
1/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

Redes de Computadores (RCOMP) – 2017/2018

Laboratory Class Script PL16

 Asynchronous reception.
 Select function (C language).
 Sample TCP chat client and server.

1. Asynchronous reception
Reception is synchronous if the receiving application stops and waits for data
arrival, thus at that point the receiver synchronises with the sender.

Often a network application cannot simply stop and wait for data arrival. For
instance, it may have other activities to perform.

In other cases, the application may face the possibility that different
unrelated input events can occur and is not able to determine the exact order,
therefore, it cannot stop and wait for one of the possible events because it
would be ignoring the other possible events.

We have already faced this issue when implementing TCP servers because they
always end up with one socket receiving new client’s connections and a set of
already connected sockets.

1.1. Parallel sub-tasks (processes and threads)
As we have already seen when implementing TCP servers, one workaround for
asynchronous reception is creating a parallel sub-task for each possible input
event. Each parallel sub-task performs synchronous reception and will be blocked
waiting for an event, nevertheless, the application as a whole won’t be blocked
and is supporting asynchronous reception.

Creating a thread is faster than creating a process, a thread also uses fewer
resources than a process. One other important difference between threads and
processes is that the former share the same address space while each process has
an independent address space.

Sharing the same address space can be an advantage if the parallel sub-tasks
need to share information among them, though, under the point of view of
robustness, processes have the advantage of not being able to interfere with
each other.

1.2. Polling non-blocking or low read timeout sockets
This is not very elegant or efficient solution, but it’s also a valid strategy.
If an application has to handle a set of open sockets, and on any of them, data
may arrive at any moment, a polling schema could be used.

The application starts by setting a low read timeout for each socket, and then,
starts a polling loop trying to receive data on each socket, if no data is
available, due to the established timeout, the receive operation fails and the
application skips to the next socket. Of course, different strategies can be
combined, a process or a thread can be used to do the polling.

1.3. SIGIO signal (Unix)
In a UNIX operating system, a process receives the SIGIO signal whenever data
arrives at an opened descriptor. By itself, this does not solve the problem, but
it may help. For instance, the previously described polling strategy could be
executed only when the SIGIO signal is received.

1.4. The select() function
The select() function is available in C language, it has the ability to monitor
a set of descriptors and detect when one of them is ready to perform an
operation.

2/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

Of course in asynchronous reception the operation we are interested in is
reading, thus we can monitor a set of sockets for reading to know when data has
arrived at any of them. The select() function can be called with or without a
timeout. If no timeout is specified, it blocks until there’s data ready for
reading on at least on one of the monitored sockets.

In fact, select() does not read data or performs any kind of operations on
descriptors, it just tells if they are ready. Ready for reading means data has
arrived.

2. Using the select() function
The function has five arguments and returns an integer value.

int select(int nD, fd_set *rD, fd_set *wD, fd_set *eD, struct timeval *to);

Second, third and fourth arguments specify sets of integer descriptors to be
monitored, correspondingly for readiness for reading, for readiness for writing
and for errors.

The function return value can be either -1, indicating an error has occurred,
zero if a timeout was specified and expired or a number greater than zero that
represents the number of descriptors being monitored that are ready.

The last argument can be used to set a maximum execution time (timeout). All but
the first argument can be NULL pointers, meaning the caller does not want to use
the corresponding feature.

The values pointed by these four arguments, are changed by the function, so on
successive call to this function, the caller must always initialize them again.

The fd_set type is used to store sets of integer descriptors. They are used both
as input and output of the select() function. The caller passes pointers to
fd_set variables containing the descriptors to be monitored, the function then
changes the fd_set variables removing all descriptors that are not ready and
keeping only ready descriptors.

Internally, the function stores the descriptors being monitored in vectors and
needs to know the value of the greatest descriptor being motorized, that is the
role of the first argument, and it should be the value of the greatest
descriptor being monitored plus one. The maximum possible value for this
argument is defined by FD_SETSIZE, usually 1024.

2.1. Handling descriptor sets (fd_set)
Together with fd_set data type, some macros to handle it are defined:

 void FD_ZERO(fd_set *set);

 void FD_SET(int fd, fd_set *set);

 void FD_CLR(int fd, fd_set *set);

 int FD_ISSET(int fd, fd_set *set);

The FD_ZERO macro empties a set, normally the first step when preparing a set.

The FD_SET macro adds a descriptor to a set.

The FD_CLR macro removes a descriptor from a set.

