identified by

16-bit numbers, known as port numbers.

Port numbers are node specific, nevertheless, a port number together with

the node’s IP public address will universally and uniquely identify a

network application.

Being a service intended to be used by network applications, it also provides

a way to identify individual applications.

193.0.0.1 193.0.0.5

Application 1 Application 2

3527
30764

UDP Datagram

Source: 193.0.0.1:3527

Destination: 193.0.0.5:30764

Associating a port number to

an application is called

binding. This is something the

application must request to

the operating system. One

thing the operating system will

ensure is that there is only

one application using each

port number.

The image below represents a UDP datagram

being sent from Application 1 to Application 2:

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 3

UDP network sockets
From the application development point of view, interactions with the network are

based on the socket concept. UDP sockets must first be associated with local port

numbers, only afterwards they will be ready to receive and send UDP datagrams.

Assigning a local port number (bind) to a UDP socket will be successful only if no

other local application is currently using that same port number.

Yet, for some applications any available port number will do. A dynamically assigned

port number can then be requested to the operating system (usually by binding to

port number zero).

193.0.0.1 193.0.0.5
Client

application

13527

(dynamically

assigned)

34 (fixed)

Most network applications use the client-server model. The server must use a fixed

local port number (pre agreed with the client). On the other hand, the client may use

any port number (dynamically assigned).

Request

UDP Datagram

Source: 193.0.0.1:13527

Destination: 193.0.0.5:34

Server

application

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 4

Sending and receiving UDP datagrams

The UDP datagram service is not connection-oriented, nor offers any kind of delivery

guarantee. Each datagram is handled individually, for each datagram to be sent, a destination

IP address and a destination port number must be provided by the sender.

For a sent datagram to be received, on the specified destination IP address a UDP application

should be running and listening on the specified destination port number.

Reception will be usually synchronous. The reception operation halts the application execution

(process or thread) until a datagram is received.

Once an application receives a UDP datagram, it also obtains the source IP address and

source port number. In the case of a server they will be required later to send the reply back to

the correct client.

As already mentioned, UDP offers no delivery guarantee. Worst than that, the sender gets no

feedback, hence it will not know if the datagram has ever arrived at the destination or not.

There is one exception to this lack of feedback: when the target node is operational, and the destination

port number is not in use by any application, the target node sends back an ICMP message destination port

unreachable. Because this message contains the original UDP header (port numbers included), the source

node will be able to relate it to the application and raise an API error on the sender socket.

Because UDP is not connection-oriented, broadcasting is possible. By specifying the broadcast

address of an IPv4 network, or the generic broadcast address (255.255.255.255), as

destination address, all nodes will receive a datagram copy on the specified destination port.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 5

Transmission Control Protocol (TCP)

TCP protocol provides a significantly higher quality service when compared to UDP. TCP

creates logical bidirectional communication channels between applications located on different

network nodes. These logical channels, commonly referred to as TCP connections, provide

guarantees on data delivery and data sequence.

Each TCP connection is for exclusive use by the two applications that created it. It’s a

dedicated communication channel in which third parties cannot intervene.

Data sending and receiving on TCP connections is performed in flux, there’s no data blocks

concept, all data is sent and received on a byte-by-byte continuous flow.

Data transactions via TCP are possible only after a successful connection

establishment phase.

To establish a TCP connection between two applications, each has to undertake a

different role:

- One application accepts the TCP connection (usually the TCP Server)

- The other application requests the TCP connection (usually the TCP Client)

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 6

TCP connection establishment

Connection request sender

(connect)

Establishing a TCP connection requires coordinated efforts from two applications, one of them

takes the connection request receiver role. First, it will bind the TCP socket to a fixed TCP port

number, previously agreed with the issuer of the connection request. Then it waits for a

connection.

The other application can now send a TCP connection establishment request. It must know the

destination IP address (the node where the first application is running) and the destination port

number (the first application’s local port).

