
Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 1

• HTTP application protocol.

Redes de Computadores (RCOMP)

Lecture 09

2017/2018

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 2

Hypertext file transfer
Hypertext refers to documents with live links to other documents, this may

mean directly clickable references (hyperlinks) or references to other

resources to be included in the document presentation, like for instance

images.

In either case, references are links to other documents and resources. Each

reference is represented by an URL with a filename location to be accessed

through the network by using a specific file transfer application protocol.

HTML
Images and other

resources to be

loaded from

other servers

To fully load an HTML (Hypertext Mark-up Language)

document, beyond the file itself, there may be several

references to additional resources to be loaded. For

each, an additional file transfer will be required.

Although FTP (File Transfer Protocol) can be used, it proved to be inappropriate for

this type of application. FTP requires one control connection with user authentication

(even if it’s anonymous) and then another connection for each file transfer from that

server. It’s not suitable for transferring a big number or relatively small files from

different locations.

To workaround FTP issues on hypertext, a content-oriented file transfer protocol was

designed, the Hypertext Transfer Protocol (HTTP).

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 3

Hypertext Transfer Protocol

Despite earlier versions, the first fully functional version supported nowadays

appeared in 1996, named HTTP 1.0. The key idea for HTTP is providing an expedite

data transfer, thought it may not be a file, so we just call it a content.

HTTP is also content-aware, this means it will exchange information about content

related characteristics with applications using it.

The service model for HTTP is the typical TCP client-server. The client starts by

establishing a TCP connection with the server (the standard TCP service port number

is 80). Once the connection is established, the client sends an HTTP request

message, the server must then send back an HTTP response message.

HTTP

server

HTTP

client

(browser)

80
TCP connection

HTTP request

HTTP response

HTTP 1.1 adds to them, OPTIONS, PUT, DELETE, TRACE, and CONNECT

methods.

HTTP defines several request

types, they are known as

methods.

HTTP 1.0 defines GET, POST,

and HEAD methods, earlier

versions only had GET.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 4

HTTP message format

Request line or Reply line (status)

All HTTP messages (both requests and responses) share the same well-

defined general format. They always start with a sequence of variable length

text lines, terminated by one empty line. Every text line itself is terminated by

CR (Carriage Return) byte followed by the LF (Line Feed) byte.

1st line

CR+LFHeader field line

CR+LF

2nd line

CR+LFHeader field line3rd line

CR+LFHeader field line

CR+LF

Message body, also known as content

or entity.

Can have any format, it may not be text.

It may not exist, not all messages have a body.

A variable number of header

field lines, there may be none.

Two consecutive CR+LF sequences (an

empty line) points out the header’s end,

the message body (if exists) starts next.

The first line is either the request line (for an HTTP request message), or the reply /

status line (for an HTTP response message). Unlike the first one, additional text lines

are optional, they are called header fields. Header fields transport additional

information about the protocol operation and the message content.

CR 13 0x0D \r

LF 10 0x0A \n

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 5

HTTP – Request and response messages

Method (Request type) Space Argument (URI) Space HTTP version name CR+LF

HTTP/1.0

HTTP/1.1

(…)

OPTIONS

GET

HEAD

POST

PUT

DELETE

TRACE

CONNECT

Identifies the resource over which the method will be enforced, no

spaces neither CR or LF are allowed. It can may have one of three

forms:

- An asterisk – not to be applied to any specific resource

- An absolute path (slash started) – a counterpart local resource (URI)

- An URI (may be an URL)

The first line in an HTTP request message is called the request line and has the

following format:

HTTP version name Space Code

The status code is a three digits number.

For instance, 200 means total success on the operation

and usually will have the OK code description.

Space Code description CR+LF

The first line in an HTTP response message is called the status line and has the

following format:

HTTP/1.0

HTTP/1.1

(…)

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 6

Header fields
Header fields are text lines used to transmit control information, either related to

HTTP operations or related to the message’s content (body).

The general form is:
Field name : Field value CR+LF

Where Field name is a standard case-insensitive identifier with special meaning for

HTTP, it’s immediately followed by a colon, no whitespaces between.

The Field value, on the other hand, may be preceded by white characters, they

should be ignored. Depending on the field name, the field value may or not be case-

sensitive.

