
Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 1

• Berkeley sockets API, C and Java.
• Basic functions/methods for TCP applications.
• TCP client and server.
• Asynchronous reception.

Redes de Computadores (RCOMP)

Theoretical-Practical (TP) Lesson 07

2017/2018

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 2

TCP connections
Unlike connectionless UDP, TCP is connection-oriented, this means, before
sending and receiving actual data, a connection must be established between
two applications.

Once the TCP connection is established, several benefits arise:

- data is sent through the connection in a continuous flow, as if writing to a
file or a pipe, though a TCP connection is full-duplex.

- data delivery is guaranteed, TCP handles all transmission problems
retransmitting any lost data when required.

- each byte of data is delivered in the same order it’s supplied.

Yet, the first step is establishing a TCP connection between two applications.
For that purpose, each application must undertake a different role.

- One application will take the role of receiving a TCP connection request.

- The other application must then take the initiative of requesting to the first
a TCP connection establishment.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 3

TCP clients and servers

As part of the client-server model, the client takes the initiative on contacting
the server. Thus, applying this model to TCP, results in being the TCP client
application the one taking the initiative of requesting a TCP connection
establishment with TCP server application.

A TCP client application starts by establishing a TCP connection with the TCP
server application, then, usually (but not mandatorily), it writes a request to
the server through the established TCP connection and afterwards reads the
server reply.

A TCP server application is, therefore waiting for TCP connection requests
from clients, when one arrives, accepts it and the connection is then
established. Again, usually (but not mandatorily), after the connection is
established the server will read a request from the TCP connection, processes
it and then writes a reply back to the client.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 4

The TCP client application side
The TCP client application’s first step is establishing the TCP connection with
the server, to do so, again, two details about the server are required:

- The IP node address where the server application is running, this is
typically provided by the end user interacting with the client application.

- The local port number the server application is listening for TCP connection
requests on. Usually the server local port number is fixed and hard coded in
both the client and server applications.

In C language a TCP client application establishes a TCP connection with a TCP
server application by calling the connect() function:

int connect(int socket, struct sockaddr *address, int address_len);

This function uses a SOCK_STREAM type socket to establish a TCP connection
with the server identified by the caller-defined structure address. Prior to
calling this function the socket must be opened but no binding to local port is
required (port zero is assumed by connect), nevertheless, the address
structure must contain the server’s node IP address and the server application
local port number. This function returns -1 in the case of failure in the
connection establishment.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 5

The TCP client application side
In Java language, a TCP client application establishes a TCP connection with a
TCP server application by instantiating a Socket class object with the following
constructor method:

public Socket(InetAddress address, int port) throws IOException

Where address is a InetAddress class object holding the server’s node IP
address, and port is the local port number the server application is receiving
TCP connections on. This method will raise an exception if the connection
establishment fails.

Both the C function and the Java method provide real feedback about the
application to application connection establishment success.

After success, the socket is connected to the server application.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 6

The TCP server application side
TCP server applications are a bit more complex, this comes mainly from the
fact they have to handle several clients connections. Unlike a UDP server that
can focus its whole attention on one single request at a time, a TCP server will
have in its hands several TCP connections (one for each connected client).

At any moment, without being able to predict when, a request may arrive
from one client through one of the TCP connections, this is called an
asynchronous receiving problem and will be addressed later in more detail.

In Java language the specific ServerSocket class is used to listen for TCP
connection requests from clients, one constructor is:

public ServerSocket(int port) throws IOException

Where port is the local port number for listening TCP connection requests.
This may raise an exception, typically because the local port number is already
in use.

Notice however that client connections are not yet accepted, meanwhile, they
will be in a pending state, they must be later explicitly accepted by the server
application.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 7

The TCP server application side
In C language, the server needs a SOCK_STREAM socket, and must bind it to a
fixed local port number, additionally a buffer size for incoming connections
requests (not yet accepted), must also be specified using the listen() function.
Here is a sample code (no error checking here):

struct addrinfo req, *list;

bzero((char *)&req,sizeof(req));
req.ai_family = AF_INET6; // allow both IPv4 and IPv6 clients
req.ai_socktype = SOCK_STREAM; // TCP
req.ai_flags = AI_PASSIVE; // local address
getaddrinfo(NULL, “9999” , &req, &list); // local port number 9999
sock=socket(list->ai_family, list->ai_socktype, list->ai_protocol);
bind(sock, (struct sockaddr *)list->ai_addr, list->ai_addrlen);
listen(sock, SOMAXCONN);

SOMAXCONN is a library constant defining the maximum acceptable value for
the number of pending connections requests.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 8

Accepting TCP client connections
Listening for TCP connection requests does not mean accepting them. A TCP
connection is established only after being accepted by the server application.
For that purpose, the TCP server application must call the accept() function in
C or the accept() method, defined by the ServerSocket class, in Java.

