
Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 1/12

SWitCH – Computing systems and networks (SCOMRED)

2018/2019

Laboratory Script – Week 03

IMPERATIVE: After each practical activity (in yellow), students are
supposed to reflect on results, and wait for the teacher’s acknowledgment
before progressing to the next practical activity in this script.

1. Input/Output Redirection

In Linux, whenever a new process is started to execute a program, this new process sees three files that
it can used for input/output: stdin, stdout and stderror:

 stdin (0): standard input. By default, the keyboard;

 stdout (1): standard output. By default, the terminal;

 stderr (2): standard error. By default the terminal.

All open files are represented internally by what are called file descriptors and these are represented by
numbers starting at zero: stdin is file descriptor 0 (zero), stdout is file descriptor 1 (one), and stderr is
file descriptor 2 (two).

We can redirect the three standard file descriptors to, for example, get input from either a file or another
command instead of from our keyboard. We can also, for example, write output and errors to files, or
send them as input to other subsequent commands. This is a very useful and common feature of Linux.

We perform I/O redirection using ‘>’ and ‘<‘. Let us see a few examples.

ls -1 > file-list.txt

In this example, we redirect the stdout of the command ls
to a file called file-list.txt. The command ls -1 lists
each file in a single line, with no further info1 and this output
will be written to file-list.txt instead of printed to the
terminal as usual.

cat < file-list.txt

Here, we redirect the stdin of the command cat to file-
list.txt. Because cat (with no arguments) waits to receive
input from stdin and prints it to stdout, the result is that cat
will print the contents of the file2.

1 You can execute ls -1 and see the output for yourself before redirecting it.
2 This is similar to the result of issuing the command cat file-list.txt. The difference is that we achieved it with I/O
redirection instead of passing the file as argument to the command.

Program
stdin

stdout

stderr

ls
stdin

stderr

stdout
file-list.txt

cat

stdin

stderr

stdout

file-list.txt

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 2/12

We can specify the file descriptor number of the file we want to redirect: ’1>’ for stdout and ’2>’ for
stderr. Usually, we do not use ’1>’ as this is the default redirection. For example:

ls afile.txt 2> errors.txt

will result in printing the name of the file (the output of ls
afile.txt) to the terminal, but any errors encountered by
ls , for example, if afile.txt does not exist (which should
be printed to stderr) will be output to the file errors.txt
instead of the terminal.

We could also redirect the output of ls afile.txt to a file (file-list.txt) as before3:

ls afile.txt > filelist.txt 2> errors.txt

To specify both stdout and stderr use ‘&’. For example:

ls afile.txt &> all-output.txt

Will redirect both stdout and stderr to the file all-
output.txt.

We can combine redirections (wc –l counts the number of lines in a file):

wc -l < file-list.txt > number.txt

We redirect the stdin of wc to the file file-list.txt.
Then, wc –l will output the number of lines of the file,
which is redirected to the file number.txt.

Important: Using ‘>’ for redirection will clear the destination file. Use ‘>>’ to append to the contents of
the file:

ls >> file-list.txt

The above command will add to the contents of the file file-list.txt.

PRACTICE:

Use cat 4 and I/O redirection to:

a) Create a file named test1, type "Line1" and press Ctrl-D.

b) Create a file named test2, type "Line2" and save it by pressing Ctrl-D.

c) Create a file named test3, type "Line3" and save it by pressing Ctrl-D.

d) Concatenate the files test1 and test2 into a file named newtest.

3 This is equivalent to ls afile.txt 1> file-list.txt 2> errors.txt. We usually omit the ‘1>’.
4 cat: a command-line utility that waits for input entered and outputs it to stdout (Ctrl+D exits; to be more precise, it
sends a special character called EOF – End Of File – which tells cat that the input ended, thus it can terminate)

ls
stdin

stderr

stdout

errors.txt

ls
stdin

stderr

stdout all-output.txt

wc
stdin

stderr

stdout

file-list.txt

number.txt

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 3/12

e) View the contents of newtest.

f) Append the file test3 at the end newtest.

g) View the contents of the newtest file.

h) Append the following text to newtest: "Line4".

i) View the contents of the newtest file.

