Computer Networks (Redes de Computadores - RCOMP) - 2024/2025
Laboratory Class 10 (PL1© - 3 hours)

UDP clients with timeout. UDP clients using broadcast. Implementing TCP clients and
servers (C and Java).

1. Setting a timeout for UDP server’s reply

In the previous lesson, UDP client and server applications were developed and tested, however, UDP is
unreliable and that must be taken into account. When sending a UDP datagram, there is no guaranteed
feedback under delivery point of view. Success in sending a UDP datagram doesn’t mean anything about
delivery, just that it was sent.

Under the client-server model (Figure 1):

- When idle, a UDP server-application is blocked at a receiving operation. Then, when a request arrives, it
wakes up, processes the request, and finally sends back a reply.

- The UDP client application is most often under a user’s direct control, so it will send a request when the
user wishes. Next, the client application will be blocked at a receiving operation waiting for a server’s reply.
Finally, after receiving the reply, it presents the reply to the end user.

UDP client Network UDP server
(UDP datagrams)

Data input recvfrom/receive
.

/ Request

/ sendto/send Request processing
et
sendto/send

Reply

User

N Data output

Figure 1 - UDP client/server interactions

However, a sent UDP datagram may be lost without any notification being given to the sender. Therefore, in
UDP dialogs between clients and servers, either the request or the reply may never reach the destination and
the sender will never know about that.

Under the UDP server-application’s point of view, that is not as issue. It is not directly dependent on any
delivery. If a request is lost, the server does not even know it has ever existed. If a reply is lost, that’s no
concern for the server either, once it sends the reply its mission is finished.

On the other hand, on the UDP client application side, things get nasty. After sending the request, the client
application becomes totally dependent on the arrival of a reply. What will happen to a UDP client when either
the request or the reply are lost is that it gets blocked forever waiting for a receiving operation
accomplishment, for a server’s reply that will never arrive.

117

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

1.1. Test previous UDP client with delivery fail

To exhibit this issue, we can simply use one of the previous lesson’s UDP client with no server application
running on the other side (Figure 2).

Open one SSH session on ssh3. sl

Judp_cli :X 10.100.1.1
Run the client using an unreachable UDP

Request datagram
server IP address: q g

.Judp_cli 10.100.1.1

SSH
Session

There is no reply to the first request and
thus the client application gets blocked
forever, it never returns from the
recvfrom() function call.

User’s workstation

terminal

(ssh3) ./udp_cli 10.100.1.1

Figure 2 - UDP client sending a request with no server

1.2. Setting a read timeout

Solving this issue involves the UDP client only, the server keeps happily receiving requests (the ones that
reach it) and sending replies (not concerned if they reach the client).

The strategy for the client is to avoid blocking forever, thus, it will establish a maximum time for the arrival
of a reply, usually called a timeout, in this case, it is the server response timeout.

Both Java and C languages allow the setting of a timeout for socket operations, in Java by using the
setSoTimeout(int milliseconds) method of the Socket class, in C by using the setsockopt() function, with the
SO_RCVTIMEO option for receive timeout.

Setting a socket’s timeout has the same effect in C and Java sockets: reading/receiving operations that would
block until there is something to read/receive, will afterwards block only for up to the timeout value.

If the timeout expires without successfully reading/receiving data, the method or function will unblock with

an error, in the case of Java, a SocketTimeoutException exception is raised, in the case of C the used function
returns -1.

1.2.1. UDP client with server reply-timeout in Java language (UdpCliTo.java)

import java.io.*;
import java.net.*;

class UdpCliTo {
static InetAddress IPdestino;

private static int TIMEOUT=3;

public static void main(String args[]) throws Exception {
byte[] data = new byte[300];
String frase;

if(args.length!=1) {
System.out.println("Server IPv4/IPv6 address or DNS name is required as argument");
System.exit(1); }

217

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

try { IPdestino = InetAddress.getByName(args[0]); }

catch(UnknownHostException ex) {
System.out.println("Invalid server address supplied:
System.exit(1); }

+ args[0]);

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
DatagramSocket sock = new DatagramSocket();
sock.setSoTimeout (1000*TIMEOUT); // set the socket timeout

DatagramPacket udpPacket = new DatagramPacket(data, data.length, IPdestino, 9999);

while(true) {
System.out.print("Request sentence to send (\"exit\" to quit): ");
frase = in.readlLine();
if(frase.compareTo("exit")==0) break;
udpPacket.setData(frase.getBytes());
udpPacket.setLength(frase.length());
sock.send(udpPacket);
udpPacket.setData(data);
udpPacket.setLength(data.length);
try {
sock.receive(udpPacket);
frase = new String(udpPacket.getData(), @, udpPacket.getLength());
System.out.println("Received reply: " + frase);
} catch(SocketTimeoutException ex)
{System.out.println("No reply from server");}
}
sock.close();
}
}