Connection request receiver

(accept)

Connection request receiver

(bind)

Connection request sender

(read/write)

Connection request receiver

(accept)

(read/write)

The receiving application associates a TCP port number to the TCP

socket (bind). The application is then available to receive connection

requests on that TCP port number.

The sender application makes a connection establishment request (connect) to

the IP address of the receiving node and port number used by the receiving

application.

The receiving application accepts the connection request (accept), the TCP

connection between the two applications is now created.

TCP connection

On the receiver side, the acceptance of the connection (accept) has

created a new socket associated to the TCP connection, the original

socket remains open to receive other connection requests.

The two ends of the TCP connection are accessible to both

applications, at the sender on the socket used to make the connection

request, at the receiver, on the new socket created when the

connection request was accepted.

Sending and receiving data over TCP connections is performed in byte stream,

common generic functions like those used in the read and write operations on

files and pipes are supported.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 7

TCP – Dedicated channels
A TCP connection is a dedicated communication channel between two applications, for all

effects it’s equivalent to a bidirectional pipe.

Before the TCP connection establishment, involved sockets are associated with local port

numbers only.

After TCP connection establishment, each connected socket will also have associated with it

the remote IP node address and the remote port number.

Incoming TCP data is made available on a connected socket if: data destination port

matches the local port number for the socket and the source IP node address matches the

associated remote address and the source port number matches the associated remote port

number.

The receiver has now two

different sockets associated

to the same local port

number. Although only the

connected socket has a

remote address associated.

193.0.1.3 193.0.2.7

Sender
Receiver

23522
2000

TCP connection request

193.0.1.3 193.0.2.7

Sender
Receiver

23522;193.0.2.7;2000

2000

TCP connection

2000;193.0.1.3;23522

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 8

UDP – Datagrams sending and receiving

Sending and receiving operations are managed through queues (FIFO), this is

especially meaningful when receiving datagrams. From the instant a local port

number is assigned to the UDP socked, it starts receiving and queueing datagrams.

As such, when an application requests for a datagram receiving, in fact, is requesting

for the socket input queue reading. Although applications can overcome this

behaviour, if the queue is empty, then the application will be blocked, wait until a

datagram is received.

Because UDP is connectionless, once a local port number is assigned to the socket

(bind), then UDP datagrams can be received and sent.

UDP datagrams are sent by calling a method or system-call that requires a data

block, the data block size and the destination address (destination IP node address +

destination UDP port number).

UDP datagrams are received by calling a method or system-call that returns a data

block, the received data block size and the source address (source IP node address

+ source UDP port number). If the socket input queue is empty, the operation usually

blocks the process or thread until a datagram is received.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 9

UDP – Unreliable services
UDP services are very simple but they provide no guarantee whatsoever, is up to

applications (the application protocol) solving problems that may arise.

There is no grantee a sent datagram will ever reach the destination, neither any feedback to

the sender concerning the delivery success. Due to unhandled delivery issues, poorly

designed application protocols can easily compromise transactions.

The following diagram represents the standard interaction between a UDP client and server:

UDP Client
UDP server

190.1.1.5

Bind(0)

SERVER = 190.1.1.5:5555

Send(REQUEST, SERVER)

REPLY, SOURCE = Receive()

...

Bind(5555)

REQUEST, SOURCE = Receive()

REPLY = Process(REQUEST)

Send (REPLY , SOURCE)

Request (UDP datagram)

Reply (UDP datagram)

In this case, problems with UDP’s lack of reliability will arise on the client side. The

issue is the client trusts there will be a reply from the server. If no reply is received

the client blocks forever in the Receive call.

No reply being received by the client can be due to any of the following three

causes: the request was lost, the server failed to reply (crashed or is offline), or the

reply was lost.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 10

UDP clients – fault tolerance
UDP is connectionless and unreliable, within the client-server model these

characteristics pushes the design to stateless and idempotent servers. For a

stateless and idempotent UDP server, a request or reply loss has no impact.