The FD_ISSET macro returns true (a value other than zero) if the descriptor is
in a set, otherwise returns false (zero).

3/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

The return value of select() only tell the number of ready descriptors, to
actually know which they are, the FD_ISSET macro must be used, again remember
the caller provided sets are modified by the function.

2.2. Application example
Change the previously implemented UDP server (C and Java) so that it can receive
client requests in six alternative port numbers: 9009; 9109; 9209; 9309; 9409
and 9509. In the C language version the select() function is used, in the Java
language version, threads.

2.2.1. UPD multiport server in C language (upd_srv_mport.c)

#include <strings.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUF_SIZE 300
#define SERVER_BASE_PORT 9009
#define SERVER_NUM_PORTS 6
#define SERVER_PORT_STEP 100

int main(void) {
 struct sockaddr_storage client;
 int sock[SERVER_NUM_PORTS], err, res, i, a, max;
 unsigned int adl;
 char linha[BUF_SIZE], linha1[BUF_SIZE];
 char IPtext[BUF_SIZE], portText[BUF_SIZE];
 struct addrinfo req, *list;
 fd_set readSocks;

 max=0;
 for(i=0; i<SERVER_NUM_PORTS; i++) {
 bzero((char *)&req,sizeof(req));
 // requesting a IPv6 local address will allow both IPv4 and IPv6 clients to use it
 req.ai_family = AF_INET6;
 req.ai_socktype = SOCK_DGRAM;
 req.ai_flags = AI_PASSIVE; // local address
 sprintf(portText,"%i",SERVER_BASE_PORT+SERVER_PORT_STEP*i);

 err=getaddrinfo(NULL, portText , &req, &list);
 if(err) {
 printf("Failed to get local address for port %s, error: %s\n",
 portText,gai_strerror(err)); exit(1); }

 sock[i]=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
 if(sock[i]==-1) {
 perror("Failed to open socket"); freeaddrinfo(list); i--;
 do {close(sock[i]); i--; } while(i>-1); exit(1);}

 if(bind(sock[i],(struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {
 perror("Bind failed");freeaddrinfo(list);
 do {close(sock[i]); i--; } while(i>-1); exit(1);}

 freeaddrinfo(list);
 if(sock[i]>max) max=sock[i];
 }
 max++;

 puts("Listening for UDP requests (IPv6/IPv4). Use CTRL+C to terminate the server");
 adl=sizeof(client);
 while(1) {

4/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 FD_ZERO(&readSocks); for(i=0;i<SERVER_NUM_PORTS;i++) FD_SET(sock[i], &readSocks);
 select(max,&readSocks,NULL,NULL,NULL);
 for(i=0;i<SERVER_NUM_PORTS;i++)
 if(FD_ISSET(sock[i],&readSocks)) {
 res=recvfrom(sock[i],linha,BUF_SIZE,0,(struct sockaddr *)&client,&adl);
 if(!getnameinfo((struct sockaddr *)&client,adl,
 IPtext,BUF_SIZE,portText,BUF_SIZE,NI_NUMERICHOST|NI_NUMERICSERV))
 printf("Request from node %s, port number %s\n", IPtext, portText);
 else puts("Got request, but failed to get client address");
 for(a=0;a<res;a++) linha1[res-1-a]=linha[a];
 sendto(sock[i],linha1,res,0,(struct sockaddr *)&client,adl);
 }
 }
 exit(0);
 }

We are using an array of six sockets, one bound to each local port number. No
timeout is used in select(), so it will block until one datagram (request)
arrives at one of the monitored sockets. A set of descriptors (readSocks) is
prepared before calling select(), first is emptied (FD_ZERO) and then the six
sockets are added to the set (FD_SET). The select() is then used to monitor the
readiness of these sockets for reading.

When select() returns, because we did no use a timeout, unless an error
occurred, there is at least one socket ready for receiving, to determine which
of them, the FD_ISSET macro is used.