1.2.2. UDP client with server reply-timeout in C language (udp_cli_to.c)

#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUF_SIZE 300
#define SERVER_PORT "9999"

// server reply timeout in seconds
#define TIMEOUT 3

// read a string from stdin protecting buffer overflow
#define GETS(B,S) {fgets(B,S-2,stdin);B[strlen(B)-1]=0;}

int main(int argc, char **argv) {
struct sockaddr_storage serverAddr;
int sock, res, err;
unsigned int serverAddrLen;
char linha[BUF_SIZE];
struct addrinfo req, *list;
struct timeval to;

if(argc!=2) {
puts("Server IPv4/IPv6 address or DNS name is required as argument");
exit(1);
}

bzero((char *)&req,sizeof(req));
req.ai_family = AF_UNSPEC;
req.ai_socktype = SOCK_DGRAM;

317

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

err=getaddrinfo(argv[1], SERVER_PORT , &req, &list);

if(err) {
printf("Failed to get server address, error: %s\n",gai_strerror(err)); exit(1);
}

serverAddrLen=1ist->ai_addrlen;

memcpy (&serverAddr,list->ai_addr,serverAddrLen);

freeaddrinfo(list);

bzero((char *)&req,sizeof(req));
req.ai_family = serverAddr.ss_family;
req.ai_socktype = SOCK_DGRAM;

req.ai_flags = AI_PASSIVE; // local address
err=getaddrinfo(NULL, "@" , &req, &list); // port @ = auto assign
if(err) {
printf(“"Failed to get local address, error: %s\n",gai_strerror(err)); exit(1);
}

sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);

if(sock==-1) { perror("Failed to open socket"); freeaddrinfo(list); exit(1);}

if(bind(sock, (struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {
perror("Failed to bind socket");close(sock);freeaddrinfo(list);exit(1);

}

freeaddrinfo(list);

to.tv_sec = TIMEOUT;
to.tv_usec = 0;
setsockopt (sock,SOL_SOCKET,SO_RCVTIMEO, (char *)&to, sizeof(to));

while(1) {
printf("Request sentence to send (\"exit\" to quit): ");
GETS(1linha,BUF_SIZE);
if(!strcmp(linha,"exit")) break;
sendto(sock,linha,strlen(linha), @, (struct sockaddr *)&serverAddr,serverAddrLen);
res=recvfrom(sock,linha,BUF_SIZE,®, (struct sockaddr *)&serverAddr,&serverAddrLen);
if(res>0) {
linha[res]=0; /* NULL terminate the string */
printf("Received reply: %s\n",linha);
}
else
printf("No reply from server\n");

close(sock); exit(@); }

1.2.3. Testing the new UDP client applications

Test the new UDP clients with the previous lesson’s UDP servers.

Open two SSH sessions, one in sshl and another in ssh3 sshi
ssh3. Judp_cli_to L —»{ /udp_srv
Place udp_srv running in sshl, then start udp_cli_to datg;zms
in ssh3 (Figure 3).

SSH SSH
.Judp_cli_to 10.8.0.80 Session session
or

User’s workstation

.Judp_cli_to fdle:2bae:c6fd:1008::80

" terminal
terminal _ (ssh1) udp_srv
(ssh3) udp_cli_to —

Test the new client when the server application is
running, and when it’s not (use CTLR+C to stop the

Figure 3 - UDP client and server on two SSH servers

417

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

server application). Now the client never gets
blocked.

The same layout to test the Java version (Figure 4), [&"® S

java UdpCliTo » .Judp_srv
on ssh3: : P [« ' P

UDP

datagrams

java UdpCliTo 10.8.0.80

SSH SSH

or . .
Session session

java UdpCliTo fdle:2bae:c6fd:1008::80

\User's workstation /
Again, test the new client when the server application : terminal
. . " terminal (ssh1) udp_srv
is running and when it’s not (use CTLR+C to stop the (ssh3) java UdpCliTo [lI*” -

server application). And again, now the client never

gets blocked.

Figure 4 - UDP client/Java and server/C on two SSH servers

2. Using broadcast

UDP has significant disadvantages over TCP, most notably the total lack of reliability. Also, UDP is
connectionless, this means data is sent in pieces, each transported by individual UDP datagrams, this may
present a challenge when large volumes of data are to be transferred because UDP datagrams payload size
should never be over 512 bytes).