Pipes

The philosophy of Linux (originating from UNIX) is to write many simple programs that can be put
together to produce more complex behaviour. This is often achieved with the help of pipes.

Pipes allow to redirect the output of one program to the input
of another and, in the shell, it is represented by the vertical
bar ‘|’. Suppose you have 3 different programs (program1,
program2, program3), each reads from stdin and produces
a result to stdout. You could “pipe” these programs together:

program1 | program2 | program3

In the above, the output of program1 is sent to program2 which produces an output that is sent to
program3.

Let us see a more concrete example. We will use ls -1 to produce a list of files (one per line: ‘-1’ option),
feed this list to wc -l that will count the number of lines in the list of files (received via stdin) and write
this to a file called number.txt:

ls -1 | wc –l > number.txt

Let us look at a few more useful examples. Get only the first three files listed by ls:

ls | head –n3

Get only the third file listed by ls:

ls | head –n3 | tail –n1

Get the largest file (ls -S -1 lists files line by line, sorted by size):

ls –S -1 | head –n1

Sort some input and save results to a file (sort is a utility that sorts lines of text received in stdin,
printing them to stdout):

echo -e ”third \nfirst \nsecond" | sort > sorted-lines.txt

PRACTICE:

a) Try the command dmesg5 . Try to use a pipe and the less (less is a command that receives input
from stdin and prints this output page-by-page) to see the output of dmesg page-by-page.

5 dmesg is an utility that prints all startup messages. It is usually a very long output.

Program 2Program 1
stdout stdin

pipe

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 4/12

In the command line, write6: shuf -i 1-100 -r -n 200 > numbers.txt

b) What will the above command do (see footnote5)?

c) Using the command uniq (which receives input from stdin and outputs to stdout only the
unique values) write only the numbers that are not repeated in the file numbers.txt to a new file
called unique_numbers.txt.

d) Use the command sort -g (-g tells sort to treat the input as numbers) and the command head7,
to get the smallest number in numbers.txt.

2. The Global Regular Expression Print - grep

The grep is one of the most useful Linux programs. It is used to search the input for a pattern and, when
this pattern is found, it prints the lines matching it. The patterns matched by grep are defined using
regular expressions, which we will discuss later. Let us start with some simple grep examples.

Find lines with ‘dorian’ (caps matter for grep; this will not match “Dorian”) in the file pg174.txt:

grep 'dorian' pg174.txt

Find lines with ‘dorian’ in several files:

grep 'dorian' file1.txt file2.txt file3.txt

Feed grep input from stdin:

cat pg174.txt | grep 'dorian'

Feed grep input from stdin, in this case produced by ls (grep will try to match lines with “afile”):

ls | grep 'afile’

PRACTICE:

a) Using grep, find the details of a user with “switch” in its username (in /etc/passwd).

b) Find if the word “error” was output during system startup (use dmesg to output system startup
messages)8.

6 The command shuf -i 1-100 -r -n 200 will generate 200 random numbers between 1-100.
7 You should know what head does by now; if not: man head
8 Use the grep options -Bn and -An to print some context of the line where the pattern was found: n lines before (-Bn)
and n lines after (-An). Replace n with an integer. E.g.:
grep -B5 -A5 “word”
will print 5 lines before and after the line where “word” was found.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 5/12

Regular Expressions

A regular expression (sometimes called regex or regexp) is defined with a sequence of characters, where
some characters have particular meanings. These expressions can be used to search, edit and manipulate
text. They can be very powerful but difficult to understand, particularly for newcomers.

