
Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 1

• The HTTP application protocol.

RCOMP - Redes de Computadores
(Computer Networks)

2024/2025

Lecture 09

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 2

Hypertext file transfer

Hypertext refers to documents with live links to other documents, this may

mean directly clickable references (hyperlinks) or references to other

resources to be included in the document’s presentation, like for instance

images.

In either case, references are links to other documents and resources. Each

reference is represented by an URL with a filename location to be accessed

through the network by using a specific file transfer application protocol.

HTML
Images and other

resources to be

loaded from

other servers

To fully load an HTML (Hypertext Mark-up Language)

document, beyond the file itself, there may be several

references to additional resources to be loaded. For

each, an additional file transfer will be required.

Although the old FTP (File Transfer Protocol) can be used, it proved to be

inappropriate for this kind of scenario. FTP requires one control connection for

commands, with user authentication (even if it’s anonymous), and then another

connection for each file transfer from that server. It’s not suitable for transferring a

large number or relatively small files from different locations.

To overcome the FTP issues with hypertext, a content-oriented file transfer protocol

has been developed, it’s the Hypertext Transfer Protocol (HTTP).

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 3

Hypertext Transfer Protocol (HTTP)

Despite earlier versions, the first fully functional version, similar to those supported

nowadays, appeared in 1996, named as HTTP 1.0. The key idea for HTTP is

providing an expedite data transfer, thought it may not be a file, so we just call it a

content.

HTTP is also content-aware, this means it will exchange information about content

related characteristics and will provide that information to applications using HTTP.

The service model for HTTP is the typical TCP client-server. The client starts by

establishing a TCP connection with the server (the standard TCP service port number

for HTTP is 80). Once the connection is established, the client sends an HTTP

request message, the server must then send back an HTTP response message.

HTTP

server

HTTP

client

(browser)

80
TCP connection

HTTP request

HTTP response

HTTP 1.1 adds to them, OPTIONS, PUT, DELETE, TRACE, and CONNECT

methods.

HTTP defines several request

types; they are known as

methods.

HTTP 1.0 defines GET, POST,

and HEAD methods, earlier

versions supported only GET.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 4

The HTTP message format

Request line or Reply line (status)

All HTTP messages (both requests and responses) share the same well-

defined general format. They always start with a sequence of variable length

text lines, terminated by one empty line. Every text line itself is terminated by

the CR (Carriage Return) byte followed by the LF (Line Feed) byte.

1st line

CR+LFHeader field line

CR+LF

2nd line

CR+LFHeader field line3rd line

CR+LFHeader field line

CR+LF

Message body, also known as content

or entity.

Can have any format, it may not be text.

It may not exist, not every message has a body.

A variable number of header

field lines, there may be none.

Two consecutive CR+LF sequences (an

empty line) points out the header’s end,

the message body (if exists) starts next.

The first line is either the request line (for an HTTP request message), or the status

line (for an HTTP response message). Unlike the first line, additional text lines are

optional, they are called header fields. Header fields transport additional information

about the protocol operation and the message content.

CR 13 0x0D \r

LF 10 0x0A \n

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 5

HTTP – Request and response messages

Method (Request type) Space Argument (URI) Space HTTP version name CR+LF

HTTP/1.0

HTTP/1.1

(…)

OPTIONS

GET

HEAD

POST

PUT

DELETE

TRACE

CONNECT

Identifies the resource over which the method will be enforced, no

spaces neither CR or LF are allowed. It may have one of three forms:

- An asterisk – when not to be applied to any specific resource

- An absolute path (slash started) – a counterpart local resource (URI)

- An URI (may be an URL)

The first line in an HTTP request message is called the request line, and has the

following format:

HTTP version name Space Code

The status code is a three digits integer number.

For instance, 200 means total success on the operation

and usually will have the OK code description.

