
1/9
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

Redes de Computadores (RCOMP) – 2017/2018

Laboratory Class Script PL14

 Network applications development over Berkeley Sockets.
 UDP clients with timeout.
 UDP clients using broadcast.

1. Setting a timeout for UDP server’s reply

- In the previous lesson, UDP client and server applications were developed and
tested, however, UDP is unreliable and that must be taken into account.

- When sending a UDP datagram, there’s no guaranteed feedback under delivery
point of view. Success in sending a UDP datagram doesn’t mean anything about
delivery, just that it was sent.

- When idle, a UDP server-application is blocked on a receiving operation. Then,
when a request arrives, it wakes up, processes the request and finally sends
back a reply.

- The UDP client-application is most often under a user’s direct control, so it
will send a request when the user wishes. Next, the client will be blocked on a
receiving operation waiting for a server’s reply. Finally, after receiving the
reply, it presents the reply to the end user.

UDP client

Data input

UDP server

User

sendto/send

recvfrom/receive

recvfrom/receive

Request
processing

sendto/send

Data output

Request

Reply

Network
(UDP datagrams)

- A sent UDP datagram may be lost without any notification to the sender.
Therefore, within UDP dialogs between clients and servers both the request and
the reply may never reach the destination and the sender will never know about
that.

- Under the UDP server-application’s point of view, that’s not a problem. It’s
not directly dependent on any delivery. If a request is lost, the server doesn’t
even know it ever existed. If a reply is lost, that´s no concern for the server
either, once it sends the reply its mission is finished.

- Conversely, on the UDP client-application’s side, things get complicated.
After sending the request, the client-application becomes totally dependent on a
reply arrival.

- What will happen to a UDP client when either the request or the reply are lost
is that it will get blocked forever on a receiving operation waiting for a
server’s reply that will never arrive.

2/9
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

1.1. Test previous UDP client with delivery fail

To exhibit this problem simply use one of the previous lesson’s UDP clients with
no server application running.

Open one SSH session on ssh3.

Run the client using an unreachable
server IP address:

./udp_cli 10.100.1.1

There is no reply to the first
request and thus the client
application gets blocked forever, it
never returns from the recvfrom()
function call.

ssh3

./udp_cli 10.100.1.1

UDP
Request datagram

User´s workstation

SSH
Session

terminal
(ssh3) ./udp_cli 10.100.1.1

1.2. Setting a read timeout

Solving this issue may involve the UDP client only, then the server keeps
happily receiving requests (the ones that reach it) and sending replies (not
concerned if they reach the client).

The strategy for the client is avoiding blocking forever, it will establish a
maximum time for reply arrival, usually called a timeout, in this case, the
server’s reply timeout.

Both Java and C languages allow setting a timeout for socket operations, in Java
by using the setSoTimeout(int milliseconds) of the Socket class, in C by using
the setsockopt() function with the SO_RCVTIMEO option for receive timeout.

Setting a socket’s timeout has the same effect in C and Java sockets:
reading/receiving operations that would block until there’s something to
read/receive, will afterwards block only for up to the timeout value.

If the timeout expires without successfully reading/receiving data, the method
or function will unblock with an error, in the case of Java, a
SocketTimeoutException exception is raised, in the case of C the function
returns -1.

1.2.1. UDP client with server reply timeout in Java language (UdpCliTo.java)

import java.io.*;
import java.net.*;

class UdpCliTo {
static InetAddress IPdestino;

private static int TIMEOUT=3;

public static void main(String args[]) throws Exception {
 byte[] data = new byte[300];
 String frase;

 if(args.length!=1) {
 System.out.println("Server IPv4/IPv6 address or DNS name is required as argument");
 System.exit(1); }

try { IPdestino = InetAddress.getByName(args[0]); }

3/9
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

catch(UnknownHostException ex) {
 System.out.println("Invalid server address supplied: " + args[0]);
 System.exit(1); }

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
 DatagramSocket sock = new DatagramSocket();
 sock.setSoTimeout(1000*TIMEOUT); // set the socket timeout