Both requests and replies usually have header fields, but many header fields only

make sense for some messages. Traditionally, header lines have been divided into

four categories:

General header fields Request header fields Response header fields Entity header fields

They may make

sense for both

requests and replies.

For requests only. For replies only.
Only for messages with

a body because these

header fields are

content-related. May be

used on both requests

and responses.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 7

HTTP/1.1 general-header fields

They may be used both in requests and responses and do not refer to the content. Some most

often used general-header fields are:

Cache-Control
Settles how data may be cached by clients, servers and proxies, some possible
values are no-cache, no-store, max-age, public and private. Not available for
HTTP/1.0, Pragma must be used instead.

Connection

Unlike in HTTP/1.0, in HTTP/1.1 the default behavior is keeping connections open
to allowing multiple requests and replies. The header field Connection: close
informs the counterpart the connection is going to be closed after the current
transaction.

Date
Hold the date/time of the message creation. For instance:
Date: Tue, 15 Nov 1994 08:12:31 GMT

Pragma
Settles operational directives, most used value is no-cache to indicate no data
caching is allowed.

Upgrade

Clients may include this on requests to inform the server about new protocol
versions they support, the server may then inform the client it wants to switch to
on of them by sending a 101 Switching Protocols response with the Upgrade
header field indicating to which is switching to. For instance:
Upgrade: HTTP/2

Transfer-Encoding
Informs the counterpart about a transformation applied to the message body.
This is similar to the entity header field Content-Encoding.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 8

HTTP/1.1 entity-header fields

They are content-related. Even though, they make most sense for messages with a body, they

are also used in some other cases. Some common entity-header fields are:

Allow
Informs about supported methods to access a resource. It will be included in a 405
Method Not Allowed response.

Content-Encoding
Informs the message receiver about some coding was applied to the content, for
instance: Content-Encoding: gzip

Content-Language Describes the natural language of the intended audience for the content.

Content-Length
Defines the size in octets of the content. This is supposed to be used by message
receivers to know how many bytes they should read from the body starting point.

Content-MD5
Holds the result of applying the Message Digest 5 algorithm to the content, used
for integrity checking.

Content-Range
This is used for a partial content message body. It must specify the body position
within the original content and the total original content length. Example:
Content-Range: bytes 21010-47021/47022

Content-Type
Informs the receiver about the content media, thus, how the content should be
interpreted and ultimately displayed to the end-user.

Expires Contains a date/time after which cached copies of the content are no longer valid.

Last-Modified
Contains the date/time the content was last modified. If the content comes from a
file may be the file last modification time.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 9

HTTP/1.1 request-header fields

HTTP request messages specific. Some most often used request-header fields are:

From
Contains the personal e-mail address of the human user on the client
application side.

Host

Contains the hostname and port number being accessed, either typed by the
user at the browser or from the clicked URL in a document. Default port
number is 80. Example:
Host: www.dei.isep.ipp.pt.pt:8080

Referer
(misspelled)

Contains the URL of the document from where the present request was
followed (referred by). This field should not exist for directly user typed
requests. Example: Referer: http://www.dei.isep.ipp.pt/index.html

User-Agent
A string identification for the client application, usually a browser.
Example:
User-Agent: Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus Build/IMM76B)

Authorization
User authentication data, usually username/password. Must be included
following an 401 Unauthorized response.

Cookie
Contains a pair name and value provided by the counterpart in a previous
response. Example: Cookie: sessionToken=ts12325

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 10

HTTP/1.1 request-header fields – conditional requests

These HTTP request-header fields introduce client demands regarding contents to be returned

in responses.

Accept

Requires the response content to be in one of the specified media
types (content types). Example:
Accept: text/*, text/html, text/html;level=1, */*

Accept-Charset

Requires the response content to be in one of the specified charsets.
Example:
Accept-Charset: iso-8859-5, unicode-1-1;q=0.8

Accept-Encoding

Restricts possible content-coding values for the response content.
Example:
Accept-Encoding: compress, gzip

Accept-Language Restricts possible content languages to a given set. Example:
Accept-Language: da, en-gb;q=0.8, en;q=0.7

If-Modified-Since
If-Unmodified-Since

Causes the response to depend on the requested resource last
modification time/data.

If-Match
If-None-Match

Causes the response to depend on the value for the ETag entity-header
field. Messages with a body may define a ETag entity-header for the
content (body) they carry.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 11

HTTP/1.1 response-header fields

HTTP response messages specific. Some most often used response-header fields are:

Age
For cached replies, this is estimated elapsed time in seconds since the original
response was obtained.