2.2.2. UPD multiport server in Java language (UdpSrvMport.java)

import java.io.*;
import java.net.*;

class UdpSrvMport {
 private static final int SERVER_PORT_BASE=9009;
 static DatagramSocket sock[];
 public static void main(String args[]) throws Exception {
 int i;
 sock = new DatagramSocket[6];

 for(i=0;i<6;i++) {
 try { sock[i] = new DatagramSocket(SERVER_PORT_BASE+100*i); }
 catch(BindException ex) {
 System.out.println("Failed to bind to port " +
 SERVER_PORT_BASE+100*i);
 do { sock[i].close(); i--; } while(i>-1);
 System.exit(1);
 }
 }

 System.out.println("Listening for UDP (IPv6/IPv4). CTRL+C to terminate server");

 for(i=0;i<6;i++) // start one thread for each socket
 new Thread(new UdpSrvMportThread(sock[i])).start();
 }
 }

class UdpSrvMportThread implements Runnable {
 private DatagramSocket sock;

 public UdpSrvMportThread(DatagramSocket s) { sock=s;}

 public void run() {
 byte[] data = new byte[300];
 byte[] data1 = new byte[300];
 String frase;

5/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 int len, i;

 DatagramPacket udpPacket = new DatagramPacket(data, data.length);

 try {
 while(true) {
 udpPacket.setData(data);
 udpPacket.setLength(data.length);
 sock.receive(udpPacket);
 len=udpPacket.getLength();
 System.out.println("Request from: " +
 udpPacket.getAddress().getHostAddress() +
 " port: " + udpPacket.getPort());
 for(i=0;i<len;i++) data1[len-1-i]=data[i];
 udpPacket.setData(data1);
 udpPacket.setLength(len);
 sock.send(udpPacket);
 }
 }
 catch(IOException ex) { System.out.println("IOException"); }
 }
 }

Because there’s no select() function in Java, a multi-thread approach is used,
for each socket, one thread is started to receive requests on it.

Again an array of six sockets is created and each is bound to a local port
number.

2.2.3. Testing
Each student/group should change SERVER_PORT_BASE to avoid conflicts with other
students running the server application on the same node, for instance:

9001; 9101; 9201; 9301; 9401; 9501
9002; 9102; 9202; 9302; 9402; 9502
9003; 9103; 9203; 9303; 9403; 9503
9004; 9104; 9204; 9304; 9404; 9504

...

Use one of the UDP clients previously developed and change the hard coded
server’s port number to test the new server and check it’s attending clients on
all the six alternative port numbers.

3. A TCP chat client and server
Create a TCP client and TCP server implementing text lines exchange between a
set of users. Application protocol description:

All communications consist of a text line transfer. Each text line (string)
transfer is performed as follows (byte synchronisation):

1st – a byte is sent indicating the text line size (number of characters).

2nd – the text line (characters) are sent.

The client application:

- Requests the definition of a nickname.

- Establishes a TCP connection with the server indicated by the command line
first argument.

- While the user does not type anything on console keyboard, keeps printing text
lines received from the server (listen mode).

- When the user types something on the console keyboard, reads a line from the
keyboard to be sent to the server. The line sent to the server should contain at

6/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

the beginning the nickname in brackets to identify the user. Then the client
goes back to listening mode.

- To end the session the user should type “exit”, then the client application
will send an empty line to the server that should also reply with an empty line.
The client application can then close the connection and exit.

The server application:

- Accepts new clients TCP connections.

- On already established connections (connected clients) receives text lines.

- If the received text line is empty (receives byte zero) replies back with an
empty line and closes that client connection.

- Otherwise, retransmits the line (writes it) on all existing connections
(including the client who sent it in the first place).

3.1. TCP chat client in C language (tcp_chat_cli.c)

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <netdb.h>

#define BUF_SIZE 300
#define SERVER_PORT "9999"

// read a string from stdin protecting buffer overflow
#define GETS(B,S) {fgets(B,S-2,stdin);B[strlen(B)-1]=0;}

int main(int argc, char **argv) {
 int err, sock;
 unsigned char lsize;
 char nick[BUF_SIZE], linha[BUF_SIZE], buff[BUF_SIZE];
 struct addrinfo req, *list;
 fd_set rfds;

 if(argc!=2) {
 puts("Server IPv4/IPv6 address or DNS name is required as argument");
 exit(1); }

 bzero((char *)&req,sizeof(req));
 // let getaddrinfo set the family depending on the supplied server address
 req.ai_family = AF_UNSPEC;
 req.ai_socktype = SOCK_STREAM;
 err=getaddrinfo(argv[1], SERVER_PORT , &req, &list);
 if(err) {
 printf("Failed to get server address, error: %s\n",gai_strerror(err)); exit(1); }

 sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
 if(sock==-1) {
 perror("Failed to open socket"); freeaddrinfo(list); exit(1);}

 if(connect(sock,(struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {
 perror("Failed connect"); freeaddrinfo(list); close(sock); exit(1);}

 freeaddrinfo(list);