 DatagramPacket udpPacket = new DatagramPacket(data, data.length, IPdestino, 9999);

 while(true) {
 System.out.print("Request sentence to send (\"exit\" to quit): ");
 frase = in.readLine();
 if(frase.compareTo("exit")==0) break;
 udpPacket.setData(frase.getBytes());
 udpPacket.setLength(frase.length());
 sock.send(udpPacket);
 udpPacket.setData(data);
 udpPacket.setLength(data.length);
 try {
 sock.receive(udpPacket);
 frase = new String(udpPacket.getData(), 0, udpPacket.getLength());
 System.out.println("Received reply: " + frase);
 } catch(SocketTimeoutException ex)
 {System.out.println("No reply from server");}
 }
 sock.close();
 }
}

1.2.2. UDP client with server reply timeout in C language (udp_cli_to.c)

#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUF_SIZE 300
#define SERVER_PORT "9999"

// server reply timeout in seconds
#define TIMEOUT 3

// read a string from stdin protecting buffer overflow
#define GETS(B,S) {fgets(B,S-2,stdin);B[strlen(B)-1]=0;}

int main(int argc, char **argv) {
 struct sockaddr_storage serverAddr;
 int sock, res, err;
 unsigned int serverAddrLen;
 char linha[BUF_SIZE];
 struct addrinfo req, *list;
 struct timeval to;

 if(argc!=2) {
 puts("Server IPv4/IPv6 address or DNS name is required as argument");
 exit(1);
 }

 bzero((char *)&req,sizeof(req));
 req.ai_family = AF_UNSPEC;

4/9
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 req.ai_socktype = SOCK_DGRAM;
 err=getaddrinfo(argv[1], SERVER_PORT , &req, &list);
 if(err) {
 printf("Failed to get server address, error: %s\n",gai_strerror(err)); exit(1);
 }
 serverAddrLen=list->ai_addrlen;
 memcpy(&serverAddr,list->ai_addr,serverAddrLen);
 freeaddrinfo(list);

 bzero((char *)&req,sizeof(req));
 req.ai_family = serverAddr.ss_family;
 req.ai_socktype = SOCK_DGRAM;
 req.ai_flags = AI_PASSIVE; // local address
 err=getaddrinfo(NULL, "0" , &req, &list); // port 0 = auto assign
 if(err) {
 printf("Failed to get local address, error: %s\n",gai_strerror(err)); exit(1);
 }

 sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
 if(sock==-1) { perror("Failed to open socket"); freeaddrinfo(list); exit(1);}
 if(bind(sock,(struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {
 perror("Failed to bind socket");close(sock);freeaddrinfo(list);exit(1);
 }

 freeaddrinfo(list);

 to.tv_sec = TIMEOUT;
 to.tv_usec = 0;
 setsockopt (sock,SOL_SOCKET,SO_RCVTIMEO,(char *)&to, sizeof(to));

 while(1) {
 printf("Request sentence to send (\"exit\" to quit): ");
 GETS(linha,BUF_SIZE);
 if(!strcmp(linha,"exit")) break;
 sendto(sock,linha,strlen(linha),0,(struct sockaddr *)&serverAddr,serverAddrLen);
 res=recvfrom(sock,linha,BUF_SIZE,0,(struct sockaddr *)&serverAddr,&serverAddrLen);
 if(res>0) {
 linha[res]=0; /* NULL terminate the string */
 printf("Received reply: %s\n",linha);
 }
 else
 printf("No reply from server\n");
 }
 close(sock);
 exit(0);
 }

5/9
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

1.2.3. Testing the new UDP client applications

Test the new UDP clients with the previous lesson’s UDP servers.

Open two SSH sessions, one in ssh1 and
other in ssh3.

Place udp_srv running in ssh1, then
start udp_cli_to in ssh3.

./udp_cli_to 10.8.0.80

or

./udp_cli_to fd1e:2bae:c6fd:1008::80

Test the new client when the server
application is running and when is not
(use CTLR+C to stop the server
application). Now the client never
gets blocked.

ssh3

./udp_cli_to

ssh1

./udp_srv

UDP
datagrams

User´s workstation

SSH
session

SSH
Session

terminal
(ssh3) udp_cli_to

terminal
(ssh1) udp_srv

The same layout to test the Java
version, on ssh3:

java UdpCliTo 10.8.0.80

or

java UdpCliTo fd1e:2bae:c6fd:1008::80

Again, test the new client when the
server application is running and when
is not (use CTLR+C to stop the server
application). And again, now the
client never gets blocked.

ssh3

java UdpCliTo

ssh1

./udp_srv

UDP
datagrams

User´s workstation

SSH
session

SSH
Session

terminal
(ssh3) java UdpCliTo

terminal
(ssh1) udp_srv

2. Using broadcast

UDP has significant disadvantages over TCP, most notably the total lack of
reliability. Also, UDP is connectionless, this means data is sent in pieces,
each transported by individual UDP datagrams, this may present a challenge when
large volumes of data are to be transferred because UDP datagrams payload
shouldn’t be over 512 bytes).