Regular expressions are used by many tools and text editors. Most programming languages (e.g. Java,
Perl, Python, etc) have some support for regular expressions. Unfortunately, there are small syntax
differences in the several implementations of regular expressions, so some regular expressions might
work slightly differently in different tools/applications. In this case, we are using grep, and the regular
expressions here are to be used with this tool.

Let us see some simple regular expression examples.

Regular
expression

Meaning Example matches

”a string” Matches any line with “a string” in it “a string”, “this is a string”, “a sentence
with a string”, …

”
a\s+string”

Matches ”a”, followed by one or
more whitespace characters (‘\s+’)
followed by the word ”string"

“a string”, “a string”, “a string”,
“any sentence with a string”, …

”^a string$” Matches the entire input line with
exactly “a string” (’^’ means start;
’$’ means end).

”a string” (only)

As a first example, use the following to match all lines that start with “CHAPTER” in the file pg174.txt:

grep “^CHAPTER” pg174.txt

Now that you have the general idea of what regular expressions do, have a look at this quick reference:

\ Does not interpret the next character (to ignore special characters: ‘.’, ‘+’, ‘*’,...)
^ Matches the beginning of a line
$ Matches the end of the line
. Matches any character

\s Matches whitespace
\S Matches any non-whitespace character
* Repeats previous character zero or more times
? Repeats previous character zero or one time (requires “–E” option)
+ Repeats previous chracter one or more times (requires “–E” option)

{3} Matches previous character 3 times (requires “–E” option)
[aeiou] Matches a single character in the listed set
[^XYZ] Matches a single character not in the listed set
[a-z0-9] The set of characters can include a range

(...) Capture everything enclosed (requires “–E” option)
(a|b) Match either a or b (requires “–E” option)

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 6/12

Note that some options are what grep defines as extended functionality and require the -E option.

Using these, let us see a few more examples.

Regular expression Meaning Example matches

”b[aeiou]t” Match any string with a “b”
followed by any of the characters
“a”, ”e”, “i”, “o”, “u”,
followed by “t”.

"bat", "bet", "bit", "bot”, "but”,
"cricket bat", "bitter lemon”

”^[0-9]+(\.[0-9]+)?” Matches a string started (’^’) by
one or more digits (‘[0-9]+’),
followed by zero or more
occurrence (‘?’) of the character
“.” (‘\.’), followed by one or
more digits (‘[0-9]+’).

"5", "1.5”, "2.21”, …

” ^[a-z0-9]{5,15}$” Matches a string with only letters
and numbers and a length between
5 and 15 characters.

“astring”, “12345”, “aaaaa”,
“abcdefgh123456”, …

PRACTICE:

Using grep, find sentences in the file pg174.txt:

a) Find sentences attributed to Lord Fermor (sentences with “said Lord Fermor”).

b) Find sentences starting with the word “He”.

c) Find sentences that are completely within quotes (start and end with “).

d) Find sentences with “asked you” or “asked me”.

e) Find the last 5 lines of each chapter.

f) Find the first 5 lines of Chapter 1 and Chapter 10 to Chapter 19.

3. The find command

The find command is another very useful common utility in Linux. It can be used to search files and
directories based on many criteria, such as: name, permissions, file type, user, group, date, or size.

The basic find command arguments are as follows:

find start_directory test options criteria_to_match action_to_perform_on_results

Let us see some examples. The most common usage of find is to find a file by name:

find . -name "pg174.txt"

The above command will search for files named pg174.txt (-name pg174.txt) in the current directory
(.). Note that find will search inside all directories inside the current working directory. You can specify
any starting directory. For example, /home:

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 7/12

find /home -name "pg174.txt"

You can also use wildcards9 for the filename (* matches any number of characters; ? matches one
character). The following finds all files with .txt at the end of the filename:

find /home -name "*.txt"

The following finds all files with a filename composed of 4 characters followed by .txt:

find /home -name "????.txt"

You can also find files that do not match the criteria (-not) option (find files not named pg174.txt):

find /home -not -name "pg174.txt"

You can find files by filetype (d=directories, f=regular file):

find . -type d -name "somedirectory"