Despite this, UDP has some advantages as well. First, it’s very simple and thus with less overhead, UDP can
be used to achieve a higher performance than TCP. This is true only as far as error rates are very low, for
instance in a LAN, otherwise TCP is a better solution.

One feature available in UDP, and not in TCP, is sending to a broadcast or multicast address. These addresses
represent sets of nodes, when a packet is sent to one of these addresses, all nodes belonging to that set will
receive a packet’s copy. Connection oriented protocols like TCP can’t use this, they are designed for
communications between two applications through a connection.

IGMP in IPv4 and ICMPv6 in IPv6 are used to manage multicast groups, namely, adding nodes to a multicast
group and removing nodes from a multicast group. In IPv4 (not in IPv6) there’s a special multicast address
known as the broadcast address; it represents all nodes belonging to an IPv4 network.

The main use of sending to a broadcast or multicast address is locating nodes in a network, if a UDP client
application sends the first request to a broadcast address, whatever the server address is, as far as it’s on
same IPv4 network it will be reached, after receiving the first reply the UDP client application then known
the server’s address and next requests don’t need to be sent to the broadcast address anymore.

Although, as you know, each IPv4 network has its own broadcast address, that should not be hardcoded into
applications as it would only work on that specific IPv4 network. Instead, the generic IPv4 broadcast address
should be used instead: 255.255.255.255.

2.1. Enabling broadcast

The use of broadcast addresses with UDP sockets is quite straight, it is just a matter of setting the UDP
datagram’s destination address to a broadcast address. However, both in C and Java, sending to broadcast
addresses is not allowed/enabled by default, prior to start sending, broadcast must be enabled.

5/17

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

In Java,

the DatagramSocket method setBroadcast(boolean on) enables or disables broadcast, in C the

setsockopt() function with the SO_BROADCAST option achieves the same goal.

2.2. Using broadcast in UDP clients

We will

now use broadcast in our UDP client applications to locate the server application, instead of requiring

the user to specify the server’s address we will locate it by sending the first request to the broadcast address.

Once a reply to the first request is received, then we then know the server’s address, so there is no point in
keep sending to the broadcast address.

2.2.1. UDP broadcast client in C language (udp_cli_bcast.c)

#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

f#tdefine
ftdefine
t#tdefine

// read
f#tdefine

int mai

BUF_SIZE 300
SERVER_PORT "9999"
BCAST_ADDRESS "255.255.255.255"

a string from stdin protecting buffer overflow
GETS(B,S) {fgets(B,S-2,stdin);B[strlen(B)-1]=0;}

n(int argc, char **argv) {

struct sockaddr_storage serverAddr;
int sock, val, res, err;

unsigned int serverAddrlLen;

char linha[BUF_SIZE];

struct addrinfo req, *1ist;

bzero((char *)&req,sizeof(req));
// there's no broadcast address in IPv6, so we request an IPv4 address
req.ai_family = AF_INET;
req.ai_socktype = SOCK_DGRAM;
err=getaddrinfo(BCAST_ADDRESS, SERVER_PORT , &req, &list);
if(err) {
printf("Failed to get broadcast address: %s\n",gai_strerror(err)); exit(1); }
serverAddrLen=1ist->ai_addrlen;
memcpy (&serverAddr,list->ai_addr,serverAddrLen); // store the broadcast address for later
freeaddrinfo(list);

bzero((char *)&req,sizeof(req));
req.ai_family = AF_INET;
req.ai_socktype = SOCK_DGRAM;

req.ai_flags = AI_PASSIVE; // local address
err=getaddrinfo(NULL, "@" , &req, &list); // Port @ = auto assign
if(err) {

printf("Failed to get local address, error: %s\n",gai_strerror(err)); exit(1); }
sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
if(sock==-1) {

perror(“"Failed to open socket"); freeaddrinfo(list); exit(1);}

// activate broadcast permission
val=1; setsockopt(sock,SOL_SOCKET, SO_BROADCAST, &val, sizeof(val));

if(bind(sock, (struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {

6/17

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

perror("Bind failed");close(sock);freeaddrinfo(list);exit(1);}
freeaddrinfo(list);

while(1) {
printf("Request sentence to send (\"exit\" to quit): ");
GETS(1linha,BUF_SIZE);
if(!strcmp(linha,"exit")) break;
sendto(sock,linha,strlen(linha),0, (struct sockaddr *)&serverAddr,serverAddrlLen);
res=recvfrom(sock,linha,BUF_SIZE,Q, (struct sockaddr *)&serverAddr,&serverAddrLen);
linha[res]=0; /* NULL terminate the string */
printf("Received reply: %s\n",linha);
}
close(sock);
exit(0);
)j

- We know the addresses used are IPv4, there is no broadcast in IPv6, so we request an IPv4 socket (AF_INET).
The server will receive the request in IPv4; thus it will reply using IPv4.

