
Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 1

The BASH and Command Line Utilities.
Variables. Conditional Commands.

Loop Commands. Input and Output Redirection.
Pipelining. BASH scripts.

SCOMRED, January 2021

The user’s initial program – the shell

When a user logins to a system through a terminal, a program

is automatically executed, this is an attribute of the user

account. If not defined in the user account a system’s default

initial program will be used.

This program to execute upon a successful login is usually a

commands interpreter called Shell, the shell is a command line

environment for interaction with the system through typed

commands.

The initial program execution is the user session, meaning

when this program exits the session ends (the user is logged

out). If the initial program execution fails, the user is

immediately logged out.

In Linux systems, the /etc/shells files contains a list of

allowed shells on the system, if a user’s initial program is

not there he will not be able to login. In Linux the default

Shell, of not defined otherwise in the user account, is

/bin/bash, the BASH (Bourne-again shell).

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 2

The shell

When a user logins to a system through a terminal, the shell is

executed, in a Linux system this means a process is created, so each

used logged in will have a running shell program dedicated to him.

Every shell establishes a command line environment, with several

status data, some of them are:

- The current working directory (CWD) - when a filename is referred

in a relative way (not starting by /) this is the reference

starting point.

- The shell prompt - notifies the shell is ready for a new command

and also presents useful information, often the username, the

hostname and the current working directory. Also the # character in

the prompt usually denotes the user is a super user.

- Environment variables – they hold values that represent the

configurations to be used and current status.

In Linux each process has several data attached to it, and that also

applies to the shell process. They encompass the current working

directory and environment variables for several purposes. For

instance the environment variable named PS1 is used to store the

prompt format to be displayed by the shell to the user.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 3

BASH (Bourne-again shell)

BASH (/bin/bash) stands for an improved version of the Bourn

Shell (/bin/sh). It’s the standard shell for most Linux

operating systems and is widely used in many other devices.

Every shell is able to understand a set of commands by itself

known as internal commands, if an unknown internal command is

typed, then the shell assumes it must be an external command.

External commands are not implemented by the shell itself they

must be available on the filesystem in the form of an

executable file (a file with the x permission), if so the

shell creates a new process to execute the file (transform it

into a running process).

The list of folders where executable files are searched

sequentially is stored in the environment variable named PATH.

If a typed command is not internal and an executable file with

that name is not found in any of the folders defined in the

PATH, then the shell will simply tell command not found.

However, even if the executable file is nowhere in the PATH

folders, it may still be executed if the full path to it is

used.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 4

Environment variables

Of course internal commands trend to run faster because it’s

not required to create a separate process an load into it the

executable file. Thus, for the sake efficiency, the BASH

implements several internal commands that mimic external

commands.

The external command which searches for a given command in the

PATH and shows where the corresponding executable file is, for

instance which echo will shown the echo external command is

/bin/echo, however, if you type the echo command in the BASH,

an internal version is used instead, to use the external

version you must directly type /bin/echo.

Variables are referred by names and they are places to store

data, some variable names are used for specific purposes (e.g.

PATH and PS1), unless we want to act on that specific purpose

those names should be avoided.

Beyond this notice, variable names may by arbitrarily defined

at will. Data stored in a variable is as well arbitrary, they

are simply strings of characters.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 5

Variables – assignment and reference

The assignment operation is implemented trough the equal

signal by typing the command:

NAME=VALUE

Where NAME is the variable name and VALUE the value to be

assigned to it. If the variable already existed, the

previously stored value is replaced, and thus lost, otherwise

a new variable name is defined.

Blank characters like space and tab are used by the shell as

separators of commands and elements in a list, thus to assign

to a variable a value that contains those characters the value

should be placed between double quotes.

NAME=“NEW VALUE”

The value stored in a variable may be fetched at any time by

referring the variable name with the $ prefix, for instance

echo $NAME prints on the terminal the content of the variable

named NAME. If variable named NAME is not defined no error

will occur, any undefined variable is valid, it’s simply

regarded has having an empty content.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 6

Variables – expressions processing

To remove a variable, or undefine it, we simply assign to it an empty

value:

NAME=

The BASH processes (expands) expressions that contain special

characters it recognises, this happens on every command, but is very

useful in assignment commands, if the value contains those special

characters it’s expanded and the result is then assigned to the

variable.

