RESTful Web Services

SCOMRED, November 2019

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt)

1

Web Services

The central concept on web services is the use of HTTP for application-to-application
communications without direct human intervention.

One application must assume the HTTP client’s role (service requestor or
consumer) and the other application the HTTP server’s role (service provider or
publisher). So, the web service is made available to the service requestor

applications by the service provider application. Of course, the same application can
be both a consumer and a provider.

Application B
Application A HTTP Request (URL B) >]
(service provider)
Consumer
(service requestor) Application C
HTTP Request (URL C) _
(_)onsumer Publisher
(service requestor) (service provider)

This is a very general concept, and allows programmers to implement it with high
freedom, for instance regarding what HTTP methods are going to be used, how
resources on the provider side are named, and which content types are going to be
used on data transfers between requestors and providers. As far as the HTTP
protocol is respected, everything is possible.

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt) 2

Web Services - constraints

Web Browser
(JavaScript/AJAX)

Application B

HTTP Server

HTTP Client

Application C

HTTP Requests

HTTP Requests

HTTP Server

There’s no obstacle for one application being both a consumer and a provider, and
we already know a standard Web Browser can also be a consumer by using
XMLHttpRequest JavaScript objects.

Therefore,

quite complex distributed

environments can be established through web services.

The general freedom in implementing web services tends to turn things somewhat
chaotic, thus some efforts have been done on instituting some rules and principles,

often referred to as constraints.

Application D

HTTP Server

Y 4

HTTP Client

One of these sets of constraints for web services architectures is known as RESTful,

standing for REST compliant.

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt)

RESTful web services architectural constraints

REST stands for Representational State Transfer, it's a constrained, resource-based
design model to implement web services. Main principles (constraints) are:

» Clients request operations over server-side resources (each identified by an URI),
operations over server side resources are. Create, Read, Update and Delete
(CRUD), each corresponds to a specific HTTP request method.

 Resources’ contents should be transferred in XML or JSON representations.
Nevertheless, HTML and others might be used if appropriate.

« Servers are stateless in the sense they don'’t store information about each client’s
dialogue context. Therefore, on every request clients must provide all required
context data for the operation.

« If the server has a state, then that state context must be represented by an
addressable resource (URI), clients may then refer that state context on requests.

RESTful web services consumer -
applications can request the Operation HTTP methods

following four operations over a Create aresource POST; PUT
resource (URI). Read/retrieve a resource GET
Update/Modify a resource PUT

Delete/remove a resource DELETE

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt)

4q

RESTful —resources and collections

The only safe method is GET, meaning it does not change the resource or the server
side. Methods PUT, GET, and DELETE are regarded as idempotent methods, this
means making more than one successive identical request over the same resource
has no additional effects beyond the effect of the first request.

A URI may refer to a single resource or a collection of resources, singular names
are to be used for single resources, plural names for a collection of resources.
Depending on being a single resource or a resources collection, HTTP methods will
represent different actions over the resource (URI):

HTTP method Single resource (singular name URI) Resources collection (plural name URI)

List the of resources items in the collection.
GET Retrieve the resource. Retrieved data is a list of resources’ URIs
and optionally other resources’ data.

PUT Replace the resource, if it does not exist, Replace the whole collection with another
create it. collection.
Not used because the URI would be Create a new resource item within the
POST regarded as a collection and a new collection collection. The new resource URI is
item would be created within it. automatically assigned.
DELETE Delete the resource. Delete the entire collection.

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt)

RESTful - URI naming (guidelines and best practices)

« A singular name for a single resource or a collection’s item/element.
« A plural name for a collection of resources.
» Verbs for controllers and functions.

* Notice that, excluding the origin (e.g. DNS server’'s name), the URI is
case sensitive.

« Use either camel casing or, preferably, lowercase with words separated
with hyphens (spinal case), instead of underscores (snake case).

« Avoid CRUD names (Create/Read/Update/Delete) for a URI.
* URI path elements should represent resources’ hierarchical structure.

« A URI path component can be used to represent a variable’s value, in
REST that’s the recommendation, nevertheless, a query string can also
be appended to a URI.

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt) 6

RESTful — Contents transfer

Resources’ contents must be transferred between providers and consumers (in
both directions) in an implementation independent representation.

Text (ASCIl characters organized in lines) is a universally supported concept and,
within some limits, it’s also acceptable for human reading. For those reasons it’s
widely used to represent data, nevertheless, rules must be established so that data
represented in text format can be analysed by applications.

We already are aware about the HTML specification that uses text, and yet HTML is
more focused on data presentation on not so much in data representation.

A somewhat similar, but more generic specification is Extensible Mark-up
Language (XML), RESTful constraints don’t impose the use of XML, but they clearly
point out to the use of either XML or JSON to represent generic data.

When web services resources are transferred between applications in XML format,
the Content-type: application/xml HTTP header line should be added.

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt)

7

Extensible Mark-up Language (XML)

XML is a data representation format through text, designed to be both human-
readable and also easy to be processed by applications.

As with HTML, XML encapsulates data within tags represented between symbols <
and >, but unlike with HTML where tag names have special meanings, in XML they
do not.

In XML tags may be freely established by applications conforming their needs. Also,
as mentioned before, HTML specifies a way to present data to end-users, XML
specifies only the data representation.

A XML content may optionally start by a special line called XML prolog:
<?xml version="1.0" encoding="UTF-8"?>

The XML prolog line is optional, but every XML content must have a root tag
embracing the whole content. Tag names are case sensitive and every opened tag
must be closed by an end tag. As with HTML, if a tag doesn’t have any data
(content) it may be closed immediately when started by ending it with /> instead
of >.

