
1/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

Redes de Computadores (RCOMP) – 2017/2018

Laboratory Class Script PL13

 Network applications development over Berkeley Sockets.
 Introduction to used environments: C/UNIX and JAVA.
 UDP clients and servers.
 Project 2 start - objectives and guidelines

1. Network applications will be developed in two programming languages: C and Java

When developing network applications it’s mandatory that the way they communicate with each other
is not dependent on the programming language or the underling operating system.

This goal is achieved by defining with no ambiguities the contents of each communication, i.e. the
application protocol. To highlight the importance of establishing an unambiguous application protocol,
during these classes, applications will be developed both in C and Java. Even so, they should
communicate with each other without any problems.

In addition to timing issues (synchronization), one key factor to ensure the success of communication
through an application protocol is settling accurately and implementation independent the data formats.

For instance, when transmitting an integer between two applications, sending the memory bytes where
the integer is stored is wrong. The way data is stored, depends on the operating system and platform,
thus, sending data as it’s stored in the source node will very likely lead to misinterpretation on the
destination node.

One of the simplest solution for abstract data transfer is representing data as legible text.

1.1. Laboratories’ network and available Linux servers for students

- A single network is shared by all DEI laboratories, it’s a private network
supporting both IPv4: 10.8.0.0/16 and IPv6: fd1e:2bae:c6fd:1008::/64.

- A node is connected to the laboratories’ network in one of these conditions:

a) It’s connected by a cable to a network outlet in a DEI laboratory.

b) It’s connected to the DEI student’s VPN service (deinet.dei.isep.ipp.pt).

- Six Linux servers are available to users through SSH (Secure Shell). Once
logged in, users have a command line terminal environment where they can write,
compile and run C and Java applications. Although SSH access is provided through
a public network, these servers are also connected to the DEI laboratories’
private network.

DNS name for public Access IPv4 address (LABS) IPv6 address (LABS)
ssh1.dei.isep.ipp.pt

(vsrv24.dei.isep.ipp.pt)
10.8.0.80 fd1e:2bae:c6fd:1008::80

ssh2.dei.isep.ipp.pt
(vsrv25.dei.isep.ipp.pt)

10.8.0.81 fd1e:2bae:c6fd:1008::81

ssh3.dei.isep.ipp.pt
(vsrv26.dei.isep.ipp.pt)

10.8.0.82 fd1e:2bae:c6fd:1008::82

ssh4.dei.isep.ipp.pt
(vsrv27.dei.isep.ipp.pt)

10.8.0.83 fd1e:2bae:c6fd:1008::83

ssh5.dei.isep.ipp.pt
(vsrv28.dei.isep.ipp.pt)

10.8.0.84 fd1e:2bae:c6fd:1008::84

ssh6.dei.isep.ipp.pt
(vsrv29.dei.isep.ipp.pt)

10.8.0.85 fd1e:2bae:c6fd:1008::85

- Students should use these servers to develop and test the network applications
in laboratory classes, nevertheless, personal workstations can also be used for
this purpose. Remember though a network application running on a public network
will not be able to reach a network application running on a private network.

2/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

- When testing network applications using these available Linux servers,
students should enrol different Linux servers, enforcing the real use of network
communications. If both applications are running on the same server there will
be no real network communication.

- For instance, with the purpose of testing two network applications A and B
which communicate with each other, they should be run on different servers, for
instance, run application A in ssh2 and run application B in ssh3:

ssh2

Application A

ssh3

Application B

Communication
between

applications

User’s workstation

SSH
Session

SSH
Session

terminal
(ssh2) A

terminal
(ssh3) B

Example programs to be used in laboratory classes are available in the following repository:

https://github.com/asc-isep-ipp-pt/PROGS-RCOMP

(Bear in mind this repository may be updated until matching classes actually take place)

1.2. Compiling and running C applications (Linux)

- Source code can be created by using a simple text editor like vi or nano,
running command like:

vi SOURCE-FILE.c or nano SOURCE-FILE.c

- The source file (SOURCE-FILE.c) can then be compiled using gcc (GNU Compiler
Collection):

gcc SOURCE-FILE.c –o EXECUTABLE-FILE

If no –o option is used, an a.out executable file will be created.

- To run the application, just call it from the command line:

 ./EXECUTABLE-FILE

- In the formerly mentioned repository, each folder has a Makefile, the make
command should be used to compile all applications present in the folder.