Let’s see some relevant cases of expressions the BASH will process.

$(command) – executes the command.

For instance the command LSRESULT=$(ls –la /), assigns to variable

named LSRESULT the result (output) of the ls –la / command.

${VARNAME} – evaluates to the value of variable named VARNAME.

The curly brackets are optional, they may be required to clearly

identify the variable’s name, for instance when concatenating a

string to a variable, for instance:

A=${A}TEST

Will store in the A variable its previous value with TEST appended.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 7

Expressions processing

$((arithmetic expression)) – evaluates arithmetic expression.

For instance the command SUM=$((200+300)), assigns to variable

named SUM the value 500. Of course instead of constants we

could also use variables, for instance:

A=200; B=300; SUM=$(($A+$B)); echo $SUM

Will echo the value 500 on the terminal. When evaluating an

arithmetic expression we must be sure used variables contain

numbers not strings otherwise an error will occur, also

arithmetic expressions are limited to integer numbers

floating-point numbers are not supported.

To use floating-point numbers an external program like bc

could be used.

From the example above, we can also see on a single command

line, a semicolon separated sequence of different commands can

be executed, they are executed one at a time, one after the

other from left to right.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 8

Processes in Unix

The use of a shell in a Unix system, like BASH in Linux, can be

better understood if we know how Unix Operating Systems in general

and Linux in particular creates processes and executes commands.

When the Linux kernel boots, it will start with one single process.

The name of the executable file to be loaded into this initial

process is passed to kernel through the init= argument, usually it’s

/sbin/init. All and every process running in the operating system

comes up from this initial process.

In Unix operating systems, a new process is created by calling the

kernel provided system-call fork(), but it might as well be named

clone. When a process calls fork() the kernel creates an exact copy

of the calling process, it’s really an exact copy, everything is

equal, code being executed, data and environment, it also includes

open files, if a file is opened (in use) in the original process it

will also be opened in the new process.

In fact, there is only one difference between the original process

and the copy, each process is identified by a unique number called

PID (Process Identifier), and that is the only difference. The

original process, also called parent, keeps the same PID it had, the

new process, also called child, has a new unique PID assigned to it.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 9

Commands execution in Unix

To start a new process we already know the kernel’s system-call

fork() is used, it creates an exact clone of the current process

(parent), called child.

When a child process terminates it returns to the parent process an

exit status code, it's an unsigned integer number. By convention the

exit code zero stands for a successful completion of the child

process (mission accomplished), an exit code greater than zero means

some error has occurred, the value itself may be used to represent

the error. The exit code is settled by the child process when it

exits, and is then passed by the kernel to the parent process.

The kernel provides another basic system-called called exec(), what

exec() does is replacing the code being run in the current process

with the code loaded from an executable file and executes it from the

start. This is how an application stored in a file is transformed

into a running process.

So, making it simple, to run a command we first use fork() and then

exec() on the child process.

The exec() function replaces only the code being executed, all other

characteristics of the process are thus inherited by the new running

code, including PID, environment variables and opened files.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 10

Processes interaction

Processes in Unix/Linux are closed boxes, meaning each process can

use only what is within the process. This makes the operating system

very stable.

Interactions of a process with the outside world (other processes and

system resources) are strictly controlled by the kernel.

Some relevant interactions with the outside world are:

- Exit code - when o process ends it settles an exit code, that is

transmitted to its parent process only.

- Signals – it’s possible to send a signal to a process, as far as

the sender has the appropriate permissions. The sender process must

be owned by an administrator or by the same user the target process

belongs to. When a process receives a signal it interrupts what it

was doing and executes a function defined for that signal (signal

handler), then returns back to what it was doing.

- File descriptors – to access external resources, a process must

request that to the kernel (open a resource), as result the kernel

assigns to the process a file descriptor that represents the

requested resource and allows access to it.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 11

File descriptors in Unix

In Unix/Linux file descriptors are unsigned integer numbers, usually

every process has three opened file descriptors that are inherited

from its parent (admitting they were opened in the parent process),

they are:

0 – named stdin, usually assigned to a keyboard device, allows a read

only access.

1 – named stdout, usually assigned to a display device, allows a

write only access.

2 – named stderr, usually also assigned to a display device, again

allows a write only access, but is meant to be used when presenting

error messages, unlike stdout that is meant to display normal

messages.