If a tag’s content includes the < symbol or the & symbol, they must be represented,
correspondingly by < and & to avoid parsing issues.

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt)

8

XML - tag’s attributes

XML tags may have attributes, attributes are pairs name=“value” declared
within the start tag, attribute names are also case sensitive and the attribute

value must always be quoted.

Tag’s attributes should be used to identify the data element and not data’s
properties, properties should be specified by sub tags.

Example:

<?xml version="1.0" encoding="UTF-8"?>

<users>
<user
<user
<user
<user

id=“100" />

1d=“101"></user>
1d=°102><name>ABC</name></user>
id=°“103">

<name>ABC</name>
<phone>9999909</phone>

</user>

</users>

In this example, <users> is the root tag. It contains four <user> tags, the first two
are empty (don’t have content).

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt)

Hypermedia As The Engine Of Application State (HATEOAS)

HATEOAS is a constraint of the REST application architecture. It means by accessing
and retrieving a resource, a REST client also retrieves a list of links representing
alternative actions from that point on. This is very similar to human web usage: when
a web page is reached there’s a set of alternative links to follow from that point.

This strategy makes the API discoverable by REST clients, though it's state
dependent. Only after accessing a URI follow up links are provided, they represent
possible state transitions from the initial state and may depend on the resource itself

or other factors, like for instance user authentication. Classic example using XML.:

GET /accounts/1111 HTTP/1.1
Host: example.com
Accept: application/xml

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: ...

<?xml version="1.0"?>

<account>
<account_number>1111</account_number>
<balance currency="usd">100.00</balance>
<link rel="deposit" href="/accounts/12345/deposit" />
<link rel="withdraw" href="/accounts/12345/withdraw" />
<link rel="transfer" href="/accounts/12345/transfer" />
<link rel="close" href="/accounts/12345/close" />

</account>

GET /accounts/1112 HTTP/1.1
Host: example.com
Accept: application/xml

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: ...

<?xml version="1.0"?>

<account>
<account_number>1112</account_number>
<balance currency="usd">0.00</balance>

<link rel="deposit" href="/accounts/12345/deposit"

<link rel="close" href="/accounts/12345/close" />
</account>

/>

Because account number 1112 has a zero balance, available actions are only deposit

and close.

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt)

10

Java APl for RESTful Web Services (JAX-RS)

A web services provider is an application that has to include an HTTP server.
Take for instance our lab classes, we are using the Apache web server to run
external applications through the CGI specification.

Nowadays, many programming languages have the option to include in the
developed application a ready to use HTTP server implementation.

One interesting RESTful Web Services API for Java is JAX-RS. In essence it
provides a set of annotations (javax.ws.rs package) that can be used on classes
and methods definition to turn them into Web Services providers, with a
minimal effort. There’s also a JAX-RS Client API (javax.ws.rs.client package) to
implement Web Services consumers.

The @Path annotation can be used both in a class declaration or in a method
declaration to establish the relative URI name (path), for instance:

@Path(“/users”)

Establishes the relative URI for all methods of the class or for a specific

method, correspondingly if used in a class declaration or in a method
declaration.

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt) 11

JAX-RS - URI names

The @Path annotation is relative to the context path, by default it’s the
project’s name, but it may be settled on the HTTP Server or project settings.
The @Path annotation is also relative to the application path, established
through the @ApplicationPath annotation (javax.ws.rs.core.Application.
subclass).

The final resulting URI is:
J/CONTEXT-PATH/APPLICATION-PATH/PATH

The @Path notation may be a template with variable elements of the URI
enclosed in braces. When declaring methods, those variable elements’ values
can be passed as arguments on runtime by using the @PathParam annotation.

Example: @Path("/users/{id}")
public String getUser(@PathParam("id") int id) {

}

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt) 12

JAX-RS — methods

A method may be declared to be a web service by using the following
annotations, corresponding to HTTP methods: @GET, @POST, @PUT,
@DELETE.

GET requests have no body (content), if a query string (embedded in the URI) is
used by the client, the elements of the query string can be obtained by using
the @QueryParam annotation and pass it as argument to the method.

For requests with a body (POST and PUT), the body’s content is passed to the
method as argument.

Java methods that are web services should return a result, the return value of
the method is the HTTP response to be sent to the client.

When applicable, received and produced content types should also be
declared, respectively through annotations @Consumes and @Produces.

Example: @ath("/echo")
@POST
@Consumes (“text/html”)
@Produces(“text/html”)
public String echoString(String content) {
return(content);

}

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt) 13

JAX-RS — @Context

The @Context annotation can be used to access information about the current

request. Data regarding the request’s properties is obtained as Java objects.
Examples for accessing the URI and HTTP headers:

@GET

public String get(@Context UriInfo ui) {
MultivaluedMap<String, String> queryParams = ui.getQueryParameters();
MultivaluedMap<String, String> pathParams = ui.getPathParameters();

@GET
public String get(@Context HttpHeaders hh) {

MultivaluedMap<String, String> headerParams = hh.getRequestHeaders();
Map<String, Cookie> pathParams = hh.getCookies();

This small introduction to JAX-RS is mainly intended to show by example there
are libraries and frameworks that make developing web services very simple.

Instituto Superior de Engenharia do Porto (ISEP) — Departamento de Engenharia Informatica(DEI) — SWitCH — Computing systems and networks (SCOMRED) — André Moreira (asc@isep.ipp.pt) 14