3/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

1.3. Compiling and running Java applications (Linux and Windows)

- One major advantage of Java language is that compiled applications run over a
platform known as Java Virtual Machine (JVM), this guarantees a high degree of
abstraction from the underlying operating system. One of the most widely used
JVM implementations is JRE (Java Runtime Environment) from ORACLE.

- JRE is available on the DEI Linux servers and Windows workstation (certainly,
it is also available in students personal workstations), thus applications
develop in Java language may be used in any of these environments.

- Source code can be created by using a simple text editor like vi or nano,
running command like:

vi SOURCE-FILE.java or nano SOURCE-FILE.java

- The source file (SOURCE-FILE.java) can then be compiled using the Java
compiler:

 javac SOURCE-FILE.java

A CLASS-NAME.class file will be created for each class declared in source file
SOURCE-FILE.java.

- To run the application call the JRE:

 java CLASS-NAME

Where CLASS-NAME is the name of the class implementing the main method.

- Again, in the repository each folder has a Makefile, the make command can be
used to compile all applications present in the folder.

2. UDP clients and servers

UDP clients and servers are application that uses UDP datagrams to communicate
with each other using the client-server model:

UDP client

Data input

UDP server

User

sendto/send

recvfrom/receive

recvfrom/receive

Request
processing

sendto/send

Data output

Request

Reply

Network
(UDP datagrams)

The server application receives a UDP datagram transporting the request, then
processes the request content and sends back another UDP datagram containing the
reply (the result of processing).

Typically, user interaction takes place at the client application side, to start
the user is normally required to provide the server node address to where the
client will be sending the requests to. Then data to be processed is prompted to
the user and sent inside a UDP datagram to the server address. The client
application must then wait for a datagram arrival containing the reply and
usually presents the content to the user.

4/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

2.1. Implementing an example of UDP client and server

Create a pair of applications: a UDP client and a UDP server with the following characteristics:

The client application:

1 - Receives a server IP address or DNS name as the first argument in the command line.

2 - Reads a text line on the console (string), if the text content is “exit” then the client application exits
else sends its content (ASCII text) inside a UDP datagram (request) to the server, to a fixed port
number (9999 in the provided sample).

3 - Receives a UDP datagram (reply) containing a string and prints the string content on the console.

4 – Repeats from step 2

The server application:

1 - Receives a UDP datagram (request) in a fixed port (9999 in the provided sample) containing a
string. The client source IP address and port number should be printed in the server console.

2 - Mirrors the string

3 - Send back to the client a UDP datagram (reply) containing the mirrored string.

4 – Repeats from step 1.

Remarks: Both IPv4 and IPv6 should be supported. To avoid conflicts, given that several students may
use the same Linux server to run the server application, each should use a different port number
suggested by the laboratory class teacher.

2.1.1. UDP client in C language (udp_cli.c)

#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUF_SIZE 300
#define SERVER_PORT "9999"

// read a string from stdin protecting buffer overflow
#define GETS(B,S) {fgets(B,S-2,stdin);B[strlen(B)-1]=0;}

int main(int argc, char **argv) {
 struct sockaddr_storage serverAddr;
 int sock, res, err;
 unsigned int serverAddrLen;
 char linha[BUF_SIZE];
 struct addrinfo req, *list;

 if(argc!=2) {
 puts("Server IPv4/IPv6 address or DNS name is required as argument");
 exit(1);
 }
 bzero((char *)&req,sizeof(req));
 // let getaddrinfo set the family depending on the supplied server address
 req.ai_family = AF_UNSPEC;

5/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 req.ai_socktype = SOCK_DGRAM;
 err=getaddrinfo(argv[1], SERVER_PORT , &req, &list);
 if(err) {
 printf("Failed to get server address, error: %s\n",gai_strerror(err)); exit(1); }
 serverAddrLen=list->ai_addrlen;
 // store the server address for later use when sending requests
 memcpy(&serverAddr,list->ai_addr,serverAddrLen); freeaddrinfo(list);

 bzero((char *)&req,sizeof(req));
 // for the local address, request the same family as determined for the server address
 req.ai_family = serverAddr.ss_family;
 req.ai_socktype = SOCK_DGRAM;
 req.ai_flags = AI_PASSIVE; // local address
 err=getaddrinfo(NULL, "0" , &req, &list); // port 0 = auto assign
 if(err) {
 printf("Failed to get local address, error: %s\n",gai_strerror(err)); exit(1); }

 sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
 if(sock==-1) {
 perror("Failed to open socket"); freeaddrinfo(list); exit(1);}
 if(bind(sock,(struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {
 perror("Failed to bind socket");close(sock);freeaddrinfo(list);exit(1);}

 freeaddrinfo(list);

 while(1) {
 printf("Request sentence to send (\"exit\" to quit): ");
 GETS(linha,BUF_SIZE);
 if(!strcmp(linha,"exit")) break;
 sendto(sock,linha,strlen(linha),0,(struct sockaddr *)&serverAddr,serverAddrLen);
 res=recvfrom(sock,linha,BUF_SIZE,0,(struct sockaddr *)&serverAddr,&serverAddrLen);
 linha[res]=0; /* NULL terminate the string */
 printf("Received reply: %s\n",linha);
 }
 close(sock);
 exit(0);
 }

- The client application starts by analysing the server’s address to where it’s
supposed to send the requests. This is most relevant because depending on the
type of address, the appropriate corresponding local socket must be created. The
getaddrinfo() function analyses the provided server’s address, with the given
arguments: SOCK_DGRAM of any family (AF_UNSPEC) for the server address and the
port number the server will be receiving on.

- To be able to free the dynamic memory allocated by getaddrinfo() for the
linked list, and because later the server address structure will be required,
the server address structure is copied from the linked list to serverAddr.

- Now the appropriate local address can be obtained by calling getaddrinfo()
again, this time the specific family determined by getaddrinfo() previous call
(for the server address) is requested. Because it’s a local address, the flag
AI_PASSIVE must be used and the host address for getaddrinfo() may be NULL,
being a client it does not need a fixed port number, so “0” is used instructing
bind to use any free port number.

- Data created by getaddrinfo() can now be used to open the appropriate socket
and bind it to the appropriate local address.

- Now everything is ready for communications to take place, the client
application reads a text line from the console to a buffer, and then sends a UDP
datagram carrying the characters to the server. Afterwards the client waits for
a response UDP datagram (the client application blocks here).

- When (and if) a reply UDP datagram arrives, recvfrom() unblocks puts the
datagram payload in the buffer and returns the number of bytes in the payload.
In order for the buffer to be directly printed in C it must be null terminated,
so the zero value is placed in the buffer position corresponding to the number
of bytes received.

6/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

2.1.1. UDP client in Java language (UdpCli.java)

import java.io.*;
import java.net.*;

class UdpCli {
 static InetAddress serverIP;

 public static void main(String args[]) throws Exception {
 byte[] data = new byte[300];
 String frase;

 if(args.length!=1) {
 System.out.println("Server IP address/DNS name is required as argument");
 System.exit(1);
 }

 try { serverIP = InetAddress.getByName(args[0]); }
 catch(UnknownHostException ex) {
 System.out.println("Invalid server address supplied: " + args[0]);
 System.exit(1);
 }

 DatagramSocket sock = new DatagramSocket();
 DatagramPacket udpPacket = new DatagramPacket(data, data.length, serverIP, 9999);

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

 while(true) {
 System.out.print("Sentence to send (\"exit\" to quit): ");
 frase = in.readLine();
 if(frase.compareTo("exit")==0) break;
 udpPacket.setData(frase.getBytes());
 udpPacket.setLength(frase.length());
 sock.send(udpPacket);
 udpPacket.setData(data);
 udpPacket.setLength(data.length);
 sock.receive(udpPacket);
 frase = new String(udpPacket.getData(), 0, udpPacket.getLength());
 System.out.println("Received reply: " + frase);
 }
 sock.close();
 }
 }

- The getByName() method of the InetAddress class is used to transform the
argument string representing the server (IP address or DNS name) into an
InetAddress object holding the server’s IP address.

- A DatagramSocket class object is created, the used constructor takes no
arguments, so any local free port number will be assigned (this is equivalent to
binding to port zero in C language).

- A DatagramPacket object is created, the used constructor receives the content
of the datagram (payload), the payload’s number of bytes, the destination IP
address, and the destination port number. This DatagramPacket object will be
used for both sending the request and receiving the reply.

- A line of text is read from the console to a string, if the content is exit
then the loop is finished and the application exists after closing the socket.

- Otherwise, the string content is set as payload for the datagram and the
datagram can then be sent by calling the socket’s send() method.

- The DatagramPacket object is then prepared for receiving the server reply, the
buffer and maximum datagram size are set. Next a reply datagram can be received
by calling the socket receive() method. This is a blocking operation.