Location
This is used to redirect the requester to a different document from the one
requested. Contains a document URL. Is used for 3xx responses, for instance 307
Temporary Redirect.

Public
Inform the client about server supported methods in general, not specifically on
the requested URI. Example: Public: OPTIONS, MGET, MHEAD, GET, HEAD

Retry-After
Used in 503 Service Unavailable response to inform about when the service is
expected to be available, may be a date/time or a time period is seconds.

Server
A string identification for the server application. Example:
Server: CERN/3.0 libwww/2.17

WWW-Authenticate
Used with 401 Unauthorized response informing access to the resource requires
user authentication. This field informs about the expected authentication
mechanism to be used.

Set-Cookie

Contains a pair name and value for the client to use in the Cookie header field
on subsequent requests. The purpose is the server being able to identify this
particular client in next requests, and thus, maintain with it a stateful session.
Example: Set-Cookie: sessionToken=ts12325

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 12

HTTP/1.1 – OPTIONS and GET methods

The response to this request provides the client with a list of available methods to access the

URI, if the URI is an asterisk, then a list of methods supported by the server is provided.

The response will be usually 200 OK and the response-header field Allow will l have a list of

supported methods and eventually other header fields defining the server capabilities.

OPTIONS Space Argument (URI) Space HTTP/1.1 CR+LF

Used to obtain (download) the content pointed by URI. Typically, URI refers to a static content stored in a file,

however, that may not be the case, it may also be dynamically generated by the server.

The technique known as CGI (Common Gateway Interface), allows the server to execute external programs

or scripts and return their output as response message content. In these cases, URI refers to something

executable and not a static file.

In most cases, CGI applications require input data to be provided by the client (usually collected in an HTML

form). However, GET method requests can´t have a body, this is somewhat overcome by embedding form

data in the URI, appending the query string.

The query-string starts by a question mark and it’s made of an ampersand separated list of pairs form field

name and form field value. For instance:

http://www.server1.net/login?username=teste&password=pppttee&dep=5

A URI is obviously not the best-suited local to place forms data, only plain text data is supported and there are

length issues. Beyond that, data will be visible in the URL. The POST method request is more suitable

because it can have a body to carry data.

GET Space Argument (URI) Space HTTP/1.1 CR+LF

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 13

HTTP/1.1 – HEAD, POST, PUT and DELETE methods

The response to the HEAD request is exactly the same that would be achieved with a GET

request for the URI, except that it will have no body, nevertheless, all header fields will be the

same.

The POST request purpose is sending data to an URI, this will normally be some kind of

executable application. Unlike with the GET method, data is placed on the message body,

therefore, there are no restrictions whatsoever on data content and length.

HEAD Space Argument (URI) Space HTTP/1.1 CR+LF

POST Space Argument (URI) Space HTTP/1.1 CR+LF

PUT Space Argument (URI) Space HTTP/1.1 CR+LF

The PUT request can be interpreted as the reverse of GET method. It allows the upload of a

content to a URI. It is mostly intended to upload a content to a file named by the URI, however,

it may also be used with the same purpose of POST if URI refers to an application.

DELETE Space Argument (URI) Space HTTP/1.1 CR+LF

Used to request the removal of a resource on the counterpart. The URI is supposed to

represent the name of the file to be removed.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 14

HTTP/1.1 – Response status-codes (1xx, 2xx, and 3xx)

Codes 1XX didn’t exist in HTTP/1.0, they indicate some additional messages are expected over the same

connection. For instance 100 Continue indicates the server has accepted the request first part and is

expecting something else. The 101 Switching Protocols is used when the server wants to upgrade to a

higher HTTP version (Upgrade general-header field).