As already seen, for a UDP client, the scenario is different because it gets dependent

on a reply arrival. The key to solve this client lock issue, is setting a reply receive

timeout instead of waiting forever. There're several ways to achieve this:

• Non-blocking sockets – the behaviour off a socket can be changed from blocking

to non-blocking, by doing so, any operation on the socket that cannot be executed

immediately (would block process or thread), will return immediately with an error.

• Sockets with timeout – settling a timeout for the socket, if the operation over the

socket takes longer than the timeout, the operation will abort with an error.

• Threads or processes – create a separate thread or process to perform the

blocking operation, thus, the main thread or process is not blocked. The created

thread or process can also be terminated after a period of time (timeout).

• Sockets monitoring – some languages (e.g. C) provide functions capable of

detecting when a socket is ready for reading. The select function in C language

allows this and also the settling of a timeout.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 11

A fault tolerant UDP client – Non-blocking Socket

Open the UDP socket

Change the socket to non-blocking

Assign a free local port number (bind)

Tries = 5

Timeout = 500

Send the request to the server

Sleep for milliseconds (Timeout)

Receive reply from server

Tries is 0

YES

NO

Decrement (Tries)ERROR ?

NO

YES

Reply received No reply from server

One problem with this solution is that

even if the server replies instantly the

client will always wait Timeout

milliseconds.

Other previously described approaches

can lead to better and simpler solutions.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 12

UDP – Sending to the broadcast address
This is something impossible to do with a connection oriented protocol like TCP, hence, it may

be one reason for using in some cases UDP instead of TCP.

In IPv4, a network’s broadcast address is the last address of the network (the node address

zone filled with ones). However, using this address in an application source code is a bad idea

as that application would only work on that specific network.

When an IP packet is sent to a broadcast address, all nodes will receive a copy. By sending an

UDP datagram to a broadcast address has the same effect, so all nodes will receive a datagram

copy in the specified destination port number.

A network specific broadcast address would have to be provided on runtime, for instance,

through a configuration file. There’s though o simpler option, for broadcast on the local network

the generic broadcast address (255.255.255.255) can be used instead. It means broadcast on

the local network, whatever it my be.

One important use of UDP broadcast is on servers discovery. By sending a request to

the broadcast address, clients can reach servers without previously knowing their

node addresses.

This ability is used in several local network environments like for instance Windows

NetBIOS to locate servers on the Network Neighbourhood.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 13

UDP – Sending to broadcast – applications discovery

Even if afterwards TCP is used, UDP broadcast can be used in first place to find

applications (get IPv4 node addresses of applications available on the local

network).

In a client-server architecture, two approaches can be used:

Server announcement – periodically the server sends a broadcast UDP datagram

to a settled destination port number announcing its presence, by doing so, every

client on the network can learn its IP node address.

Clients will start by listening UDP datagrams in the settled port number and building

a list of available servers, including their IP node addresses.

Request for servers – the client sends a broadcast UDP datagram to a settled port

number asking for servers.

Servers on the local network will reply, allowing the client to collect a list of available

servers and their IP node addresses.

In either approach, the client is able to build a list of available servers IP

addresses. It can then pick one, and then communicate with it, either by

using UDP or TCP.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 14

UDP – The datagram size issue

Beyond the lack of reliability and feedback in UDP datagrams delivery, UDP

applications face another constraint:

How much information can be placed inside each UDP datagram?

Theoretically an IPv4 datagram can be up to 65535 bytes long, thus the volume of

data a UDP datagram could hold should be that value subtracted by the size of the

IPv4 header (20 to 60 bytes) and the size of the UDP header (8 bytes).

Though fragmentation is not currently used, so, this is only theoretical. RFC 791

(IPv4) settles every IPv4 node must be able to handle IPv4 datagrams with up to 576

bytes.

The safe way to ensure the excessive size of a UDP datagram will not compromise

its delivery, is avoiding its content length to be above 512 bytes (RFC 791).

When transactions volume is above 512 bytes there are two options:

- Forget about UDP datagrams and use a TCP connection instead.