- When (and if) a reply UDP datagram arrives, receive() method unblocks filling
data in the DatagramPacket object and buffer.

7/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

- For the purpose of printing at the console, a string is created from the
received datagram payload.

2.1.2. UDP server in C language (udp_srv.c)

#include <strings.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUF_SIZE 300
#define SERVER_PORT "9999"

int main(void) {
 struct sockaddr_storage client;
 int err, sock, res, i;
 unsigned int adl;
 char linha[BUF_SIZE], linha1[BUF_SIZE];
 char cliIPtext[BUF_SIZE], cliPortText[BUF_SIZE];
 struct addrinfo req, *list;

 bzero((char *)&req,sizeof(req));
 // request a IPv6 local address will allow both IPv4 and IPv6 clients to use it
 req.ai_family = AF_INET6;
 req.ai_socktype = SOCK_DGRAM;
 req.ai_flags = AI_PASSIVE; // local address

 err=getaddrinfo(NULL, SERVER_PORT , &req, &list);

 if(err) {
 printf("Failed to get local address, error: %s\n",gai_strerror(err)); exit(1); }

 sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
 if(sock==-1) {
 perror("Failed to open socket"); freeaddrinfo(list); exit(1);}

 if(bind(sock,(struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {
 perror("Bind failed");close(sock);freeaddrinfo(list);exit(1);}

 freeaddrinfo(list);

 puts("Listening for UDP requests (IPv6/IPv4). Use CTRL+C to terminate the server");

 adl=sizeof(client);
 while(1) {
 res=recvfrom(sock,linha,BUF_SIZE,0,(struct sockaddr *)&client,&adl);
 if(!getnameinfo((struct sockaddr *)&client,adl,
 cliIPtext,BUF_SIZE,cliPortText,BUF_SIZE,NI_NUMERICHOST|NI_NUMERICSERV))
 printf("Request from node %s, port number %s\n", cliIPtext, cliPortText);
 else puts("Got request, but failed to get client address");
 for(i=0;i<res;i++) linha1[res-1-i]=linha[i]; // create a mirror of the text line
 sendto(sock,linha1,res,0,(struct sockaddr *)&client,adl);
 }
 close(sock);
 exit(0);
 }

- The server application requests to the getaddrinfo() function an IPv6 local
address (AF_INET6), this will allow UDP clients using either UDP over IPv4 or
UDP over IPv6, the only catch is that IPv4 client addresses will be handled as
IPv4-Mapped IPv6 addresses.

- To the getaddrinfo() function, a NULL host is passed because this is a local
address and the fixed port number is enforced (9999 in the sample).

8/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

- Data provided by getaddrinfo() is then used to create the socket and bind it
to the local address and port number.

- The server then starts a never ending loop for receiving requests and sending
corresponding replies.

- The server’s main loop starts by calling recvfrom() to receive a UDP datagram
transporting the request, if there’s no request to be received the process will
be blocked until one arrives. The client address (IP address and port number) is
then stored in client structure of sockaddr_storage type, the sockaddr_storage
structure size must be defined in last argument (integer pointer) prior to
calling recvfrom().

- The getnameinfo() is used to obtain strings representing the source IP address
and source port number stored by recvfrom() in client structure. Please remember
that, being an IPv6 socket, IPv4 client addresses will appear as IPv4-Mapped.

- A mirror of the received string is then created and sent to the client’s
address (IP and port), as stored in the client structure by recvfrom().

2.1.3. UDP server in Java language (UdpSrv.java)

import java.io.*;
import java.net.*;

class UdpSrv {
 static DatagramSocket sock;
 public static void main(String args[]) throws Exception {
 byte[] data = new byte[300];
 byte[] data1 = new byte[300];
 int i, len;

 try { sock = new DatagramSocket(9999); }
 catch(BindException ex) {
 System.out.println("Bind to local port failed");
 System.exit(1);
 }

 DatagramPacket udpPacket= new DatagramPacket(data, data.length);
 System.out.println("Listening for UDP requests (IPv6/IPv4). CTRL+C to terminate");
 while(true) {
 udpPacket.setData(data);
 udpPacket.setLength(data.length);
 sock.receive(udpPacket);
 len=udpPacket.getLength();
 System.out.println("Request from: " +
 udpPacket.getAddress().getHostAddress() + " port: " +
 udpPacket.getPort());
 for(i=0;i<len;i++) data1[len-1-i]=data[i];
 udpPacket.setData(data1);
 udpPacket.setLength(len);
 sock.send(udpPacket);
 }
 }
 }

- A DatagramSocket class object is created, the constructor used receives an
integer fixed local port number to bind the socket to. This, of course may,
raise an exception if that UDP port number is already being used on the local
host.