Find files by modification time (-mtime). When you use the -mtime option, you have to specify +/- the
number of days, where “-“ “means less than” and “+” means “more than”. So, to find files modified less
than 1 day ago:

find . -mtime -1

To find files modified more than 1 day ago:

find . -mtime +1

Find allows to execute commands on each file found with the option -exec. So, you can, for example,
find all .txt and search for a certain word (“dorian” in the example) using grep:

find . -name "*.txt" -exec grep "dorian" {} \;

In the example above, the commands after -exec will be executed for each file that matches the criteria.
The {} is used in place of the filename and \; is used to indicate the end of the input to the -exec option.

Another example where we run ls -l for each file found ({} is replaced by the filename):

find . -name "*.txt" -exec ls -l {} \;

9 A wildcard is a character that can be used as a substitute for a range of characters. This of wildcards as a simple version of
regular expressions.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 8/12

PRACTICE:

Inside you home folder, two files named test1.txt and test2.txt, and also two directories called
test1 and test210.

a) Use find to search for files named “test*” inside you home folder.

b) Use find to search for directories named “test*” inside you home folder.

c) Use find to remove all directories named “test*” inside you home folder.

d) Use find to remove write permissions all .txt files inside you home folder.

10 To create the file you can do: echo “this is a test” > filename; To create a directory, do: mkdir
directory_name

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 9/12

4. Getting help about commands (manual pages)

Nobody is supposed to know the syntax of every command, what a BASH user and script developer is
required to know is about the commands that exist and may be useful to him. Once the command name
is known, the man command may be used to get the exact syntax (arguments usage).

Manual pages are organized in sections (check man man), some sections are about commands, others
for instance about C functions, some pages exist in different sections because names are the same.

For instance printf, it’s an external command, the manual page is in section 1, however there’s also a
printf library C function available at section 3. By default the man command starts by searching the
manual page in section 1 (external commands).

One other issue regarding commands manual pages is about internal and external commands, the manual
pages are about external commands, to get information about internal commands the manual page of the
shell must be used, for instance for BASH man bash.

For the sake of efficiency many external commands have internal commands that replace them, usually
they will have the same features and syntax.

External commands can be directly called by specifying the full path, the full path of an external command
can be known by using the which command (as far as the executable file is on the PATH).

PRACTICE:

which printf

This returns /usr/bin/printf, that’s the external command, now try:

man printf

This is the manual page of the printf external command, extensive information can be also attained by
using the command’s --help option:

/usr/bin/printf --help

This is the internal BASH version:

printf --help

It doesn’t support the --help option. To get help you should use the BASH manual page (man bash),
though they should be similar.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 10/12

5. BASH scripts

We already know a BASH script is an executable text file (with the execute permission) that starts with
#!/bin/bash line. The operating system will then recognise this file as an interpreted program to be
executed by /bin/bash. The file should contain a sequence of lines with commands the BASH is able
to execute, they will all get executed one after the other, line by line, starting from the first line.

To create and edit text files a text editor is required, for beginners, either nano or the mc’s text editor are
two good alternatives. The nano text editor is already available as part of the packages that are installed
by default in your Linux distribution.

To use mc (GNU Midnight Commander), it must be installed first (optional):

sudo apt install mc

a) Create the following BASH script:

#!/bin/bash
echo "I've a number between 0 and 100, it may even be 0 or 100"
echo "Try to guess it!"
NUM=$(shuf -i 0-100 -n 1)
TRIES=0
GUESS=101
while [$NUM != $GUESS]; do
 read -p "Enter or guess please: " GUESS
 TRIES=$(($TRIES+1))
 if [$GUESS -gt $NUM]; then echo "Sorry, too large!"; fi
 if [$GUESS -lt $NUM]; then echo "Sorry, too short!"; fi
done
echo "Very well, you have guessed it in $TRIES tries"

Create this content in a new file named guessNumberGame in your current working directory, for
instance with nano type:

nano guessNumberGame

Warning: don’t copy & past the above content, you must type it by hand, otherwise some characters
won’t be correctly copied.