- When the server reply is received, the reply source address (server’s address) is stored in serverAddr and
thus it will be used as destination address for the next request in the next loop.

2.2.2. UDP broadcast client in Java language (UdpCliBcast.java)

import java.io.*;
import java.net.*;

class UdpCliBcast {
static InetAddress targetIP;

public static void main(String args[]) throws Exception {
byte[] data = new byte[300];
String frase;
targetIP=InetAddress.getByName("255.255.255.255");

DatagramSocket sock = new DatagramSocket();
sock.setBroadcast(true);
DatagramPacket udpPacket = new DatagramPacket(data, data.length, targetIP, 9999);

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

while(true) {
System.out.print("Request sentence to send (\"exit\" to quit): ");
frase = in.readlLine();
if(frase.compareTo("exit")==0) break;
udpPacket.setData(frase.getBytes());
udpPacket.setLength(frase.length());
sock.send(udpPacket);
udpPacket.setData(data);
udpPacket.setLength(data.length);
sock.receive(udpPacket);
frase = new String(udpPacket.getData(), ©, udpPacket.getLength());
System.out.println("Received reply: " + frase);
}

sock.close();

}

- When the server reply is received, the reply source address (server address and port number) is stored in
the datagram, and thus, will be used as destination address for the next request. Only the first request is
sent to the broadcast address.

mr

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

2.3. Testing
For the purpose of testing, start one of the previous lesson’s UDP servers in one of the SSH servers.

Now, run the new UDP broadcast client in another SSH server, or in your personal workstation, as far as it is
connected to the laboratories network it should work as well:

.Judp_cli_bcast or java UdpCliBcast

As you can see, no server address is provided to the client application, nevertheless it’s able to get a reply
from the server application by sending the first request to the broadcast address.

2.4, Testing again

Now, start more than one UDP server application (of course at different SSH servers), and while more than
one server application is running, start and test the broadcast UDP client application again:

.Judp_cli_bcast or java UdpCliBcast

Send successive different request strings using the client application, and check the replies you get,
what’s happening?

Something we have not foreseen...

The problem is, when sending a request to a broadcast address several replies may arrive (one for each
server on the network). However, our client application is reading one single reply for each sent request,
so additional received replies are kept in the client’s buffer.

After sending the second request, the client application reads a reply, but that’s not the reply to the second
request, instead, is a reply to the first request (kept in the buffer).

When using broadcast, this is a typical issue whenever there are several servers, and it must be
addressed properly by the client application. Yet this issue may arise or not, depending on the
number of servers in the network. Moreover, the number of replies we get for a request sent to
the broadcast address is not predictable, it’s the number of servers running on the network.

8/17

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

2.5. Solving the issue (multiple replies to a broadcast request)

Solving this issue is left for the student as extra classes work.
Tips about feasible alternative solutions:

- Use a receive timeout: after sending the first request do not read just one single reply, keep receiving all
available replies until there are no more, and the timeout expires. Though setting the correct timeout to
receive all replies may be tricky.

- Check the replies source addresses: when the first reply is received, store the source address, on next
requests ignore replies coming from other addresses.

- Send a special first request: the first request is not user entered, instead it is a special application-defined
string, and by doing so, on next requests (user entered) all replies containing the special string can be
ignored. Don’t forget the special string will be mirrored by the server. Also, it must be ensured that, by
great bad luck, the user will not type the exact same string, as defined by the application for the initial
request.

3. TCP (Transmission Control Protocol)

TCP is a reliable connection-oriented transport protocol with automatic error correction. It establishes a
dedicated communication channel (TCP connection) between a pair of applications. Through the TCP
connection, data is sent in a continuous byte stream, preserving the data sequence, and guaranteeing data
delivery.

Because is connection-oriented, prior to data transactions, a connection between two applications must be
established. One of the two enrolled applications must take the initiative of emitting a connection request
to the counterpart. In a client-server architecture, that role is therefore taken by the client.

Once the TCP connection is established between the two applications, data can be sent and receive simply
by writing and reading bytes, however, these operations must be synchronised at the byte level.

This is rather different from UDP, where synchronisation is at datagram level. In UDP, a datagram sending
operation in one application must match a datagram receiving operation in the counterpart, however, the
application receiving a datagram is not required to specify how many bytes it will be receiving, just that is
receiving a datagram, the number of bytes transported by the datagram will be known after receiving.