Both share some fundamental properties, first, they are blocking, if there’s no
pending connection request to be accepted the process/thread blocks until
one arrives, second, in the case of success they create and return a new
socket connected to the client, this new socket represents the server-side of
the established TCP connection with the client.

Java: public Socket accept() throws IOException

C: int accept(int socket, struct sockaddr *address, int * address_len);

In C the address structure will be used to place the client address (IP and port
number), if NULL is passed, then the client address won't be stored.

After accepting a TCP connection, the first socket continues listening for other
TCP connection requests, so the server should use it to accept the next
incoming connection, but on the other hand, the server should also read client
requests on already established connections.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 9

TCP server - parallel processing
TCP servers always end up with several sockets (one for incoming connection
requests and several others already connected to clients) the problem is
events on these sockets are asynchronous, that is, the server isn’t able to
predetermine in which of the sockets the next event will be.

Although other solutions are possible, the more widely used strategy is
creating a parallel subtask for each socket, it can be a thread or a process. By
doing so, each subtask can be waiting for an event in the corresponding socket
without affecting (blocking) other subtasks.

In C language we have chosen to use processes, in Java language, threads.

Starting with C language, a process is created by calling the fork() function,
exactly what fork() does is creating a duplicate of the current process, the
original (usually called parent) and the duplicate (usually called child) are
absolutely equal and in the same state, same data, same open descriptors and
sockets.

Only one thing allows distinguishing the between the two: the return value of
the fork() function.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 10

Multi-process TCP server
The fork() function creates an exact copy of the current process:

int fork(void);

If successful, this function is called in one process and returns in two
processes. To the original process (parent) fork() returns a non zero positive
number (the child’s PID) to the duplicate process (child) it returns zero. In case
of failure fork() would return -1.

Basic sample of using fork() in implementing a multi-process TCP server:

(…)
bind(sock, (struct sockaddr *)list->ai_addr, list->ai_addrlen);
listen(sock, SOMAXCONN);
while(1) {

cliSock=accept(sock, NULL, NULL); // wait for a new connection
if(!fork()) { // this is the child (fork() returned zero)

close(sock);
// process all client requests on cliSock
close(cliSock);
exit(0); } // child process terminates

close(cliSock); // this is the parent
}

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 11

Multi-thread TCP server
In Java a thread class can be defined by either declaring it implements the
Runnable interface or by declaring it’s Thread’s subclass (extends the Thread
class). The Thread class also implements the Runnable interface, either way, a
run() method must be implemented by the class.

Example thread class declaration implementing the Runnable interface:

public class AttendClient implements Runnable {
private Socket cliSock;
public AttendClient(Socket s) { cliSock=s;}
public void run() { // thread execution starts here

// process client requests on cliSock
cliSock.close();
} // thread execution ends here

}

In this example, the AttendClient() constructor is defined with the sole
purpose of passing the socket to be stored within the object, for later use by
the thread.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 12

Multi-thread TCP server
Our declared thread class can then be instantiated, but that doesn’t start the
thread execution, it just creates the object.

To actually start running the thread in parallel, the start() method must be
called. This method creates a new thread and executes the run() method.

Nevertheless, the start() method is defined by the Thread class, so the exact
steps to call it depend on the way the our thread class has been defined.

If our class was declared as extending the Thread class, then the start()
method was inherited, therefore, it can be directly called through our class
instance.