Space Code description CR+LF

The first line in an HTTP response message is called the status line, and has the

following format:

HTTP/1.0

HTTP/1.1

(…)

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 6

Header field lines

Header fields lines are text lines used to transmit control information, either related to

HTTP operations or related to the message’s content (body).

The general form is:
Field name : Field value CR+LF

Where Field name is a standard case-insensitive identifier with special meaning for

HTTP, it is immediately followed by a colon, no whitespaces between.

The Field value, on the other hand, may be preceded by white characters, they

should be ignored. Depending on the field name, the field value may or not be case-

sensitive.

Both requests and replies usually have header fields, but many header fields only

make sense for some messages. Traditionally, header fields have been divided into

four categories:

General header fields Request header fields Response header fields Entity header fields

They may make

sense for both

requests and replies.

For requests only. For responses only.
Only for messages with

a body because these

header fields are

content-related. They

may be used on both

requests and responses.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 7

HTTP 1.1 general-header fields

They may be used both in requests and responses and they do not refer to the content. Some

most often used general-header fields are:

Cache-Control
Settles how data may be cached by clients, servers and proxies, some possible
values are no-cache, no-store, max-age, public and private. Not available for
HTTP/1.0, Pragma must be used instead.

Connection

Unlike in HTTP 1.0, in HTTP 1.1 the default behavior is keeping connections open
to allow multiple requests and responses. The header field Connection: close
informs the counterpart the connection is going to be closed after the current
transaction (the default behavior for HTTP 1.0).

Date
Hold the date/time of the message creation. For instance:
Date: Tue, 15 Nov 1994 08:12:31 GMT

Pragma
Settles operational directives, most used value is no-cache to indicate no data
caching is allowed.

Upgrade

Clients may include this on requests to inform the server about new protocol
versions they support, the server may then inform the client it wants to switch to
on of them by sending a 101 Switching Protocols response with the Upgrade
header field indicating to which protocol is switching to. For instance:
Upgrade: HTTP/2

Transfer-Encoding
Informs the counterpart about a transformation applied to the message body.
This is similar to the entity header field Content-Encoding.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 8

HTTP 1.1 entity-header fields

They are content-related. Even though, they make most sense for messages with a body, they

are also used in some other cases. Some common entity-header fields are:

Allow
Informs about supported methods to access a resource. It will be included in a 405
Method Not Allowed error response.

Content-Encoding
Informs the message’s receiver about some coding that was applied to the content,
for instance: Content-Encoding: gzip

Content-Language Describes the natural language of the intended audience for the content.

Content-Length
Defines the size in octets of the content. This is supposed to be used by message
receivers to know how many bytes they should read from the body starting point.

Content-MD5
Holds the result of applying the Message Digest 5 algorithm to the content, used
for content integrity checking.

Content-Range
This is used for a partial content message body. It must specify the body position
within the original content and the total original content length. Example:
Content-Range: bytes 21010-47021/47022

Content-Type
Informs the receiver about the content media, thus, how the content should be
interpreted and ultimately displayed to the end-user.

Expires Contains a date/time after which cached copies of the content are no longer valid.

Last-Modified
Contains the date/time the content was last modified. If the content comes from a
file, it’s often the file’s last modification time.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 9

HTTP 1.1 request-header fields

Used on HTTP request messages only. Some most often used request-header fields are:

From
Contains the personal e-mail address of the user at the client application
side.

Host

Contains the hostname and port number being accessed, either typed by the
user at the browser or from the clicked URL in a document. Default port
number is 80. Example:
Host: www.dei.isep.ipp.pt.pt:8080

Referer
(yes, it’s misspelled)

Contains the URL of the document from where the present request was
followed (referred by). This field will not exist for directly user typed
requests. Example: Referer: http://www.dei.isep.ipp.pt/index.html

User-Agent
A string identification for the client application, usually a browser.
Example:
User-Agent: Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus Build/IMM76B)

Authorization
User authentication data, usually username/password. Must be included
following a 401 Unauthorized error response.