With TCP, a byte level synchronisation is required, this means the writing (sending) of N bytes in one
application, must be matched by the reading (receiving) of exactly the same N bytes in the counterpart
application.

If the number of bytes we try to read is less than those written, some will be unread and will appear in the
next reading operation. If the number of bytes we try to read is greater than those written, then, the reading
operation will block waiting for the missing bytes.

In TCP, synchronisation is a key feature to be settled by the application protocol, for the required byte level
synchronisation on TCP connections, three approaches can be used:

a) Use a pre-agreed fixed number of bytes in each transaction, this way the reader always knows how
many bytes it should read.

b) Before sending the data itself, send information about the number of bytes the data is made of. The
reader starts by getting the data length, then it knows how many data bytes it should read next. This
solution is used in HTTP protocol, where the message header has a Content-Length field indicating
the number of bytes in the message’s body.

917

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

c) Use aspecific pre-agreed byte (or bytes sequence) as an end-of-data marker. Thus, the receiver must
then read one byte at a time, and check if it’s the end-of-data marker. This solution is also used in
HTTP, the CR+LF sequence is used to mark the end of each header’s line, also, the CR+LF+CR+LF
sequence (an empty line) is used to mark the header’s end.

This last alternative is easy to implement if data is made of a limited set of possible byte values, like with
ASCII text. If data bytes are allowed to have any value, additional processing will be required, namely, any
mark value occurring in data will have to be masked on the sender and unmasked on the receiver to avoid
being wrongly interpreted.

4. Using TCP with Berkeley Sockets — C Language

4.1. TCP connection establishment

As mentioned before, to establish a TCP connection two applications must assume different roles, therefore
each will use a different function to perform its specific role.

int connect(int socket, struct sockaddr *address, int address_len);

connect() — is called by the application wishing to create the TCP connection (the TCP client), for successful
completion, this must match an accept() function call on the counterpart. The connect() function receives as
argument a pointer to a caller-defined structure with the server’s IP address and port number, to where the
connection request will be sent. If an error occurs it returns -1, otherwise the TCP connection is established,
and the socket is then connected to the counterpart.

int accept(int socket, struct sockaddr *address, int *addrlen);

accept() — is called by the application wishing to receive a TCP connection request (the TCP server), this is a
blocking function, if when called, there are no pending connection requests it will wait until one arrives. If
address is not NULL it will be used to store the counterpart’s IP address and port number, if so the value in
addrlen must be defined by the caller otherwise it can also be NULL.

When the accept() function unblocks with no error (on error it returns -1), the TCP connection is established
and a new socket is returned. The new socket, returned by accept(), is connected to the counterpart. The
original socket, used in the accept() function call, is kept open and available for receiving other TCP
connection requests from other clients.

4.2. Sending and receiving data (reading and writing)

Once the TCP connection is established, sending and receiving data can be accomplished by using the
standard write() and read() functions over the connected socket (Figure 5). Data is sent and received in a
continuous byte stream, synchronization is required when establishing the connection (connect/accept), and
afterwards when transferring data (write/read).

TCP client TCP server

connect » accept

H

write > — read

!

read |<-— TCP connection -« write

read — -« write

.
~

)

Figure 5 - Connect/accept and write/read synchronization in TCP (C language)

10/17

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

4.3. Multi-process TCP servers

ATCP server job is complex because it must be always available to accept new incoming connection requests,
on one hand, and at the same time it must read incoming requests from already connected clients, in every
already connected socket. Each time the accept() function returns with success, there is one more connected
socket for the server application to handle with. One way to solve this issue is by creating a parallel sub-task
(e.g., process or thread) for each socket.

In the following typical implementation layout, the parent process keeps calling the accept() function. For
each established connection, it creates a child process with the purpose of handling the connected client
requests on the new socket.

for(;;) {

newSock=accept(sock, ..);

if(!fork()) { // child process
close(sock);
/* process all client requests on newSock */
close(newSock);
exit(9); // child exits
}

close(newSock); // parent process

}

Using this type of solution has some advantages, each client has an independent process dedicated to it, thus
interferences between sessions of different clients are unlike, on the flip side, if some type of interaction
between clients’ sessions is required, then IPC (Inter Process Communication) will have to be used.

4.4. Port numbers and pending requests queue

As usual for clients, a TCP client doesn’t need a fixed local port number, in fact, for TCP clients, binding is
optional. If when the connect() function is called the socket is not bound, it will be bound to one local free
port number.

Again, as usual for servers, the TCP server must use a fixed local port number so that clients know to where
they should send the connection request.