Give it the execute permission:

chmod +x guessNumberGame

Test the script by playing the game a couple of rounds.

./guessNumberGame

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 11/12

b) Add the following functionality to this script

For each user the best score he has ever achieved should be stored persistently. When each round ends,
he must be informed if he has or not beaten his previous best score, and a congratulations message
should be presented if so.

Suggestions:

- To be persistent, the best score must be stored in a file, to be personal, it should be stored in the
user’s home folder, for instance ~/.guestNumberGame.topScore

- To get the file’s content into a variable use VARNAME=$(cat ~/.guestNumberGame.topScore),
remember on the first round the file will not exist.

- To place a new value in the file just echo the variable’s value redirecting the output to the file.

Test the game again with the new functionality you have implemented.

How could you cheat the game as if you have achieved a previous best score of 2 tries only?

c) The following BASH script lists every valid user’s login name and home folder:

#!/bin/bash
USERSLIST=$(getent passwd|cut -d ":" -f 1,6)
for USR in $USERSLIST; do
 echo "${USR%:*} - ${USR#*:}"
done

To list valid users and valid groups, the getent command should be used instead of listing the contents
of files /etc/passwd and /etc/group. Valid users and groups in Linux may not be limited to those files
contents. The output format of getent is the same as on those files.

The output of the getent command is sent (through a pipe) to the cut command to extract required data,
the fields separator is the colon (-d “:”) and we want fields number 1 (username) and number 6 (home
folder). Each element of the list will have the format USERNAME:HOMEFOLDER.

Afterwards, by using the variable expansion with suffix and prefix pattern removal, the two elements are
isolated.

PRACTICE:

Create the script file with the above content, for instance named usershomes and test it.

Add a new functionality such as the script checks if the home folder exists and it’s a directory, if otherwise
a conforming warning message should be presented.

Suggestion: check the test command, man test. Even though this manual page is about the external
command, the internal test command should work the same way. You may also check it on the BASH
manual page (man bash).

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) - Nuno Pereira (NAP) - 2018/2019 12/12

d) Create a BASH script that for each valid group (getent group) counts how many valid users
(getent passwd) have that group as primary group.

Before proceeding let’s add two groups and some users having those groups as their primary group:

sudo groupadd scomredgrp1

sudo groupadd scomredgrp2

sudo useradd -m -g scomredgrp1 scomreduser1

sudo useradd -m -g scomredgrp1 scomreduser2

sudo useradd -m -g scomredgrp2 scomreduser3

Users named scomreduser1 and scomreduser2 have primary group scomredgrp1, and user scomreduser3
has primary group scomredgrp2.

Suggestions:

- The primary group of each user is a user account’s attribute (forth field), but is stored there as a
GID (Group Identifier). To list every user’s primary group GID (forth field) you may use:

getent passwd|cut -d “:” -f 4

- The group identifier (GID) of each group is an attribute of the group account (third field), to get
both the group name and GID (first and third fields) for every group you may use:

getent group|cut -d “:” -f 1,3

To go through the list of groups, use a for loop. Each element of this list will have the form
GROUP-NAME:GID

If one of these elements is stored in variable GNAMEGID, then you can extract the group name
by expanding it as ${GNAMEGID%:*}, and you can extract the GID by expanding
${GNAMEGID#*:}. In the first case it’s a prefix pattern removal and in the second case a suffix
pattern removal.

- Once you have the GID of each group, then you can use the grep command to filter user
accounts with that GID and pass the output (pipe) to the wc command to count the number of
lines (man wc for details).

Before adding commands to the script, test those commands on the command line to see if they are
working as expected.

The desired output for this script is a sequence of lines in the following format:

GROUPNAME - NUM users

Where NUM is the number of users having GROUPNAME as their primary group.