- A new DatagramPacket object is created, the constructor used defines only a
buffer and the buffer size. The IP address and port number are set when a
datagram is received (source IP address and source port number).

- The server then starts a never ending loop for receiving requests and sending
corresponding replies. The receive() method is called to receive the datagram
(client request), if no datagram has been received, the thread will block until
one arrives.

9/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

- After receiving the request the source IP address and source port number are
stored in the DatagramPacket object, so there is no need to change them when
sending a reply because the same DatagramPacket is used for that purpose. Source
IP address and source port number are printed at the server’s console.

- A mirrored version of the string carried by the request UDP datagram is
created and defined as the payload of the reply datagram. The reply is sent by
calling the socket’s send() method.

3. Sample applications building and testing

Before testing, the only change required in the source code is on port numbers.
On server applications, the local port number the application is listening for
requests on. In client applications, the remote server port to where the client
is sending requests to.

Two server applications using the same port number can’t run on the same node.
Because all students are going to use the same set of hosts (the mentioned ssh
servers), the class teacher will settle a different port number for each student
or team.

3.1. Compile C applications in Linux

 gcc udp_cli.c –o udp_cli
 gcc udp_srv.c –o udp_srv

Executable files udp_cli and udp_srv can then be called on the command line by
running ./udp_cli and ./udp_srv, don´t forget udp_cli is expecting the server IP
address on the command line.

3.2. Compile Java applications

 javac UdpCli.java
 javac UdpSrv.java

Java runnable class files UdpCli.class and UdpSrv.class are created (the class
file names match the names of the classes declared in source code). To run the
main() method of these classes at command line use java UdpCli and java UdpSrv,
again, don’t forget UdpCli main() method is expecting the server IP address on
the command line.

3.3. Testing applications

Several client/server scenarios can be tested, while performing the following
tests always pay attention to the server terminal console for feedback about the
client’s IP address and port number.

Depending on nodes where applications are run, several possible scenarios exist.

10/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

3.3.1. C/Linux – C/Linux

Open two SSH sessions, one in
ssh1 and another in ssh3.

Place udp_srv running in ssh1,
then start udp_cli in ssh3.

The udp_cli application requires
the server’s IP address on the
command line, so use:

./udp_cli 10.8.0.80

Test the applications by entering
strings at the client console and
seeing replies being received.

Also, test using IPv6:

./udp_cli fd1e:2bae:c6fd:1008::80

ssh3

./udp_cli

ssh1

./udp_srv

UDP
datagrams

User´s workstation

SSH
session

SSH
Session

terminal
(ssh3) udp_cli

terminal
(ssh1) udp_srv

3.3.2. JAVA/Linux – C/Linux

Run test with exactly the same
disposition, but now using the Java
version of the client application.
On ssh3:

java UdpCli 10.8.0.80

, and for IPv6:

java UdpCli fd1e:2bae:c6fd:1008::80

ssh3

java UdpCli

ssh1

./udp_srv

UDP
datagrams

User´s workstation

SSH
session

SSH
Session

terminal
(ssh3) java UdpCli

terminal
(ssh1) udp_srv

3.3.3. JAVA/Other – C/Linux

Keep the server application running
in ssh1.
Compile the Java client application
on your personal workstation, the run
it:

java UdpCli 10.8.0.80

, and for IPv6:

java UdpCli fd1e:2bae:c6fd:1008::80

WARNING: for this layout to work,
ssh1 must be reachable from the
user’s personal workstation, thus it
must be either cable connected to the
laboratory network or connected to
the DEI VPN service. Also, not all
VPN services support IPv6.

ssh1

./udp_srv

User´s workstation

SSH
session

 Command line (cmd)

terminal
(ssh1) udp_srv java UdpCli

UDP
Datagrams

11/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

3.3.4. C/Linux – JAVA/Linux

Like 3.3.1., but now use the Java
version of the server application
in ssh1.

In ssh3 run:

./udp_cli 10.8.0.80

Test the applications by entering
strings at the client and seeing
the replies being received.