On the other hand, if our class merely implements the Runnable interface,
then it has no start() method. In this case, an additional object must be
created by instantiating the Thread class. One of the Thread’s constructors
receives a Runnable interface as argument, so our object can be passed to it.
Once the Thread object is created, it’s start() method can now be called to
start running our object’s run() method in a separate thread.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 13

Multi-thread TCP server
Now the main application thread that accepts incoming TCP connections can
start a thread to handle each one:

public class TcpServer {
public static void main(String args[]) {

static ServerSocket sock = new ServerSocket(9999);
static Socket nSock;
while(true) {

nSock=sock.accept(); // wait for a new connection
Thread cliConn = new Thread(new AttendClient(nSock));
cliConn.start(); // start running the thread
}

}
}

For each accepted TCP connection a new thread is started to deal in exclusivity
with that client’s requests made through the connected socket, and sending
back the replies. As part of the dialogue between the client application and
the server thread, when the client has no more requests, it somehow requests
the server to end the connection and the thread will be terminated.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 14

Reading a writing through a connection
Dealing with data transfer through TCP connections is somewhat different
from sending and receiving data carried inside UDP datagrams. At first glance,
it's more straightforward because bytes can be directly read and written and
TCP ensures they flow efficiently and reliably.

Yet, this byte flow presents some challenges to network applications.

UDP applications are required to be synchronized with datagram granularity
only (each send must match one receive in the counterpart and vice-versa).
The number of bytes transported by each datagram is not required to be
known prior to the reception. After receiving the UDP datagram, the receiver
learns its size.

For TCP applications, however, a byte granularity synchronization is essential,
the number of bytes written in one side must exactly match the number of
bytes being read on the counterpart. This requires a careful application
protocol design ensuring applications always know exactly how many bytes
they are supposed to read.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 15

TCP – reading and writing in C
In C language the generic read() and write() functions can be directly used to
receive bytes from and send bytes through a connected TCP socket:

int read(int socket, void *buf, int nbytes);

int write (int socket, void *buf, int nbytes);

Where socket is the connected TCP socket, buf a pointer to a place from
where to get the bytes to be sent, or a place where to put the received bytes.
And finally, nbytes is the number of bytes to be received or sent.

They return respectively the number of bytes received and the number of
bytes sent, however, the read() function is blocking, if the requested number
of bytes to read (nbytes) is not available (because the counterpart has not
written them yet) it will block until they arrive. Both function return -1 in the
case of error.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 16

TCP – reading and writing in Java
In Java language, reading and writing cannot be directly performed on the
socket, for reading the socket’s InputStream must be used, for writing the
socket’s OutputStream must be used. Methods in Socket class are available to
get these streams:

public OutputStream getOutputStream() throws IOException

public InputStream getInputStream() throws IOException

They return streams that can then be used to create the appropriate
OutputStream and InputStream for specific purposes, for instance for raw byte
reading and writing DataOutputStream and DataInputStream can be used. For
example if sock is the connected socket they can be obtained by:

DataOutputStream sOut = new DataOutputStream(sock.getOutputStream());
DataInputStream sIn = new DataInputStream(sock.getInputStream());

The input stream (sIN) is used for reading, whereas the output stream (sOut)
will be used for writing.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 17

TCP – reading and writing in Java
Once the connected socket’s InputStream and OutputStream are obtained,
actual reading and writing may take place.

For an InputStream, among others, two read() methods are available:

int read() throws IOException

int read(byte[] b, int off, int len) throws IOException

The first version reads a single byte and returns its value, the second reads len
bytes and places them on offset off of byte array b. This second version
returns the total number of bytes read.

Also, for an OutputStream, among others, two write() methods are available:

void write(int b) throws IOException

void write(byte[] b, int off, int len) throws IOException

The first version writes a single byte b, the second writes len bytes from offset
off of byte array b.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 18

Asynchronous reception
Many network applications can operate with synchronous reception, they stop
at synchronization points and wait for the counterpart. These synchronization
points are calls to blocking read/receive functions or methods.

An application can use synchronous reception if, and only if, the exact
sequence of events that will take place is known, and that is not always the
case as we have seen on TCP server applications.

One possible solution is the one we have then used: parallel processing with
threads or processes. In this solution we create a parallel task for each event,
each task itself uses synchronous reception, but it does not interfere with the
other tasks.

Still, other solutions are possible.

Polling: for asynchronous events in a set of sockets, we can set a low read
timeout in all sockets. Then we can implement a polling cycle repeatedly
trying the read/receive on each of them. In the case of failure we skip to the
next socket, otherwise we process data received. This can be implemented
both in Java and C.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 19

The C language select() function
In C language, there is yet another option when a set of asynchronous events
are possible in a set of sockets.