7/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 printf("Connected, enter nickname: ");GETS(nick,BUF_SIZE);

 for(;;) {
 FD_ZERO(&rfds);
 FD_SET(0,&rfds); FD_SET(sock,&rfds);
 select(sock+1,&rfds,NULL,NULL,NULL);
 if(FD_ISSET(0,&rfds)) {
 GETS(linha,BUF_SIZE);
 if(!strcmp(linha,"exit")) {
 lsize=0;
 write(sock,&lsize,1);
 read(sock,&lsize,1);
 break;
 }
 sprintf(buff,"(%s) %s",nick,linha);
 lsize=strlen(buff);
 write(sock,&lsize,1);
 write(sock,buff,lsize);
 }
 if(FD_ISSET(sock,&rfds)) {
 read(sock,&lsize,sizeof(lsize));
 read(sock,buff,lsize);
 buff[lsize]=0;
 puts(buff);
 }
 }
 close(sock);
 exit(0);
 }

Although the client application is required to handle a single socket (connected
to the server application) there are in fact two asynchronous inputs possible:
on the socket connected to the server and on standard in (keyboard). Thus, after
establishing the TCP connection with the server, the select() function is used
to monitor input readiness both in the connected socket and in the standard in
(descriptor zero).

If descriptor zero is ready, this means the user is typing on the console
keyboard, so we read a text line from it.

If the user has typed “exit” an empty line is sent to the server, an empty line
is read from the socket and the client exits. Else, a text line is formatted
with the nickname and sent to the server.

If descriptor sock is ready, this means the server is sending a text line, so we
read it from the socket and print at the client console.

3.2. TCP chat server in C language (tcp_chat_srv.c)

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUF_SIZE 400
#define SERVER_PORT "9999"

int main(void) {
 struct sockaddr_storage from;
 int err, newSock, sock, i, j;
 unsigned int adl;

8/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 unsigned char lsize;
 int maxfd, newMaxfd;
 char linha[BUF_SIZE], cliIPtext[BUF_SIZE], cliPortText[BUF_SIZE];
 struct addrinfo req, *list;
 fd_set rfds, rfds_master;

 bzero((char *)&req,sizeof(req));
 // requesting a IPv6 local address will allow both IPv4 and IPv6 clients to use it
 req.ai_family = AF_INET6;
 req.ai_socktype = SOCK_STREAM; // TCP
 req.ai_flags = AI_PASSIVE; // local address

 err=getaddrinfo(NULL, SERVER_PORT , &req, &list);

 if(err) {
 printf("Failed to get local address, error: %s\n",gai_strerror(err)); exit(1); }
 sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
 if(sock==-1) {
 perror("Failed to open socket"); freeaddrinfo(list); exit(1);}
 if(bind(sock,(struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {
 perror("Bind failed");close(sock);freeaddrinfo(list);exit(1);}
 freeaddrinfo(list);
 listen(sock,SOMAXCONN);
 FD_ZERO(&rfds_master);
 FD_SET(sock,&rfds_master);
 newMaxfd=sock;
 puts("Accepting TCP connections (IPv6/IPv4). Use CTRL+C to terminate the server");

 adl=sizeof(from);
 for(;;) {
 maxfd=newMaxfd;
 FD_ZERO(&rfds);
 for(i=0;i<=maxfd;i++) if(FD_ISSET(i,&rfds_master)) FD_SET(i,&rfds);
 select(maxfd+1,&rfds,NULL,NULL,NULL);
 for(i=0;i<=maxfd;i++)
 if(FD_ISSET(i,&rfds_master) && FD_ISSET(i,&rfds)) {
 if(i==sock) {
 newSock=accept(sock,(struct sockaddr *)&from,&adl);
 getnameinfo((struct sockaddr *)&from,adl,cliIPtext,
 BUF_SIZE,cliPortText,BUF_SIZE,
 NI_NUMERICHOST|NI_NUMERICSERV);
 printf("New conn: %s, port %s\n", cliIPtext, cliPortText);
 FD_SET(newSock,&rfds_master);
 if(newSock>newMaxfd) newMaxfd=newSock;
 }
 else {
 read(i,&lsize,1);
 if(!lsize) {
 FD_CLR(i,&rfds_master);
 write(i,&lsize,1);close(i);
 puts("One client disconnected");
 }
 else {
 read(i,linha,lsize);
 for(j=0;j<=maxfd;j++)
 if(j!=sock)
 if(FD_ISSET(j,&rfds_master)) {
 write(j,&lsize,1);
 write(j,linha,lsize);
 }

 }
 }
 }
 }
 exit(0);
 }

9/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

By using the select() function the server application can be implemented in a
single process, because the server must transfer data between clients this
avoids the need to use IPC.