HTTP responses status-codes can be grouped in five categories depending on the

leftmost digit:

HTTP/1.1 Space 1XX Space Textual code description CR+LF

Notify about a success on the requested operation. Examples:

200 OK – indicates total success on a GET, HEAD or POST.

201 Created – as result of the request a new resource has been created.

202 Accepted – the request was accepted, but may not have been yet executed, there may be a delay.

206 Partial Content – the content on the response body is only partial.

Alert about a failure and the need for the client to reformulated the request. Examples:

300 Multiple Choices – there are several option to execute the request. A list is provided.

301 Moved Permanently – the resource was dislocated, the new location is provided by the Location field.

303 Moved Temporarily – temporary dislocation, the new location is provided by the Location field.

304 Not Modified – response to a conditional GET request when conditions are not meet.

HTTP/1.1 Space 2XX Space Textual code description CR+LF

HTTP/1.1 Space 3XX Space Textual code description CR+LF

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 15

HTTP/1.1 – Response status-codes (4xx and 5xx)

Codes 4XX alert about what the server thinks it’s a client side request error. Examples:

400 Bad Request – the server simply did not understand the request made.

401 Unauthorized – the server demands user authentication for the request made.

403 Forbidden – the resource exists but is not accessible due to the lack of permission.

404 Not Found – the requested resource was not found in the server.

405 Method Not Allowed – the used method is not possible for the requested resource.

406 Not Acceptable – an Accept field restriction on the request could not be satisfied by the server.

411 Length Required – the server refuses to accept the request with no Content-Length specified.

412 Precondition Failed – an If field precondition on the request could not be satisfied by the server.

HTTP/1.1 Space 4XX Space Textual code description CR+LF

These codes are about server side issues, they mean the server is aware there is a problem and was unable

to fulfill the request. Examples:

500 Internal Server Error – the server has a severe problem and was unable to process the request.

501 Not Implemented – the request method is not supported by the server.

503 Service Unavailable – the server was unable to process the request due to a temporary overload.

505 HTTP Version Not Supported – the request HTTP version is not supported by the server.

HTTP/1.1 Space 5XX Space Textual code description CR+LF

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 16

Persistent TCP connections

HTTP 1.0 may optionally support persistent connections, to force that behavior,

clients must include the Connection: keep-alive header line. If the server supports it,

then it will also include the same header line on the response.

Under HTTP 1.0, TCP connections between the client and the server are presumed

to be non-persistent, this means for each request/response one TCP connection is

required and it’s closed once the response is received.

Under HTTP 1.1, TCP connections between the client and the server are presumed

to be persistent, this means one TCP connection can be used for several

request/response dialogues.

Even so, clients should include the Connection: keep-alive header line on their

requests if they want to reuse the connection for further requests.

Persistent connections HTTP 1.1 behavior can be reverted to HTTP 1.0 behavior by

adding the Connection: close header line. Clients using HTTP 1.1, and not

supporting persistent connections must include this header line on every request. The

server response will also include it, and the connection is then closed.

In principle, persistent connections are maintained until the client sends a request

with the Connection: close header line. Then, the server response will also include

the same header line and once the response is received by the client the connection

is closed.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 17

Persistent TCP connections keep alive timeout

In HTTP a persistent TCP connection can be used for several request/response dialogue

sequences. If the client wants to close the connection after a request/response sequence it must

include the Connection: close header line in the request.

Nevertheless, persistent connections don’t persist indefinitely. For the sake of

resources saving, both client and server applications define a keep alive

timeout, if no request/response is send during that time the connection is closed.

Default persistent connections a keep alive timeout for each application differs and

may be an application configurable parameter.

Nevertheless, the Keep-Alive: header line can be included in requests and

responses that contain the Connection: keep-alive header line.

This informs the counterpart about its current settings, two parameters are currently

supported for the Keep-Alive: header line: max and timeout.

max specifies the maximum number of request/response sequences the connection

supports (since it started), once that number is exhausted the connection is closed.

timeout specifies the number of seconds the connection is kept open with no traffic, if

no request is sent within this time period, the connection is closed.

Example: Connection: Keep-Alive
Keep-Alive: timeout=10, max=5

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 18

HTTPS (Hyper Text Transfer Protocol Secure) - HTTP over TLS (SSL)

While the standard HTTP service port number is 80, for HTTPS it’s port number 443.

The browser will assume as default these port numbers by looking at the initial section

the URL, correspondingly http:// or https://. Default port numbers may be overridden if

explicitly specified, for instance: http://server.pt:8080.

To secure the connection, the client sends the TLS ClientHello message to the

server. At this stage some, TLS messages are exchanged, the server’s authenticity is

assured by a valid public key certificate and a secret cryptographic key is then

generated to encrypt data. Once the TLS handshake is finished, HTTP protocol can

then be used, now requests and replies have guaranteed privacy.