The select() function has the ability to monitor a set of sockets. In fact, any
type of integer descriptors can be monitored, including opened files and pipes,
and for instance 0 (stdin), 1 (stdout) and 2 (stderr).

int select(int nD, fd_set *rD, fd_set *wD, fd_set *eD, struct timeval *to);

Pointers to three sets of descriptors may be provided by the caller:

rD – set of descriptors to check if are ready for reading (data available).

wD – set of descriptors to check if are ready for writing.

eD – set of descriptors to check if and error has occurred.

Any of them can be NULL, meaning the caller does not want to check that
feature for any descriptor. Usually, for the purpose of asynchronous reception,
we will be using only rD (ready for reading – data available).

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 20

select() – timeout and return value
int select(int nD, fd_set *rD, fd_set *wD, fd_set *eD, struct timeval *to);

The select() function is blocking, it blocks until any monitored descriptor
changes the status on the monitored feature. However, a timeout can be
specified by the caller (to), in that case even without a status change, it
returns after the specified period. The last argument can be NULL (no timeout)
this means block forever until some status change.

When called, the select() function returns either -1 (an error occurred), 0
(timeout expired) or the number of descriptors with status change.

To actually know which descriptors’ status has changed, an analysis of
provided set of descriptors is required, this function changes the values
stored in rD, wD, eD and to (successive calls to this function must always pre-
initialize these values).

Internally select() uses a vector to store the descriptors, so in needs to know
the size of that vector, that is the role of the first argument (nD), it must
always be the biggest descriptor being monitored plus one. Maximum value
for nD is defined in FD_SETSIZE, usually, 1024.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 21

select() – handling descriptor sets
The fd_set data type is used to specify a set of descriptors. A pointer to this
data type is used in arguments rD, wD and eD, they should be defined by the
select() caller with the descriptors to be checked and they will be then
modified by the select() function to contain only the descriptors with a status
change.

There are some macros available to handle this data type:

void FD_ZERO(fd_set *set);

void FD_SET(int fd, fd_set *set);

void FD_CLR(int fd, fd_set *set);

int FD_ISSET(int fd, fd_set *set);

FD_ZERO – empties the set descriptor set (removes all descriptors)

FD_SET – places the fd descriptor in the set descriptor set (adds to the set)

FD_CLR – removes the fd descriptor from the set descriptor set

FD_ISSET – checks if the fd descriptor belongs to the set descriptor set, return zero

if it doesn’t belong and one if it does.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 22

select() – sample coding
Let’s imagine we have four UDP datagram sockets (SOCK_DGRAM) and we
want to receive a datagram in whatever socket one datagram arrives first.

// the four datagram sockets are s1, s2, s3 and s4

// sockets are already bound and ready to receive

fd_set reading; // the descriptor set

int maxD; // the greatest descriptor used

FD_ZERO(&reading); // empty the set

FD_SET(s1,&reading); maxD=s1; // add s1 and set maxD

FD_SET(s2,&reading); if(s2>maxD) maxD=s2; // add s2 and update maxD

FD_SET(s3,&reading); if(s3>maxD) maxD=s3; // add s3 and update maxD

FD_SET(s4,&reading); if(s4>maxD) maxD=s4; // add s3 and update maxD

select(maxD+1, &reading, NULL, NULL, NULL);

We are checking just for reading and no timeout is specified, so select() will block

until a datagram arrives at one of the sockets. Now, when select() returns we must

check in which descriptors status has changed.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 23

select() – sample coding (cont.)
After calling select(), only the descriptors whose status has changed will be in
the descriptor set.

// after select return (assuming no error)

if(FD_ISSET(s1, &reading)) {

recvfrom(s1, &buff, MAX_SIZE, (struct sockaddr *) &cli, &cliSize); }

if(FD_ISSET(s2, &reading)) {

recvfrom(s2, &buff, MAX_SIZE, (struct sockaddr *) &cli, &cliSize); }

if(FD_ISSET(s3, &reading)) {

recvfrom(s3, &buff, MAX_SIZE, (struct sockaddr *) &cli, &cliSize); }

if(FD_ISSET(s4, &reading)) {

recvfrom(s4, &buff, MAX_SIZE, (struct sockaddr *) &cli, &cliSize); }

Notice that the else statement is not used because several datagrams may

arrive at the same time to different sockets. Of course, there is no real

purpose for this code beyond illustrating the use of select().