- Split data into several UDP datagrams.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 15

UDP – multiple datagram transactions
Usually when more than 512 bytes of data are to be exchanged the best option would

be TCP and not UDP.

UDP does not guarantee the delivery of datagrams nor the sequence of delivery,

thus, splitting a data block in a set of datagrams will require the applications to

implement several control proceedings.

As minimum procedures, the receiver of a set of datagrams must be informed of the

total number of datagrams, also each datagram must have a sequence number:

Client

Request 1/1

Reply 1/5
Server

Reply 2/5

Reply 3/5

Reply 4/5

Reply 5/5

The application protocol will also have to

handle error recovery in more or less

sophisticated form:

- the failure in receiving a datagram may abort

the entire transaction and a new initial request

must be made.

- the client may be able to request the

retransmission of only the missing datagrams.

UDP UDP

UDP datagrams

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 16

UDP socket – association to remote addresses
Even tough UDP is connectionless, a UDP socket can be associated to a remote IP

address and remote port number.

In C language this is achieved by using the connect system call, the same function used to

establish TCP connections, but that’s the only resemblance. With UDP connections don’t exist,

for instance the connect function can be used to associate the socket to some remote address

and later to another remote address, this would be impossible it TCP where connections exist.

Associating a UDP socket to a remote address affects both sending and receiving datagrams:

SENDING – in each sending operation, the remote address specification is no longer required,

the already associated remote address will always be used.

RECEPTION – the socket will receive datagrams if, and only if, they are coming from the

associated remote address (filtering).

Associating a remote address to UDP sockets has no other effect beyond these described

behaviours, all UDP characteristics like the lack of reliability persist.

These associations can, however, be useful for some applications especially regarding

filtering in datagrams reception. Multi-process UDP servers can take advantage of this.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 17

TCP connections – Sending and receiving data
TCP has some significant advantages: ensures the reliable delivery of data in the

order it was sent without any size limitations. Sending and receiving data throughout

a TCP connection is byte oriented, this raises some particular issues:

There must be an exact match between the number of bytes requested to be read

on one connection’s end and the number of bytes written on the other connection’s

end.

Ensuring a perfect match (read and write byte synchronization) is a mission

for the application protocol. The application protocol must unambiguously

define all data exchanges between applications, including amounts of data

for each transaction.

• If more bytes are requested to be read than those written, the reading

operation will block, waiting for the remaining bytes.

• If less bytes are requested to be read than those written, the reading

won't block, however, the unread bytes will emerge in the next reading.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 18

TCP connection – Sending and Receiving – The application Protocol

An application protocol is a set of rules two network applications must follow so they

can talk to each other with no ambiguities. It will define proceedings for each

application and data exchanges contents to take place in each proceeding.

In the case of a TCP connection, it’s up to the application protocol to ensure a perfect read and

write synchronization on both ends of the connection.

There are three basic approaches that can be used isolated or combined together:

• Fixed-size blocks – if a fixed-size message is established by the application protocol for

each context, then reading those messages won’t be a problem. Though this solution may

result in network overhead if the real amount of transferred useful data is far less than the

fixed-size.

• Explicit block size statement – the sender start by informing about the size of the

following message. With this knowledge, the receiver can then request the reading of the exact

amount of bytes. For instance, in HTTP, the Content-Length header line informs the message’s

reader about the body size.

• End of block marker – the application protocol establishes an end of message mark. The

receiver reads one byte at a time and stops when it gets the end mark. It's easy to implement,

but it must be guaranteed the mark will not occur inside the message itself. In HTTP this is

used twice, the message header (plain text) uses the CR/LF sequence to mark the end of

each line, and the CR/LF/CR/LF sequence (one empty line) is used to mark the header’s end.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 19

TCP servers
To start with, a TCP server is an application that accepts TCP connection requests in

a port number defined by the application protocol.

Once the TCP server accepts a connection request from a client, a new TCP

connection is established. On the server side, a new socket is created representing

the connection with that client.