Cookie
Contains a pair, name and value, provided by the counterpart in a previous
response. Example: Cookie: sessionToken=ts12325

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 10

HTTP 1.1 request-header fields – conditional requests

These HTTP request-header fields introduce client demands regarding contents to be returned

in the following response.

Accept

Requires the response content to be one of the specified media types
(content types). Example:
Accept: text/*, text/html, text/html;level=1, */*

Accept-Charset

Requires the response content to be in one of the specified charsets.
Example:
Accept-Charset: iso-8859-5, unicode-1-1;q=0.8

Accept-Encoding

Restricts possible content-coding values for the response content.
Example:
Accept-Encoding: compress, gzip

Accept-Language Restricts possible content languages to a given set. Example:
Accept-Language: da, en-gb;q=0.8, en;q=0.7

If-Modified-Since
If-Unmodified-Since

Causes the response to depend on the requested resource last
modification time/data.

If-Match
If-None-Match

Causes the response to depend on the value for the ETag entity-header
field. Messages with a body may define a ETag entity-header for the
content (body) they carry.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 11

HTTP 1.1 response-header fields

Used in HTTP response messages. Some most often used response-header fields are:

Age
For cached replies, this is the estimated elapsed time, in seconds, since the
original response was obtained.

Location
This is used to redirect the requester to a different document from the one
requested. Contains a document URL. Is used for 3xx error responses, for
instance 307 Temporary Redirect.

Public
Inform the client about server supported methods in general, not specifically on
the requested URI. Example: Public: OPTIONS, MGET, MHEAD, GET, HEAD

Retry-After
Used with the 503 Service Unavailable response to inform when the service is
expected to be available, may be a date/time or a time period is seconds.

Server
A string identification for the server application. Example:
Server: CERN/3.0 libwww/2.17

WWW-Authenticate
Used with the 401 Unauthorized error response, that informing access to the
resource requires user authentication. This field informs about the expected
authentication mechanism to be used.

Set-Cookie

Contains a pair, name and value, for the client to use in the Cookie header field
on subsequent requests. The purpose is the server being able to identify a
specific client in the following requests, and thus, maintain with it a stateful
session. Example: Set-Cookie: sessionToken=ts12325

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 12

HTTP 1.1 – OPTIONS and GET methods

The response to this request provides the client with a list of available methods to access the

URI, if the URI is an asterisk, then a list of methods supported by the server is provided.

The response will be usually 200 OK and the response-header field Allow will have a list of

supported methods and eventually other header fields defining the server capabilities.

OPTIONS Space Argument (URI) Space HTTP/1.1 CR+LF

Used to obtain (download) the content pointed by the URI. The URI may refer to a static content (e.g. stored

in a file), it may also be a dynamic content, meaning it’s dynamically generated by the server for each

request. The URI may be associated to some code execution on the server side, such as on each request

that code is executed.

For instance, the technique known as CGI (Common Gateway Interface), specifies how a standard server

can execute external programs or scripts and return their output as response message content.

In many cases, dynamic contents require input data to be provided by the client (e.g. collected in an HTML

form), however, a GET method request can´t have a body to carry such data. This is overcome by appending

to the URI a query-string. For instance:

http://www.server1.net/login?username=teste&password=pppttee&dep=5

A URI is obviously not the best-suited place to place data, only plain text data is supported and there are

maximum length issues. One other problem is that data will be visible in the URL.

These issues are solved by using either the POST or PUT methods, in both cases the request may have a

body, and thus it can be used to carry all sorts of data.

GET Space Argument (URI) Space HTTP/1.1 CR+LF

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 13

HTTP 1.1 – HEAD, POST, PUT and DELETE methods

The response to a HEAD request is exactly the same that would be achieved with a GET

request for the same URI, except that it will have no body, nevertheless, all header fields are

exactly the same.