Additionally, after binding to a fixed local port number, the TCP server must also set the size of the pending
connections requests queue (pending stands for not yet accepted), the maximum possible size is defined by
SOMAXCONN.

A code example for a TCP server socket setup is:
bind(sock, ...);
listen(sock, SOMAXCONN);
newSock=accept(sock, ...);

5. Using TCP with Berkeley Sockets — Java Language

5.1. TCP connection establishment

In Java, there’s a specific class for TCP connections requests reception: the ServerSocket class. One of the
constructors receives the local port number where connection requests will be received:

public ServerSocket(int port) throws IOException
Of course, this class will be used by the TCP server application.

The TCP client takes the initiative of sending a connection request to the server by instantiating the Socket
class, one of its constructors receives an IP address and a port number:

public Socket(InetAddress address, int port) throws IOException

117

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

The connection establishment will be successful if on the specified IP address there’s a TCP server application
using the specified local port number and calls the accept() method of the ServerSocket class. As with C
language, the accept() method is blocking and waits for the next connection request. On success, the accept()
method return a new socket connected to the client, in this case it will be a Socket class object.

5.2. Sending and receiving data (reading and writing)

Like in Clanguage, after the connection has been established sending and receiving data can be accomplished
using the write() and read() methods, respectively. In the case of Java, not directly over the connected socket,
but over the connected socket’s OutputStream and InputStream, respectively.

TCP server

TCP client | ServerSocket(port) |
|Socket(IP, port) | :I .acceétgi |

.read()

.write()

v
|

read() |- TCP connection «— write()

.read() write()

~_—
N’
I
4
R
<

Figure 6 - Connect/accept and write/read synchronization in TCP (Java language)

5.3. Multi-thread TCP servers

A TCP server in Java has the same complex job to perform as in C language, again, parallel sub-tasks can be
used, and for Java we will use threads.

For each new accepted connection, a new thread will be started to handle it:
ServerSocket sock = ServerSocket(PORT);
Socket cliSock;
while(true) {
cliSock=sock.accept();

new Thread(new tcp_client_thread(cliSock)).start();

}

6. Implementing a simple TCP client and server

Create a TCP client and a TCP server with the following features and application protocol specification:

- The server IP address (IPv4, IPv6 or DNS name) is provided to the client as the first argument at the
command line.

- Once connected, the client sends a list of integer numbers terminated with the zero value.

- The server accepts TCP connections from clients. For logging, each new connection and disconnection
should be presented at the server console, showing the client IP address and port number.

- The server calculates the sum of the sent integers and sends back the result.
- When the client wants to exit it should send an empty list (started by the zero value).

- Each integer is sent as a sequence of 4 bytes in order of increasing significance, i.e., first the LSB (Least
Significant Byte) and last the MSB (Most Significant Byte).

12117

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

So, the sequence of bytes A, B, C, D represents the number given by:
NUMBER = A + 256xB + 256x256xC + 256x256x256xD
For instance:
The number 10 is sent as the sequence of bytes: 10,0, 0,0

The number 300 is sent as the sequence of bytes: 44,1, 0,0

This might look an odd way of sending an integer number. The problem is, directly sending integer numbers
as they are stored in the local host’'s memory is not an option because they can be stored differently in the
source host and destination host, for instance when a Java client is sending to a C server.

Of course, one other often used option to send data in an implementation independent representation, is by
sending the humanly readable representation of data. This application protocol could specify that each
integer is sent in the form of its text representation.

This is a good option because all programming APIs have function to parse most data types from textual
representations into local storing and also functions to produce textual representations from local storing.

6.1. The TCP client in C language (tcp_cli_sum.c)

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUF_SIZE 30
#define SERVER_PORT "9999"

// read a string from stdin protecting buffer overflow
#define GETS(B,S) {fgets(B,S-2,stdin);B[strlen(B)-1]=0;}

int main(int argc, char **argv) {
int err, sock;
unsigned long f, i, n, num;
unsigned char bt;
char linha[BUF_SIZE];
struct addrinfo req, *1ist;

if(argc!=2) {
puts("Server's IPv4/IPv6 address or DNS name is required as argument");
exit(1);
}

bzero((char *)&req,sizeof(req));
// let getaddrinfo set the family depending on the supplied server address
req.ai_family = AF_UNSPEC;
req.ai_socktype = SOCK_STREAM;
err=getaddrinfo(argv[1], SERVER_PORT , &req, &list);
if(err) {
printf("Failed to get server address, error: %s\n",gai_strerror(err)); exit(1); }

sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);
if(sock==-1) {
perror(“"Failed to open socket"); freeaddrinfo(list); exit(1);}

if(connect(sock, (struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {

13/17

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

perror("Failed connect"); freeaddrinfo(list); close(sock); exit(1);}

do {
do {

printf("Enter a positive integer to SUM (zero to terminate): ");