Here we use a fd_set type to store the current sockets being monitored
(rfds_master), including the original socket receiving new connections requests
and the connected sockets created each time accept() function is called.

Because select() changes the set we pass to it, we create a copy for that
purpose (rfds). Otherwise, the information about the current sockets would be
lost. When the select() function returns, we check which of the current sockets
are ready for input.

If the original socket (sock) is ready, it means there is a new client
connection, so we accept it and add the new socket to the current sockets.

When a connected socket is ready, we read the text line the client is sending.
If it´s an empty the client wants to exit, so we reply back with an empty line,
remove the socket from the current connected sockets and close it.

If the client sends a non-empty line, we write it on all connected sockets (we
must exclude the original socket sock that is not connected).

3.3. TCP chat client in Java language (TcpChatCli.java)

import java.io.*;
import java.net.*;

class TcpChatCli {
 static InetAddress serverIP;
 static Socket sock;

 public static void main(String args[]) throws Exception {
 String nick, frase;
 byte[] data = new byte[300];

 if(args.length!=1) {
 System.out.println(
 "Server IPv4/IPv6 address or DNS name is required as argument");
 System.exit(1); }

 try { serverIP = InetAddress.getByName(args[0]); }
 catch(UnknownHostException ex) {
 System.out.println("Invalid server: " + args[0]);
 System.exit(1); }

 try { sock = new Socket(serverIP, 9999); }
 catch(IOException ex) {
 System.out.println("Failed to connect.");
 System.exit(1); }

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
 DataOutputStream sOut = new DataOutputStream(sock.getOutputStream());

 System.out.println("Connected to server");
 System.out.print("Enter your nickname: "); nick = in.readLine();

 // start a thread to read incoming messages from the server
 Thread serverConn = new Thread(new TcpChatCliConn(sock));
 serverConn.start();

 while(true) { // read messages from the console and send them to the server
 frase=in.readLine();
 if(frase.compareTo("exit")==0)
 { sOut.write(0); break;}
 frase="(" + nick + ") " + frase;
 data = frase.getBytes();
 sOut.write((byte)frase.length());

10/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 sOut.write(data,0,(byte)frase.length());
 }

 serverConn.join();
 sock.close();
 }
 }

class TcpChatCliConn implements Runnable {
 private Socket s;
 private DataInputStream sIn;

 public TcpChatCliConn(Socket tcp_s) { s=tcp_s;}

 public void run() {
 int nChars;
 byte[] data = new byte[300];
 String frase;

 try {
 sIn = new DataInputStream(s.getInputStream());
 while(true) {
 nChars=sIn.read();
 if(nChars==0) break;
 sIn.read(data,0,nChars);
 frase = new String(data, 0, nChars);
 System.out.println(frase);
 }
 }
 catch(IOException ex) { System.out.println("Client disconnected."); }
 }
 }

There is no select() function here, but again input is asynchronous, it can
arrive from the connected server or from standard in (console’s keyboard). A
thread (serverConn) is started to handle inputs from the server while the main
thread handles standard in.

When the user enter “exit”, an empty line is sent to the server, the server then
is supposed to send back an empty line, this will make the serverConn thread
exit, so after sending an empty line the main thread waits for serverConn thread
exit by calling the join() method.

3.4. TCP chat server in Java language (TcpChatSrv.java)

import java.io.*;
import java.net.*;
import java.util.concurrent.*;
import java.util.HashMap;

class TcpChatSrv {
 private static HashMap<Socket,DataOutputStream> cliList = new HashMap<>();

 public static synchronized void sendToAll(int len, byte[] data) throws Exception {
 for(DataOutputStream cOut: cliList.values()) {
 cOut.write(len);
 cOut.write(data,0,len);
 }
 }
 public static synchronized void addCli(Socket s) throws Exception {
 cliList.put(s,new DataOutputStream(s.getOutputStream()));
 }
 public static synchronized void remCli(Socket s) throws Exception {
 cliList.get(s).write(0);
 cliList.remove(s);
 s.close();
 }