The POST request purpose is sending data to an URI, the URI will normally represent some

code to be executed on the server side. Unlike with the GET method, data is placed on the

message’s body, therefore, there are no restrictions whatsoever on the data content type and

length.

HEAD Space Argument (URI) Space HTTP/1.1 CR+LF

POST Space Argument (URI) Space HTTP/1.1 CR+LF

PUT Space Argument (URI) Space HTTP/1.1 CR+LF

The PUT request can be interpreted as the reverse of GET method. It allows the upload of a

content to a URI. Originally, it was intended to upload a content to a file named by the URI,

however, it may also be used with similar purposes to POST, is such case the URI refers to

some code to be executed on the server side.

DELETE Space Argument (URI) Space HTTP/1.1 CR+LF

Used to request the removal of a resource on the server side. The URI represents the name of

the resource to be removed, it could be a file or something else.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 14

HTTP 1.1 – Response status-codes (1xx, 2xx, and 3xx)

Codes 1XX didn’t exist in HTTP/1.0, they indicate some additional messages are expected over the same

connection. For instance, 100 Continue indicates the server has accepted the request first part and is

expecting something else. For instance, the 101 Switching Protocols is used when the server wants to

upgrade to a higher HTTP version (see the Upgrade general-header field).

HTTP responses status-codes can be grouped in five categories depending on the

leftmost digit:

HTTP/1.1 Space 1XX Space Textual code description CR+LF

Notify about a success on the requested operation. Examples:

200 OK – indicates total success on a GET, HEAD or POST.

201 Created – as result of the request a new resource has been created, usually following a PUT request.

202 Accepted – the request was accepted, but may not have been yet executed, there may be a delay.

206 Partial Content – the content on the response body is only partial.

Alerts about a failure, and the need for the client to reformulated the request. Examples:

300 Multiple Choices – there are several option to execute the request. A list is provided.

301 Moved Permanently – the resource was dislocated; the new location is provided by the Location field.

303 Moved Temporarily – temporary dislocation, the new location is provided by the Location field.

304 Not Modified – response to a conditional GET request when requested conditions are not meet.

HTTP/1.1 Space 2XX Space Textual code description CR+LF

HTTP/1.1 Space 3XX Space Textual code description CR+LF

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 15

HTTP 1.1 – Response status-codes (4xx and 5xx)

Codes 4XX alert about what the server thinks it’s a client-side error on the request. Examples:

400 Bad Request – the server simply did not understand the request.

401 Unauthorized – the server demands user authentication to perform the requested operation.

403 Forbidden – the resource exists but is not accessible due to the lack of permission.

404 Not Found – the requested resource was not found in the server.

405 Method Not Allowed – the used method is not possible for the requested access to the resource.

406 Not Acceptable – an Accept field restriction on the request could not be satisfied by the server.

411 Length Required – the server refuses to accept the request with no Content-Length specified.

412 Precondition Failed – an If field precondition on the request could not be satisfied by the server.

HTTP/1.1 Space 4XX Space Textual code description CR+LF

These codes are about server-side issues, they mean the server is aware it has a problem and was unable to

fulfill the request. Some examples are:

500 Internal Server Error – the server has a severe problem and was unable to process the request.

501 Not Implemented – the request method is not supported by the server.

503 Service Unavailable – the server was unable to process the request due to a temporary overload.

505 HTTP Version Not Supported – the request’s HTTP version is not supported by the server.

HTTP/1.1 Space 5XX Space Textual code description CR+LF

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 16

Persistent TCP connections

HTTP 1.0 may optionally support persistent connections, to force that behavior,

clients must include the Connection: keep-alive header field line. If the server

supports it, then it will also include the same header line in the response.

Under HTTP 1.0, TCP connections between the client and the server are presumed

to be non-persistent, this means for each request/response one TCP connection is

required and it’s closed once the response is received.

Contrariwise, under HTTP 1.1, TCP connections between the client and the server

are presumed to be persistent, this means one TCP connection can be used for

several request/response dialogue sequences.