Also test using IPv6:

./udp_cli fd1e:2bae:c6fd:1008::80

ssh3

./udp_cli

ssh1

java UdpSrv

UDP
datagrams

User´s workstation

SSH
session

SSH
Session

terminal
(ssh3) udp_cli

terminal
(ssh1) java UdpSrv

3.3.5. JAVA/Linux – JAVA/Linux

The same as before, but now use Java
versions for both the client and the
server.

In ssh3 run:

java UdpCli 10.8.0.80

, and for IPv6:

java UdpCli fd1e:2bae:c6fd:1008::80

ssh3

java UdpCli

ssh1

java UdpSrv

UDP
datagrams

User´s workstation

SSH
session

SSH
Session

terminal
(ssh3) java UdpCli

terminal
(ssh1) java UdpSrv

3.3.6. JAVA/Other – JAVA/Linux

The same as 3.3.3., but now with the
Java version of the server in ssh1.
Compile the Java client application
on your personal workstation, and
then run it:

java UdpCli 10.8.0.80

, and for IPv6:

java UdpCli fd1e:2bae:c6fd:1008::80

WARNING: for this layout to work
ssh1 must be reachable from the
user’s personal workstation, thus it
must be either cable connected to
the laboratory network or connected
to a DEI VPN service.

ssh1

java UdpSrv

User´s workstation

SSH
session

 Command line (cmd)

terminal
(ssh1) java UdpSrv java UdpCli

UDP
Datagrams

12/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

3.3.7. Others – UdpSrv on the user’s workstation

WARNING: workstations usually
have a local firewall enabled,
standard workstation firewall
setups block all incoming
traffic. In the workstation
running UdpSrv, you may have
to either temporarily disable
the firewall for the purpose
of this experiment or create
an incoming traffic rule
allowing UDP traffic to your
port number.

Moreover, and again, the
server application must be
reachable from the node you
are running the client
application, so the
workstation should be
connected to the DEI private
laboratories network.

To run the client you must
first know the IP address of
the node you are running the
server on (in the Windows
command line, the ipconfig
command may be used to get
that).
Then run:

./udp_cli SERVER-IP-ADDRESS

or

java UdpCli SERVER-IP-ADDRESS

ssh1

./udp_cli

User´s workstation

SSH
session

 Command line (cmd)

terminal
(ssh1) ./udp_cli java UdpSrv

UDP
Datagrams

UDP datagrams

User workstation 1

Command line (cmd)
 java UdpCli

Command line (cmd)

java UdpSrv

User workstation 2

13/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

4. Project 2 start - objectives and guidelines

4.1. Project’s proposal analysis by students

4.2. Teacher’s briefing - comments and clarifications

- The main application (the server) manages walls.

- The server provides a web interface (HTTP) allowing the following use
cases:

o View text messages in a named wall. As new messages are added or
removed the displayed messages must be automatically updated.

o Add a text message to a named wall, if the wall doesn’t exist is
created.

o Remove a text message from a named wall.

o Remove a wall (and all messages within).

- The web interface is loaded only once, no HTML form submissions are to be
used. The server should provide web services to the browser. The browser
by using the JavaScript object XMLHttpRequest will act as a web services
consumer (AJAX).

- Regarding HTTP, web services and AJAX, as soon as they are available at
Moodle, Lecture 09, TP10 and PL21 should be studied in advance. They
provide support and examples on these subjects.

- The server application is also able to receive text messages through UDP,
thus it’s also a UDP server. Each UDP request contains the wall name and
the text message, the exact format definition of UDP requests and replies
must be established (the application protocol).

- Beyond the server, a second application must be developed to send a UDP
request to the server application. This will be a simple UDP client and
will implement a single use case: Add a text message to a named wall.

- Concurrency issues will be present, namely mutual exclusion on accessing
the text messages and walls. In Java language, most concurrency issues can
be handled through the synchronized declaration. A support document on
this subject is available at Moodle.

- Either C or Java programming language can be used, no other languages are
allowed. Of course, for AJAX, JavaScript will also be used.

- Upcoming PL classes will address most implementation techniques required
for this project.

4.3. First steps

This project’s completion requires the use of several technologies and
programming techniques yet to be addressed in lectures and classes. As
mentioned before, Lecture 09 (HTTP and web services), TP10 and PL21 must be
studied in advance.

For now, teams should embrace the following steps:

- Create the project’s git repository (Bitbucket) and make it accessible to
the team members and the PL teacher. This may require a previous decision on
the programming language to be used.

- Study the problem’s domain model and draft versions of the sequence
diagrams for required use cases.

- Establish the UDP application protocol, including UDP requests and replies
contents specification.