Despite this, UDP has some advantages as well. First, it’s very simple and thus
with less overhead, UDP can be used to achieve a higher performance than TCP.
This is true only as far as error rates are very low, for instance in a LAN,
otherwise TCP is a better solution.

Moreover, one feature available in UDP and not in TCP is sending to a broadcast
or multicast address. These addresses represent sets of nodes, if a packet is
sent to one of these addresses all nodes belonging to that set will receive a
packet’s copy. Connection oriented protocols like TCP can’t use this, they are
designed for communications between two applications through a connection.

IGMP in IPv4 and ICMPv6 in IPv6 are used to manage multicast groups, namely,
adding nodes to a multicast group and removing nodes from a multicast group. In

6/9
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

IPv4 (not in IPv6) there´s a special multicast address known as the broadcast
address, it represents all nodes belonging to an IPv4 network.

The main use of sending to a broadcast or multicast address is locating nodes in
a network, if a UDP client application sends the first request to a broadcast
address, whatever the server address is, as far as it is on same IPv4 network it
will be reached, after receiving the reply the UDP client application then known
the server’s address and next requests don’t need to be sent to the broadcast
address anymore.

Although, as you know, each IPv4 network has its own broadcast address, that
shouldn’t be hard coded into applications as it would only work on one specific
IPv4 network. Instead, the generic IPv4 broadcast address should be used:
255.255.255.255.

2.1. Enabling broadcast

The use of broadcast addresses with UDP sockets is quite straight, it’s just a
matter of setting the UDP datagram’s destination address to a broadcast address.
However, both in C and Java sending to broadcast addresses is not enabled by
default, prior to start sending broadcast has to be enabled.

In Java, the DatagramSocket method setBroadcast(boolean on) enables or disables
broadcast, in C the setsockopt() function with the SO_BROADCAST option achieves
the same goal.

2.2. Using broadcast in UDP clients

We will now use broadcast in our UDP client applications to locate the server
application, instead of requiring the user to specify the server’s address we
will locate it by sending the first request to the broadcast address.

Once a reply to the first request is received we then know the server’s address,
so there’s no point in keep sending to the broadcast address.

2.2.1 UDP broadcast client in C language (udp_cli_bcast.c)

#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUF_SIZE 300
#define SERVER_PORT "9999"
#define BCAST_ADDRESS "255.255.255.255"

// read a string from stdin protecting buffer overflow
#define GETS(B,S) {fgets(B,S-2,stdin);B[strlen(B)-1]=0;}

int main(int argc, char **argv) {
 struct sockaddr_storage serverAddr;
 int sock, val, res, err;
 unsigned int serverAddrLen;
 char linha[BUF_SIZE];
 struct addrinfo req, *list;

 bzero((char *)&req,sizeof(req));
 // there's no broadcast address in IPv6, so we request an IPv4 address
 req.ai_family = AF_INET;

7/9
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 req.ai_socktype = SOCK_DGRAM;
 err=getaddrinfo(BCAST_ADDRESS, SERVER_PORT , &req, &list);
 if(err) {
 printf("Failed to get broadcast address: %s\n",gai_strerror(err)); exit(1); }
 serverAddrLen=list->ai_addrlen;
 memcpy(&serverAddr,list->ai_addr,serverAddrLen); // store the broadcast address for later
 freeaddrinfo(list);

 bzero((char *)&req,sizeof(req));
 req.ai_family = AF_INET;
 req.ai_socktype = SOCK_DGRAM;
 req.ai_flags = AI_PASSIVE; // local address
 err=getaddrinfo(NULL, "0" , &req, &list); // Port 0 = auto assign
 if(err) {
 printf("Failed to get local address, error: %s\n",gai_strerror(err)); exit(1); }

 sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
 if(sock==-1) {
 perror("Failed to open socket"); freeaddrinfo(list); exit(1);}