Even so, to avoid any ambiguity, clients should include the Connection: keep-alive

header field line in requests if they want to reuse the connection for further requests.

Persistent connections HTTP 1.1 behavior can be reverted to HTTP 1.0 behavior by

adding the Connection: close header field line. Clients using HTTP 1.1, and not

supporting persistent connections must include this header line on every request. The

server response will also include it, and the connection is then immediately closed.

In principle, persistent connections are maintained until the client sends a request

with the Connection: close header field line. The server response will also include

the same header line, and once the response is received by the client, the connection

is closed.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 17

Persistent TCP connections - keep alive timeout
As mentioned, in HTTP a persistent TCP connection can be used for several request/response

dialogue sequences. Under HTTP 1.1, if the client wants to close the connection after a

request/response sequence it must include the Connection: close header line in the request.

Nevertheless, persistent connections don’t persist indefinitely. For the sake of

resources saving, both client and server applications enforce a keep alive

timeout, if no request/response is sent during that time, the connection is closed.

The default persistent connections keep alive timeout for each application differs and

may be an application configurable parameter.

Nevertheless, the Keep-Alive: header field can be included in requests and

responses that contain the Connection: keep-alive header field line.

This informs the counterpart about its current settings; two parameters are currently

supported for the Keep-Alive: header field, they are max and timeout.

max specifies the maximum number of request/response sequences the connection

supports (since it started), once that number is exhausted the connection is closed.

timeout specifies the number of seconds the connection is kept open with no traffic, if

no request is sent within this time period, the connection is closed.

Example: Connection: Keep-Alive
Keep-Alive: timeout=10, max=5

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 18

HTTPS (Hyper Text Transfer Protocol Secure) - HTTP over TLS (SSL)

While the standard HTTP service port number is 80, for HTTPS it’s port number 443.

The browser will assume as default these port numbers by looking at the initial section

the URL, correspondingly http:// or https://. Default port numbers may be overridden if

explicitly specified, for instance: http://server.pt:8080.

To secure the connection, the client sends the TLS ClientHello message to the

server. At this stage some, TLS messages are exchanged, the server’s authenticity is

assured by a valid public key certificate and a secret cryptographic key is then

generated to encrypt data. Once the TLS handshake is finished, HTTP protocol can

then be used, now requests and replies have guaranteed privacy.

HTTPS is not different from HTTP, it’s the same protocol, but instead of running over

plain TCP it runs over TLS (Transport Layer Security). TLS is the successor of Secure

Sockets Layer (SSL), it provides secure network services for applications.

An HTTP client creates a TCP connection to the server and may then send the

request. An HTTPS client creates a TCP connection to the server, secures it with

TLS, and only then, can send the request.

Public key certificates have a critical role in HTTPS security, they give clients the

guarantee they are talking with the authentic server and not a fake (man-in-the-middle

attack).

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 19

HTTP/HTTPS as general-purpose application protocol

Designing and implementing a new application layer protocol for some distributed

applications architecture is a rather significant effort and investment. This investment

could be avoided if an already existing application layer protocol was reused and

eventually adapted.

We must bear in mind this may not be the best technical option, however, it may be

the best option under investment point of view. Some adaptations to the original

protocol usage may be required because it was designed with a different purpose,

nevertheless, the protocol specification itself must be kept.

Because it’s standard, simple and flexible, HTTP/HTTPS is widely adopted for this

purpose. To achieve this, each application contains an HTTP server, an HTTP client,

or both. The client-server model is preserved, though one application can be client

and server at the same time.

Application D

HTTP Server

Application B

HTTP Server HTTP Client

Application A

HTTP Client

Application C

HTTP Server

HTTP Requests

HTTP Requests

HTTP Client

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 20

Web Services

The central concept on web services is the use of HTTP for application-to-application

communications without direct human participation.