HTTPS is not different from HTTP, it’s the same protocol, but instead of running over

plain TCP it runs over TLS (Transport Layer Security). TLS is the successor of Secure

Sockets Layer (SSL), it provides secure network services for applications.

An HTTP client creates a TCP connection to the server, and may then send the

request. An HTTPS client creates a TCP connection to the server, secures it with

TLS, and only then, can send the request.

Public key certificates have a critical role in HTTPS security, they give clients the

guarantee they are talking with the authentic server and not a fake.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 19

HTTP/HTTPS as general purpose application protocol

Designing and implementing a new application layer protocol for some distributed

applications architecture is a rather significant effort and investment. This investment

can be avoided if an already existing application layer protocol is reused and

eventually adapted.

We must bear in mind this may not be the best technical option, however, it may be

the best option under investment point of view. Some adaptations to the original

protocol usage may be required because it was designed with a different purpose,

nevertheless, the protocol specification itself must be kept.

Because it’s standard, simple and flexible, HTTP/HTTPS is widely adopted for this

purpose. To achieve this, each application contains an HTTP server, an HTTP client,

or both. The client-server model is preserved, though one application can be client

and server at the same time.

Application D

HTTP Server

Application B

HTTP Server HTTP Client

Application A

HTTP Client

Application C

HTTP Server

HTTP Requests

HTTP Requests

HTTP Client

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 20

Web Services

The central concept on web services is the use of HTTP for application-to-application

communications without direct human involvement.

To make use of a web service, one application (service requestor or consumer)

assumes the HTTP client’s role and the other (service provider or publisher) the

HTTP server’s role. The web service is made available to service requestor

applications by the service provider application.

From this central concept, some typical distributed systems issues rise. One issue is

about data representation, it should be independent of individual local systems so

that received data can be understood on any kind of node. Another issue is about

publishers identification by requestors, that will encompass the publisher’s node

address or DNS name, and also, the resource itself within that node address.

Application A

Consumer

(service requestor)

Application B

Publisher

(service provider)

Consumer

(service requestor)

Application C

Publisher

(service provider)

HTTP Request (URI B)

HTTP Request (URI C)

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 21

Web Services – data representation

As it is, the web services concept is very wide. As far as the HTTP protocol is fulfilled

and respected, all kind of information exchanges between applications can be

implemented as web services.

Concerning data representation, the most widely used solution is extensible markup

language (XML), another alternative is JavaScript Object Notation (JSON).

Both represent data in a human readable text format, yet also suitable for automated

parsing. In each case the appropriate content-type specification should be used,

correspondingly, application/xml and application/json.

Also, some higher level standards have been established on more details about how

applications can communicate through web services, two examples are SOAP

(Simple Object Access Protocol) and XML-RPC (Remote Procedure Calls in XML

format through HTTP).

Due to the client-server model, implicit by HTTP, requestors must know where to find

publishers, and then, what services are provided by that publisher.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 22

Web Services – resources identification

Resources are identified by an URL, an URL identifies a resource, and also, how to

access it. So, an URL starts by an access protocol name, for web services http:// or

https://, then it identifies the node’s address, usually through a DNS host name.

Optionally it may also specify a port number preceded by a colon. If the port number

is not specified, then the protocol’s default port number is implicit.

This is called the origin part of the URL. The remaining part of the URL identifies the

resource within that origin, it starts by a slash and may reflect an internal hierarchical

resources organization with names separated by a slashes.

Regarding the origin part, it shouldn't be hardcoded into applications because it

depends on the running environment, they should be provided to applications as

runtime configuration data. Each resource’s local identification within the origin, on

the other hand, may be hardcoded into requestor applications.

Usually requestors known what resources are provided by a publisher, nevertheless,

standards have been established on how publishers can inform requestors about

that. Web Services Description Language (WSD) and Universal Description,

Discovery, and Integration (UDDI) make that information available to requestors in

XML format.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 23

Web Services and Web Browsers

From the web services concept, which excludes direct end-users interaction,

it could be assumed web browsers are out of scope. Nevertheless, modern

web browsers are themselves able to run applications, namely in JavaScript

language. This makes them able to take part in web services architecture.

Current web browsers support the XMLHttpRequest object, in essence it’s

an HTTP client and allows a web page to, whenever it desires, make an

HTTP request, retrieve data, and typically use that data to update parts of the

page being displayed. This may be done without actually reloading the page,

by using the HTML DOM (Document Object Model).