11/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 private static ServerSocket sock;

 public static void main(String args[]) throws Exception {
 int i;

 try { sock = new ServerSocket(9999); }
 catch(IOException ex) {
 System.out.println("Local port number not available.");
 System.exit(1); }

 while(true) {
 Socket s=sock.accept(); // wait for a new client connection request
 addCli(s);
 Thread cli = new TcpChatSrvClient(s);
 cli.start();
 }
 }
 }

class TcpChatSrvClient extends Thread {
 private Socket myS;
 private DataInputStream sIn;

 public TcpChatSrvClient(Socket s) { myS=s;}

 public void run() {
 int nChars;
 byte[] data = new byte[300];

 try {
 sIn = new DataInputStream(myS.getInputStream());
 while(true) {
 nChars=sIn.read();
 if(nChars==0) break; // empty line means client wants to exit
 sIn.read(data,0,nChars);
 TcpChatSrv.sendToAll(nChars,data);
 }
 // the client wants to exit
 TcpChatSrv.remCli(myS);
 }
 catch(Exception ex) { System.out.println("Error"); }
 }
 }

Again, multiple threads are required. This is a classical TCP server in Java,
the main thread accepts new client’s connections, for each connection accepted a
thread is started to handle that client’s requests. Yet, in this case, each
thread interacts not only with its client connection but also with other
client’s connections. This raises concurrency issues.

The server manages a list of connected clients implemented by a HashMap, clients
are added and removed from the list dynamically as they connect and disconnect
from the server.

The list is used by all threads, for instance when a connected client sends a
text line it will be received by that client’s thread. The client’s thread must
then send the text line to all connected clients in the list, but while doing
that one of those other connected clients my disconnect and the respective
thread will remove it from the list, so the first thread might end up sending to
a non-existing connection.

In Java, the simplest approach to solve simple concurrency issues is by mutual
exclusion through intrinsic locks. In this sample, all accesses to the list are
performed through synchronized methods, both the list and these methods are
static. Synchronized static methods, lock the class’s intrinsic lock, this
guarantees it’s impossible more than one of these methods being executed at the
same time.

12/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

For instance, the sendToAll method guarantees that while it’s writing the text
line to all connected clients in the list:

- No new client will be added to the list.

- No client will be removed to the list.

- No other client (thread) will be writing text lines to connected clients.

3.5. Single thread TCP chat server in Java language (TcpChatSrvSingleThread.java)
Using threads to handle asynchronous reception in Java is not a must. Here is
another TCP chat server implementation in Java using low read timeout sockets
(polling).

import java.io.*;
import java.net.*;
import java.util.HashMap;

class TcpChatSrvSingleThread {

 private static final int SO_TIMEOUT = 100;

 private static HashMap<Socket,DataOutputStream> cliListOut = new HashMap<>();
 private static HashMap<Socket,DataInputStream> cliListIn = new HashMap<>();

 private static ServerSocket sock;

 public static void main(String args[]) throws Exception {
 int nChars;
 byte[] data = new byte[300];
 Socket cliS;

 try { sock = new ServerSocket(9999); }
 catch(IOException ex) {
 System.out.println("Local port number not available.");
 System.exit(1); }

 sock.setSoTimeout(SO_TIMEOUT); // set the socket timeout

 while(true) {
 try { // check for new client connection requests
 cliS=sock.accept();
 cliS.setSoTimeout(SO_TIMEOUT); // set the connected socket timeout
 cliListOut.put(cliS,new DataOutputStream(cliS.getOutputStream()));
 cliListIn.put(cliS,new DataInputStream(cliS.getInputStream()));
 }
 catch(SocketTimeoutException to) {} // no new connections

 for(Socket s: cliListIn.keySet()) { // all connected clients
 DataInputStream sIn = cliListIn.get(s);
 try { // try reading the line size
 nChars=sIn.read();
 if(nChars==0) { // empty line - client wants to exit
 DataOutputStream sOut = cliListOut.get(s);
 sOut.write(nChars); // send back an empty line
 cliListIn.remove(s);
 cliListOut.remove(s);
 s.close();
 }
 else {
 sIn.read(data,0,nChars); // read the line
 for(DataOutputStream sOut: cliListOut.values()) {
 sOut.write(nChars);
 sOut.write(data,0,nChars);
 }
 }
 }

13/13
Instituto Superior de Engenharia do Porto (ISEP) – Licenciatura em Engenharia Informática (LEI) – Redes de Computadores (RCOMP) – André Moreira (ASC)

 catch(SocketTimeoutException to) {} // no text line from client
 }

 }
 }
 }

Because now there is only one single thread, concurrency is no longer an issue.

This is not, however, an efficient implementation, unlike the previous version
it’s never stopped waiting for events. It is always running, calling read() and
accept() methods and thus is very processing intensive.