GETS(linha,BUF_SIZE);

while(sscanf(linha,"%1i",&num)!=1 || num<@) {
puts("Invalid number");
GETS(linha,BUF_SIZE);
}

n=num;

for(i=0;i<4;i++) {
bt=n%256; write(sock,&bt,1); n=n/256; }

while(num);
num=0; f=1; for(i=0;i<4;i++) {read(sock,&bt,1); num=num+bt*f; f=f*256;}
printf("SUM RESULT=%lu\n",num);
}
while(num);
close(sock);
exit(0);
}

To create the appropriate socket, the same tactic as with previous UDP clients is used: let getaddrinfo()
determine the address family of the provided server address, and then, create the local socket accordingly.

Nevertheless, other strategies are possible to support both IPv4 and IPv6 addresses, one would be, using
always an IPv6 socket. The issue when using an IPv6 socket is it can’t handle an IPv4 server address. The
solution would require determining if the server’s address is IPv4, and in that case transform the IPv4 address
into IPv4-Mapped (A.B.C.D -> ::ffff:A.B.C.D).

Back to the example code, the SOCK_STREAM (TCP) socket is then created using the values provided by
getaddrinfo() and the TCP connection is established to the server node IP address and port number. If the
connection establishment fails (for instance because the server is not running), then connect() returns -1.

For each user-entered integer number, the four bytes representing it are sent to the server, when the number
sent is zero (end of the list), the server is supposed to send back a reply, also as an integer in the form of 4
bytes.

If the reply is zero, this means we have sent an empty list and want to exit, so we close the socket, and thus
the TCP connection.

6.2. TCP client in Java language (TcpCliSum.java)

import java.io.*;
import java.net.*;

class TcpCliSum {
static InetAddress serverlIP; static Socket sock;
public static void main(String args[]) throws Exception {
if(args.length!=1) {
System.out.println("Server IPv4/IPv6 address or DNS name is required");
System.exit(1); }
try { serverIP = InetAddress.getByName(args[0]); }
catch(UnknownHostException ex) {
System.out.println("Invalid server specified:
System.exit(1); }
try { sock = new Socket(serverIP, 9999); }
catch(IOException ex) {
System.out.println("Failed to establish TCP connection");
System.exit(1); }
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
DataOutputStream sOut = new DataOutputStream(sock.getOutputStream());
DataInputStream sIn = new DataInputStream(sock.getInputStream());

+ args[0]);

14/17

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

String frase; long f,i,n,num;
do {
do {
num=-1;
while(num<@) {
System.out.print(
"Enter a positive integer to SUM (zero to terminate): ");
frase = in.readlLine();
try { num=Integer.parseInt(frase); }
catch(NumberFormatException ex) {num=-1;}
if(num<@) System.out.println("Invalid number");

}
n=num; for(i=0;i<4;i++) {sOut.write((byte)(n%256)); n=n/256; }

while(num!=0);

num=0; f=1;

for(i=0;i<4;i++) {num=num+f*sIn.read(); f=F*256;}
System.out.println("SUM RESULT = " + num);

}

while(num!=0);
sock.close();

}

It's basically similar to the C language implementation, the TCP connection is established by instantiating a
Socket class object specifying to the constructor the server’s IP address and port number.

For reading and writing through the established TCP connection, the connected socket’s InputStream and
OutputStream are required.

6.3. TCP server in C language (tcp_srv_sum.c) — Unix Multi-Process

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUF_SIZE 300
#define SERVER_PORT "9999"

int main(void) {
struct sockaddr_storage from;
int err, newSock, sock;
unsigned int adl;
unsigned long i, f, n, num, sum;
unsigned char bt;
char cliIPtext[BUF_SIZE], cliPortText[BUF_SIZE];
struct addrinfo req, *list;

bzero((char *)&req,sizeof(req));

// requesting a IPv6 local address will allow both IPv4 and IPv6 clients to use it

req.ai_family = AF_INET6;

req.ai_socktype = SOCK_STREAM;

req.ai_flags = AI_PASSIVE; // local address

err=getaddrinfo(NULL, SERVER_PORT , &req, &list);

if(err) { printf("Failed to get local address, error: %s\n",gai_strerror(err)); exit(1); }

sock=socket(list->ai_family,list->ai_socktype,list->ai_protocol);

if(sock==-1) { perror("Failed to open socket"); freeaddrinfo(list); exit(1);}

if(bind(sock, (struct sockaddr *)list->ai_addr, list->ai_addrlen)==-1) {
perror("Bind failed");close(sock);freeaddrinfo(list);exit(1);}

freeaddrinfo(list);

listen(sock, SOMAXCONN) ;

puts("Accepting TCP connections (IPv6/IPv4). Use CTRL+C to terminate the server");