TCP client TCP server
TCP connection request

ACCEPT

TCP server

TCP connection

ACCEPT

CONNECT

TCP client

READ/WRITE WRITE/READ

The application protocol defines the sequence of messages, and messages

contents to be exchanged between the client and server over the TCP connection.

Because it´s a permanent and dedicated channel, the TCP connection allows a

session of successive interactions, not just a single request and a single reply like

in a typical UDP client-server.

The TCP connection between the

client and the server is a permanent

dedicated channel that can only be

used by those two applications. It

will be available until one of them

decides to close it.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 20

TCP multi process servers

TCP server

TCP connection

ACCEPT
TCP client

READ/WRITE WRITE/READ

Other clients

After accepting a client’s TCP connection the server must nevertheless remain available to

accept other connection requests from further clients.

This means the server must be able to

dialogue with the connected client (using

the application protocol) and, at the same

time, it must be available to accept new

connection requests.

Thus, it has to handle with two sockets. Must keep accepting new clients on the

initial socket, and must exchanging information with the connected client over the

new socket.

There are several ways to address this problem,

in C/Unix, one of the most popular is creating a

child process to handle the connected client.

TCP server

ACCEPT

WRITE/READ

FORK

Server/Child

FORK
This solution has the advantage of creating a new

independent process for each client connection,

thus, each client will have a dedicated child

process totally available for it.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 21

UDP servers
UDP servers are usually rather simpler than TCP servers. This is because, due to UDP

limitations, UDP servers are mostly stateless and idempotent. A simple UDP server, receives a

UDP datagram on a settled port number, this datagram holds a request, the server then

processes the request and sends back a reply to the client, also inside a UDP datagram.

UDP server

Request
Receive DatagramSend Datagram

Process Request

Send Datagram

UDP client

Receive Datagram

UDP Datagrams

Reply

Because there’s no connection, each

request is handled by the server as

unique and not related with other

requests. When the server receives

the request it stores the source

address for later use when sending the

reply. Once the reply is sent the server

forgets all about that client and jumps

to the next client request.

There’s no connection or session between the client and server, the server receives the requests

in the order they arrive (or are stored at the input queue), a request is handled by the server only

after previous requests are processed and replied.

Implementing a session oriented application protocol over UDP is not impossible, however, the

server will be somewhat complex. The server would have to store different communication

backgrounds, one for each client, when a request is to be processed the server would have to

select the correct background based on the client’s address (IP address + port number).

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 22

Asynchronous reception
Because a network application has no direct control over network data arrival timing, network

data reception must regarded as inherently asynchronous. As seen, some applications simply

stop and wait until data arrives, this is called synchronous reception.

Synchronous reception is not always acceptable, for instance, if the application:

• has several sockets and is not aware in which of them data will arrive first.

• the application has other things to do and can’t stay blocked waiting for data arrival.

Solutions for asynchronous reception:

• non blocking sockets or timeout – periodically the application tries to receive data

to see if it’s available. This may become more efficient if combined with a data

availability alert mechanism (e.g.: SIGIO in Unix systems).

• threads or processes – for each socket a thread or a process is created to receive

data, only that thread or process will be blocked waiting for data.

• specific function to monitor a set of sockets (e.g. select in C language) - the select

function can be used to monitor a set of given sockets, and unlock when there is

data to be received in one of them. With select a timeout can also be specified.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 23

Application protocol
For computer networks in general, a protocol is a set of rules aiming the

unambiguous exchange of information between two communicating entities over a

network. When communicating entities are applications (placed at OSI layer seven,

the application layer) these protocols are called application protocols.

A protocol should be the most formal and exact possible specification for:

• Dialogue phases (state diagram).

• All message contents used in different phases of dialogues.

• All dialogues and possible actions, their objectives and possible results.

• Proceedings for error detection and recovery.

Application protocols should be flexible enough to allow new features, yet keeping backward

compatibility:

• Desirably, the message’s first element should identify the protocol version and then the

message type.

• The general message format should be flexible enough to be able to hold new more specific

formats.