Requests with the XMLHttpRequest object should be asynchronous, this

means, before triggering the request, a response handling function is

defined. Then, the request itself will not block the web browser on waiting for

the response, if and when the response arrives, then the response handling

function is executed.

This technique is called AJAX (Asynchronous JavaScript and XML), by using

it, the traditional web pages’ behavior, requiring a reload or submission for an

update with fresh data from the server, is overcome.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 24

RESTful web services design model

REST stands for Representational State Transfer, it’s a constrained resource based

usage for web services, main principles (constrains) are:

• Clients request operations over server-side resources (identified by URIs), these

operations are only: Create, Read, Update and Delete (CRUD), they are mapped

to HTTP request methods.

• Resource contents are transferred in XML, HTML or JSON representations.

• Servers are stateless in the sense they do not store information about clients

dialogue context. Therefore, on every request clients must provide all required

context data.

• If the server has a state, then that state context must be represented by an

addressable resource (URI), clients may then refer that state context on requests.

RESTful web services consumer applications can request the following four

operations over a URI: Operation HTTP methods

Create a resource POST; PUT

Read/retrieve a resource GET

Update/Modify a resource PUT

Delete/remove a resource DELETE

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 25

RESTful – resources and collections

The only safe method is GET, meaning it does not change the resource or the server

state. Methods PUT, GET, and DELETE are regarded as idempotent methods, this

means making more than one repeated identical request has no additional effects

beyond the effect of the first request.

A URI may refer to a single resource or a collection of resources, singular names

are to be used for single resources, plural names for a collection of resources.

Depending on being a single resource or a resources collection, HTTP methods will

have different meanings:

HTTP method Single resource (singular name URI) Resources collection (plural name URI)

GET Retrieve the resource.
List the of resources items in the collection.
Retrieved data is a list of resources’ URIs
and optionally other resources’ data.

PUT
Replace the resource, if it does not exist,
create it.

Replace the whole collection with another
collection.

POST
Not used because the URI would be
regarded as a collection and a new collection
item would be created within it.

Create a new resource item within the
collection. The new resource URI is
automatically assigned.

DELETE Delete the resource. Delete the entire collection.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 26

RESTful - URI naming guidelines and best practices

• Singular names for single resources or collection’s

items/elements.

• Plural names for collections of resources.

• Verbs for controllers and functions.

• Camel casing for resources and lower case for URI.

• Hyphens instead of underscores.

• Avoid CRUD names (Create/Read/Update/Delete) in URI.

• URI path elements should represent resources’ hierarchical

structure.

• Use URI path components to represent variable values.

• A query component may be added to the URI.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 27

Hypermedia As The Engine Of Application State (HATEOAS)

HATEOAS is a constraint of the REST application architecture. It means by accessing

and retrieving a resource, a REST client also retrieves a list of links representing

alternative actions from that point on. This is very similar to human web usage: when

a web page is reached there are a set of alternative links to follow from that point.

This strategy makes the API discoverable by REST clients, though it’s state

dependent. Only after accessing a URI follow up links are provided, they represent

possible state transitions from the initial state and may depend on the resource itself

or other factors, like for instance user authentication used. Example using XML:

GET /accounts/1111 HTTP/1.1
Host: example.com
Accept: application/xml
...

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: ...

<?xml version="1.0"?>
<account>

<account_number>1111</account_number>
<balance currency="usd">100.00</balance>
<link rel="deposit" href="/accounts/12345/deposit" />
<link rel="withdraw" href="/accounts/12345/withdraw" />
<link rel="transfer" href="/accounts/12345/transfer" />
<link rel="close" href="/accounts/12345/close" />

</account>

GET /accounts/1112 HTTP/1.1
Host: example.com
Accept: application/xml
...

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: ...

<?xml version="1.0"?>
<account>

<account_number>1112</account_number>
<balance currency="usd">0.00</balance>
<link rel="deposit" href="/accounts/12345/deposit" />
<link rel="close" href="/accounts/12345/close" />

</account>

Because account 1112 has a zero balance, available actions are only deposit and

close.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 28

Same-origin policy

Web browsers implement a security concept called same-origin policy. An origin is

the URL part representing the protocol, hostname and port number. If a document

loading requires the retrieval of resources from other origins different from the base

document’s origin this is called cross-origin.