To make use of a web service, one application (service requestor or consumer)

assumes the HTTP client’s role and the other (service provider or publisher) the

HTTP server’s role. The web service is made available to service requestor

applications by the service provider application.

From this central concept, some typical distributed systems issues rise. One issue is

about data representation, it should be independent of individual local systems so

that received data can be understood on any kind of node. Another issue is about

publishers' identification by requestors, that will encompass the publisher’s node

address or DNS name, and also, the resource itself within that node address.

Application A

Consumer

(service requestor)

Application B

Publisher

(service provider)

Consumer

(service requestor)

Application C

Publisher

(service provider)

HTTP Request (URI B)

HTTP Request (URI C)

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 21

Web Services – data representation

As it is, the web services concept is very wide. As far as the HTTP protocol is fulfilled

and respected, all kind of information exchanges between applications can be

implemented as web services.

Concerning data representation, the most widely used solutions are extensible

markup language (XML), and JavaScript Object Notation (JSON).

Both represent data in a human readable text format, yet also suitable for automated

parsing. In each case the appropriate content-type specification should be used,

correspondingly, application/xml and application/json.

Also, some higher-level standards have been established on more details about how

applications can communicate through web services, two examples are SOAP

(Simple Object Access Protocol) and XML-RPC (Remote Procedure Calls in XML

format through HTTP).

Due to the client-server model, implicit by HTTP, requestors must know where to find

publishers, and then, what services are provided by that publisher.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 22

Web Services – resources identification

Resources are identified by an URL, an URL identifies a resource, and also, how to

access it. So, an URL starts by an access protocol name, for web services http:// or

https://, then it identifies the node’s address, usually through a DNS host name.

Optionally it may also specify a port number preceded by a colon. If the port number

is not specified, then the protocol’s default port number is presumed.

What has been described is called the origin part of the URL. The remaining part of

the URL identifies the resource within that origin, it starts by a slash and may reflect

an internal hierarchical resources organization with names separated by a slashes.

Regarding the origin part, it shouldn't be hardcoded into applications because it

depends on the running environment, they should be provided to applications as

runtime configuration data. Each resource’s local identification within the origin, on

the other hand, may be hardcoded into requestor applications.

Usually, requestors known what resources are provided by a publisher, nevertheless,

standards have been established on how publishers can inform requestors about

that. Web Services Description Language (WSD) and Universal Description,

Discovery, and Integration (UDDI) make that information available to requestors in

XML format.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 23

Web Services and Web Browsers

From the web services concept, which excludes direct end-users' interaction,

it could be assumed web browsers are out of scope. Nevertheless, modern

web browsers are themselves able to run applications, namely in JavaScript

language. This makes them able to take part in web services architecture.

Current web browsers support the XMLHttpRequest object, in essence it’s

an HTTP client and allows a web page to, whenever it desires, make an

HTTP request, retrieve data, and typically use that data to update parts of the

page being displayed. This may be done without actually reloading the page,

by using the HTML DOM (Document Object Model).

Requests with the XMLHttpRequest object should be asynchronous, this

means, before triggering the request, a response handling function is

defined. Then, the request itself will not block the web browser on waiting for

the response, if, and when, the response arrives, the response handling

function is executed in background by the browser.

This technique is called AJAX (Asynchronous JavaScript and XML), by using

it, the traditional web pages’ behavior, requiring a reload or submission for an

update with fresh data from the server, is overcome.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 24

RESTful web services design model

REST stands for Representational State Transfer, it’s a constrained resource-based

usage for web services, main principles (constrains) are:

• Clients request operations over server-side resources (identified by URIs), such

operations are: Create, Read, Update and Delete (CRUD), and they are mapped

to HTTP request methods.

• Resource contents are transferred in XML, HTML or JSON representations.

• Servers are stateless in the sense they do not store information about clients’

dialogue context. Therefore, on every request clients must provide all required

context data.