 // activate broadcast permission
 val=1; setsockopt(sock,SOL_SOCKET, SO_BROADCAST, &val, sizeof(val));

 if(bind(sock,(struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {
 perror("Bind failed");close(sock);freeaddrinfo(list);exit(1);}

 freeaddrinfo(list);

 while(1) {
 printf("Request sentence to send (\"exit\" to quit): ");
 GETS(linha,BUF_SIZE);
 if(!strcmp(linha,"exit")) break;
 sendto(sock,linha,strlen(linha),0,(struct sockaddr *)&serverAddr,serverAddrLen);
 res=recvfrom(sock,linha,BUF_SIZE,0,(struct sockaddr *)&serverAddr,&serverAddrLen);
 linha[res]=0; /* NULL terminate the string */
 printf("Received reply: %s\n",linha);
 }
 close(sock);
 exit(0);
 }

- We know the addresses used are IPv4, even because there is no broadcast in
IPv6, so we request an IPv4 socket (AF_INET). The server will receive the
request in IPv4, thus it will reply using IPv4.

- When the server reply is received, the reply source address (server address)
is stored in serverAddr and thus it will be used as destination address for the
next request in the next loop.

2.2.2 UDP broadcast client in Java language (UdpCliBcast.java)

import java.io.*;
import java.net.*;

class UdpCliBcast {
 static InetAddress targetIP;

 public static void main(String args[]) throws Exception {
 byte[] data = new byte[300];
 String frase;
 targetIP=InetAddress.getByName("255.255.255.255");

 DatagramSocket sock = new DatagramSocket();
 sock.setBroadcast(true);
 DatagramPacket udpPacket = new DatagramPacket(data, data.length, targetIP, 9999);

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

8/9
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 while(true) {
 System.out.print("Request sentence to send (\"exit\" to quit): ");
 frase = in.readLine();
 if(frase.compareTo("exit")==0) break;
 udpPacket.setData(frase.getBytes());
 udpPacket.setLength(frase.length());
 sock.send(udpPacket);
 udpPacket.setData(data);
 udpPacket.setLength(data.length);
 sock.receive(udpPacket);
 frase = new String(udpPacket.getData(), 0, udpPacket.getLength());
 System.out.println("Received reply: " + frase);
 }
 sock.close();
 }
 }

- When the server reply is received, the reply source address (server address
and port number) is stored in the datagram and thus it will be used as
destination address for the next request. Only the first request is sent to the
broadcast address.

2.3. Testing

For the purpose of testing start one of the previous lesson UDP servers in one
of the SSH servers.

Now run the new UDP broadcast client in another SSH server, or in your personal
workstation, as far as it is connected to the laboratories network:

./udp_cli_bcast or java UdpCliBcast

As you can see no server address is provided to the client application,
nevertheless it is able to get a reply from the server application by sending
the first request to the broadcast address.

2.4. Testing again

Now start more than one UDP server application (of course in different SSH
servers), and while more than one server application is running, start and test
the broadcast UDP client application again:

./udp_cli_bcast or java UdpCliBcast

Send successive different request strings using the client application, and
check the replies, what is happening?

Something we have not foreseen.

The problem is when sending a request to a broadcast address several replies may
arrive (one for each server on the network). However, our client application is
reading one single reply for each request sent, so other received replies are
kept in the buffer.

So, after sending the second request, the client application receives a reply,
but that’s not the reply to the second request, instead, is a reply (kept in the
buffer) to the first request.

When using broadcast this is a typical issue and must be handled properly by the
client application.

Solving this issue is a job for the students in the remaining class time.

9/9
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

Tips about possible alternative solutions:

- Use receive timeout: after sending the first request don’t receive just a
single reply, keep receiving all available replies until there are no more and
the timeout expires.

- Check the reply source address: when the first reply is received, store the
source address, on next requests ignore replies coming from other addresses.

- Send a flag on the first request: the first request is not user entered,
instead is a special application-defined string, by doing so on next requests
(user entered) all replies containing the special string can be ignored. Don´t
forget the special string will be mirrored by the server.