The same-origin policy requires all resources to be retrieved from the same origin

as the base document. This is a browser side security feature to assure the user

when a URL is typed, all retrieved resources are coming from that origin. Most

important, it guarantees to a web service being accessed, the access is being

made from a page downloaded from the web service’s origin.

There’s no universal standard same-origin policy for browsers, usually this policy is

enforced only for JavaScript and other scripting languages. Cross-origin for static

embedded resources like script sources, images and other media files are allowed.

Writing operations are usually allowed, including form submissions. Cross-origin read

accesses are not allowed.

However, if within a page, a script accesses a REST API on a different origin,

its a clear policy violation and it will be blocked by the browser.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 29

Changing the origin

Within some restrictions, scripts are allowed to change the page’s origin of the

document. They are allowed to change the hostname part of the document origin as

far as it´s changed to an upper level domain name. In JavaScript this is done by

setting the document.domain property.

Let’s take for instance the following scenario:

• We load a page with origin https://www.ipp.pt

• This page has a script wanting to call web service https://dei.isep.ipp.pt/users.

This is a same origin policy violation and is going to be blocked by the browser.

• However, the script is allowed to change it’s page origin hostname from

www.ipp.pt to ipp.pt, the web service https:/dei.isep.ipp.pt/users is also

allowed to change it’s origin hostname from dei.isep.ipp.pt to ipp.pt.

• Now both have the same origin and therefore there’s no same origin policy

violation anymore.

Notice: some browsers may have issues/bugs around document.domain property handling.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 30

Cross-origin resource sharing (CORS protocol)

The same-origin policy enforced by browsers can be overridden by using the CORS

protocol. When a CORS capable web browser detects a cross-origin request it will

ask the requested URL for instructions regarding if access should or not be granted.

The HTTP request header line Origin: is used to query the server, it contains the full

origin specification for the document making the request. In fact every HTTP request

always contains this header line, it will be empty for a user typed URL.

The Origin: header line can be included on any request method, the server response

is supposed to include a Access-Control-Allow-Origin: header line, otherwise the

browser is to block the access by default.

If the Access-Control-Allow-Origin: header line returned by the server is “*”,

meaning any origin is allowed, or the origin value specified in the request, then

access is granted by the browser, otherwise is blocked.

For methods GET, HEAD and POST the query about access-control can be included

in the request itself (Origin: header line). For other methods, a request with the

OPTIONS method is triggered by the browser in the first place, this is called CORS

preflight.

Access allowed by CORS is method dependent. Without a preflight, the allowed

access applies only to the method used by the request.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 31

CORS preflight request

Under CORS, requests with methods GET, HEAD and POST are called simple

requests, they require no preflight. Requests with methods PUT, DELETE,

CONNECT, OPTIONS, TRACE and PATCH always require a preflight. Though,

depending on other factors, even for simple requests, browsers may be required to

perform a preflight.

The CORS preflight is a test to anticipate if the real request will be allowed and in

what conditions. It´s identical to the real request with the following differences:

• The OPTIONS method is used instead.

• The method to be used in the real request is declared on the Access-Control-

Request-Method: request header line.

• Header lines to be included in the real request are declared at the Access-

Control-Request-Headers: request header line.

• The Origin: header line contains the origin corresponding to the real request.

• Has no content.

The response to the preflight request lets the browser know if the real request should

be allowed. Usually the same persistent connection is used for the preflight and then

for real request.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 32

CORS preflight response

The CORS preflight response holds a set of Access-Control response headers:

Response header line

Access-Control-Allow-Origin:
Allowed origin specification, possibly equal to Origin: request
header line or “*” (any origin allowed).

Access-Control-Allow-Methods:
A coma separated list of allowed methods, possibly including
the requested one (Access-Control-Request-Method).

Access-Control-Allow-Headers:
A coma separated list of allowed header lines from the
requested list (Access-Control-Request-Headers).

Access-Control-Max-Age: For how long can this response be kept in cache.

Access-Control-Allow-Credentials:
Holds the true value if credentials can be used, otherwise this
header is absent. Credentials can be cookies, authorization
headers or TLS client certificates.

Access-Control-Expose-Headers:

A list of additional response headers to be made available to
clients. Response headers Cache-Control, Content-Language,
Content-Type, Expires, Last-Modified, and Pragma are always
exposed.