• If the server has a state, then that state context must be represented by an

addressable resource (URI), clients may then refer that state context on requests.

RESTful web services consumer applications can request the following four

operations over a URI: Operation HTTP methods

Create a resource POST; PUT

Read/retrieve a resource GET

Update/Modify a resource PUT

Delete/remove a resource DELETE

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 25

RESTful – resources and collections

The only safe method is GET, meaning it doesn’t change the resource or the server

state. Methods PUT, GET, and DELETE are regarded as idempotent methods; this

means making more than one repeated identical request over the same URI has no

additional effects beyond the effect of the first request.

A URI may refer to a single resource or a collection of resources, singular names

are to be used for single resources, plural names for a collection of resources.

Depending on being a single resource or a resources collection, HTTP methods will

have slightly different meanings:

HTTP method Single resource (singular name URI) Resources collection (plural name URI)

GET Retrieve the resource.
List the of resources items in the collection.
Retrieved data is a list of resources’ URIs
and optionally other resources’ data.

PUT
Replace the resource, if it does not exist,
create it.

Replace the whole collection with another
collection.

POST
Not used because the URI would be
regarded as a collection and a new collection
item would be created within it.

Create a new resource item within the
collection. The new resource URI is
automatically assigned.

DELETE Delete the resource. Delete the entire collection.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 26

RESTful - URI naming guidelines and best practices

• Singular names for single resources or items/elements

belonging to a collection.

• Plural names for collections of resources.

• Verbs for controllers and functions.

• Camel casing for resources and lower case for URIs.

• Hyphens instead of underscores (spinal case instead of

snake case).

• Avoid CRUD names (Create/Read/Update/Delete) in URIs.

• URI path elements should represent resources’ hierarchical

structure on the server side.

• Use URI path components to represent variable values.

• A query component may be added to the URI.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 27

Hypermedia As The Engine Of Application State (HATEOAS)

HATEOAS is a constraint of the REST application architecture. It means by accessing

and retrieving a resource, a REST client also retrieves a list of links representing

alternative actions from that point on. This is very similar to human web usage: when

a web page is reached, several alternative links to follow from that point are provided.

This strategy makes the API discoverable by REST clients, though it’s state

dependent. Only after accessing a URI follow up links are provided, they represent

possible state transitions from the initial state and may depend on the resource itself

or other factors, like for instance user authentication used. Example using XML:

GET /accounts/1111 HTTP/1.1
Host: example.com
Accept: application/xml
...

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: ...

<?xml version="1.0"?>
<account>

<account_number>1111</account_number>
<balance currency="usd">100.00</balance>
<link rel="deposit" href="/accounts/12345/deposit" />
<link rel="withdraw" href="/accounts/12345/withdraw" />
<link rel="transfer" href="/accounts/12345/transfer" />
<link rel="close" href="/accounts/12345/close" />

</account>

GET /accounts/1112 HTTP/1.1
Host: example.com
Accept: application/xml
...

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: ...

<?xml version="1.0"?>
<account>

<account_number>1112</account_number>
<balance currency="usd">0.00</balance>
<link rel="deposit" href="/accounts/12345/deposit" />
<link rel="close" href="/accounts/12345/close" />

</account>

This is a classical example, because account 1112 has a zero balance, available

actions are only deposit and close.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 28

Same-origin policy

Web browsers implement a security concept called same-origin policy. As we have

seen, the origin is the URL part representing the protocol, hostname and port number.

If a document loading into the browser requires the retrieval of resources from several

different origins this is called cross-origin.

The same-origin policy requires all resources to be retrieved from the same origin

and avoid possible malicious actions based on interactions between different origins.

One thing this policy guarantees is that when a web service is being accessed

by a browser, the access is being made from a page loaded from the web

service’s origin.

There’s no universal standard same-origin policy for browsers, usually this policy is

enforced only for JavaScript and other scripting languages. Cross-origin for static

embedded resources like script sources, images and other media files is allowed.