15/17

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

adl=sizeof(from);
for(5;) {
newSock=accept(sock, (struct sockaddr *)&from,&adl);
if(!fork()) {
close(sock);
getnameinfo((struct sockaddr *)&from,adl,cliIPtext,BUF_SIZE,
cliPortText,BUF_SIZE, NI_NUMERICHOST|NI_NUMERICSERV);
printf("New connection from %s, port number %s\n", cliIPtext, cliPortText);
do {
sum=0;
do {
num=0;f=1;
for(i=0;i<4;i++) {
read(newSock,&bt,1); num=num+bt*f; f=256*f; }
sum=sum+num; }
while(num);
n=sum;
for(i=0;i<4;i++) {
bt=n%256; write(newSock,&bt,1); n=n/256; }
}
while(sum);
close(newSock);
printf("Connection %s, port number %s closed\n", cliIPtext, cliPortText);

exit(0);
close(newSock);
}
close(sock);

}

Using an IPv6 socket will allow both IPv4 and IPv6, however, IPv4 addresses will be handled as IPv4-Mapped.

After opening the SOCK_STREAM (TCP) socket, it's bound to the local address (including the fixed port
number), and the pending connections request queue size is defined (listen).

The main (infinite) loop calls accept(), when it unblocks, it returns a new socket connected to the client
(newSock), fork() is then used to create a child process to handle the client’s requests on newSock,
meanwhile the parent process calls accept() again for additional clients.

6.4. TCP server in Java Language (TcpSrvSum.java) — Multi-Thread

import java.io.*;
import java.net.*;

class TcpSrvSum {
static ServerSocket sock;

public static void main(String args[]) throws Exception {
Socket cliSock;
try { sock = new ServerSocket(9999); }
catch(IOException ex) {
System.out.println("Failed to open server socket"); System.exit(1);

}
while(true) {

cliSock=sock.accept();
new Thread(new TcpSrvSumThread(cliSock)).start();

}
}

class TcpSrvSumThread implements Runnable {
private Socket s;
private DataOutputStream sOut;
private DataInputStream sIn;

public TcpSrvSumThread(Socket cli_s) { s=cli_s;}
public void run() {

16/17

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

long f,i,num,sum;

InetAddress clientIP;

clientIP=s.getInetAddress();

System.out.println("New client connection from " + clientIP.getHostAddress() +
", port number " + s.getPort());

try {
sOut = new DataOutputStream(s.getOutputStream());
sIn = new DataInputStream(s.getInputStream());
do {
sum=0;
do {
num=0; f=1; for(i=0;i<4;i++) {num=num+f*sIn.read(); f=f*256;}
sum=sum+num;
while(num>0);
num=sum;
for(i=0;i<4;i++) {sOut.write((byte)(num%256)); num=num/256; }
}
while(sum>0);
System.out.println("Client " + clientIP.getHostAddress() +
", port number: " + s.getPort() + " disconnected");
s.close();
}
catch(IOException ex) { System.out.println("IOException"); }
}

}

Two classes are defined in the same source file, the application itself on class TCPSrvSum implementing the
main() method, and the TcpSrvSumThread class defines a thread to be created for each connected client.

A ServerSocket class object is instantiated, the constructor receives the local port number where TCP
connections are to be received. Then the accept() method is called in a loop, for each established connection
a thread is created and started.

6.5. Applications testing

- After changing the port numbers in both the source files (client and server), place one server application
running on a node.

- In another node, use the client application to connect to the server, test it by sending a zero-terminated
sequence of integer numbers.

- Test the server application with several clients connected.

- Test both with C and Java versions.

Additional exercise - extra classes work.

Implement the required changes to one of the example TCP servers (C or Java) in order to add the following
feature:

- The server application receives as command line arguments, a list of IP addresses.

- When a connection request is accepted, the server checks if the client’s address is on the list, if so,
proceeds normally, and otherwise closes the connection (refuses the unknown client).

- In either case, at the server console, a message should indicate if the client access was granted or not.

Note: in the case of the C language version of the server, one additional issue arises: an IPv6 socket is used,
therefore IPv4 clients’ addresses will appear as IPv4-Mapped format.

1717

Instituto Superior de Engenharia do Porto (ISEP) — Licenciatura em Engenharia Informética (LEI) — Redes de Computadores (RCOMP) — André Moreira (ASC)