Writing operations are usually allowed, including form submissions. Cross-origin read

accesses are not allowed.

However, if within a page, a script accesses a REST API on a different origin,

it’s a clear same-origin policy violation and it will be blocked by the browser.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 29

Changing the origin

Within some restrictions, scripts are allowed to change the page’s origin of the

document. They are allowed to change the hostname part of the document origin as

far as it´s changed to an upper-level domain name (a super domain). In JavaScript

this is done by setting the document.domain property.

Let’s take for instance the following scenario:

• A page is loaded with origin https://www.dei.isep.ipp.pt

• This page has a script wanting to call the web service https://isep.ipp.pt/users.

This is a same-origin policy violation and is going to be blocked by the browser.

• However, the script is allowed to change its page origin hostname from

www.dei.isep.ipp.pt to isep.ipp.pt. Now there’s no same-origin policy violation

any longer.

Notice: some browsers may have issues/bugs around document.domain property handling.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 30

Cross-origin resource sharing (CORS protocol)

The same-origin policy enforced by web browsers can be overridden by using the

CORS protocol. When a CORS capable web browser detects a cross-origin request

it will look for specific header fields on the response to know if the access should or

not be granted.

When a cross-origin request is made, the response may include an Access-Control-

Allow-Origin: header line, it may be an “*” authorizing all origins, or one specific

origin, if it matches the calling origin then the browser will allow it, otherwise blocks it

due to a same-origin policy violation.

If the Access-Control-Allow-Origin: header line returned by the server is “*”,

meaning any origin is allowed, or the origin value specified in the request, then

access is granted by the browser, otherwise it’s blocked.

For methods GET, HEAD and POST the query about access-control can be included

in the request itself (Origin: header line). For other methods, a request with the

OPTIONS method is triggered by the browser in the first place, this is called CORS

pre-flight.

Access allowed by CORS is method dependent. Without a pre-flight, the allowed

access applies only to the method used by the request.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 31

CORS pre-flight request

Under CORS, requests with methods GET, HEAD and POST are called simple

requests, they require no preflight. Requests with methods PUT, DELETE,

CONNECT, OPTIONS, TRACE and PATCH always require a pre-flight. Though,

depending on other factors, even for simple requests, browsers may be required to

perform a pre-flight.

The CORS preflight is a test to anticipate if the real request will be allowed and in

what conditions. It´s identical to the real request with the following differences:

• The OPTIONS method is used instead.

• The method to be used in the real request is declared on the Access-Control-

Request-Method: request header line.

• Header lines to be included in the real request are declared at the Access-

Control-Request-Headers: request header line.

• The Origin: header line contains the origin corresponding to the real request.

• Has no content.

The response to the preflight request lets the browser know if the real request should

be allowed. Usually, the same persistent connection is used for the preflight and then

for real request.

Instituto Superior de Engenharia do Porto – Departamento de Engenharia Informática – Redes de Computadores (RCOMP) – André Moreira 32

CORS pre-flight response

The CORS pre-flight response holds a set of Access-Control response headers:

Response header line

Access-Control-Allow-Origin:
Allowed origin specification, possibly equal to Origin: request
header line or “*” (any origin allowed).

Access-Control-Allow-Methods:
A coma separated list of allowed methods, possibly including
the requested one (Access-Control-Request-Method).

Access-Control-Allow-Headers:
A coma separated list of allowed header lines from the
requested list (Access-Control-Request-Headers).

Access-Control-Max-Age: For how long can this response be kept in cache.

Access-Control-Allow-Credentials:
Holds the true value if credentials can be used, otherwise this
header is absent. Credentials can be cookies, authorization
headers or TLS client certificates.

Access-Control-Expose-Headers:

A list of additional response headers to be made available to
clients. Response headers Cache-Control, Content-Language,
Content-Type, Expires, Last-Modified, and Pragma are always
exposed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