The term file descriptor is misleading, in fact they are used to

handle files, but they are also used to access a wide variety of

other type of resources, including for instance network connections

(sockets) and IPC (Inter Process Communication) resources like pipes,

shared memory and others.

Now we have some background knowledge about Unix/Linux operating

systems, we will process with the BASH exploration.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 12

BASH – conditional commands

Conditional commands are commands the include a decision, they are

all internal commands of the shell, mainly because they are compound

commands. Decisions are made depending on something being true or

false, usually that would be a logical expression that can be

evaluated as true or false.

However, in the BASH true or false are the exit code of a command, if

a command exits with code zero (success) than that is true, if it

exits with other value, for instance one, that stands for false.

There are two dumb commands that can be used for this purpose, true

command (always exits with code zero) and the false command (always

exits with code one).

One very simple BASH conditional command is if:

if {commands1;} then {commands2;} [else {commands3;}] fi

It executes {commands1} if their exit code is zero, then it will

execute {commands2}, otherwise, if else is used, then it executes

{commands3}.

The mentioned commands, can be a single command or a sequence of

semicolon separated commands. Regarding {commands1} the exit code

that maters is the exit code of the last command in the sequence.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 13

BASH – if command examples

if true; then echo OK; else echo KO; fi

A=“THE RESULT IS: “; if true; false; then A=${A}TRUE; else A=${A}FALSE; fi; echo ${A}

if (ls /; exit 0) ; then echo “TRUE"; else echo “FALSE"; fi

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 14

Try figuring out what these command lines will display:

In the last case commands were placed within brackets, this has a

special meaning for BASH. It means execute it in a separated child

process, if not done this way what would happen is the exit command

would exit the BASH being used itself.

Any command’s exit code can be used, but there’s one particularly

useful command then can be used here, it’s the test command:

test EXPRESSION

Where EXPRESSION is a logical expression to be evaluated as true or

false, and thus the test command exits with the corresponding code.

The test command supports several logical operators like equal an not

equal, greater than and so on.

BASH – the test command

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 15

The test command supports a wide variety of logical operators, as

usual you can take knowledge of them by going to the corresponding

manual page (man test for the external version or man bash for the

internal version, they should work the same way).

Examples:

A=10; if test $A –gt 20; then echo GREATER; fi

A=30; if test $A –gt 20; then echo GREATER; fi

The –gt operator stands for grater than, it only works for numbers.

You really should take some minutes to read the manual and take a

look on supported operators, multiple conditions can also be chained

by connecting then with the AND (-a) or OR (-o) operators.

The test command may be also used in the form [EXPRESSION], so

above examples can be also implemented by:

A=10; if [$A –gt 20]; then echo GREATER; fi

A=30; if [$A –gt 20]; then echo GREATER; fi

There is yet another way to implement the AND/OR/NOT operations

without using the test command that may be useful.

BASH – exit codes and logical operators

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 16

When executed a command returns an exit code than is interpreted as

TRUE (equal to zero) or FALSE (not equal to zero).

For a sequence of commands the exit code of that sequence depends on

how commands are putted together:

command1; command2 - as mentioned before, the exit code is the one

returned by command2 (the last command in the sequence).

command1 && command2 – the exit codes are combined by the AND logical

operator, so it will result in zero (true) only if both result in

zero (true). One interesting feature is that if command1 returns

false (not equal to zero), then command2 is never executed because

that’s not required to evaluate the overall result.

command1 || command2 - the exit codes are combined by the OR logical

operator, so it will result in zero (true) any of the commands

returns zero (true). Again, one interesting feature, is that now if

command1 result is zero (true), then command2 is never executed

because that’s not required to evaluate the result.

! command1 – the exit code is the logical negation (NOT) of the

command1 exit code, if command1 returns zero it’s turned into 1,

otherwise (false) it’s turned into zero (true).

BASH – input and output redirection

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 17

When running in a terminal, the BASH is itself a process, to interact

with the user, this process has three open file descriptors, stdin

(0) for reading, stdout (1) and stderr (2) for writing, they were

created by opening the device file (in system folder /dev) that

represents the terminal being used, for instance /dev/tty0 or

/dev/tty1.

Because child processes, among other things, inherit the parent’s

file descriptors, commands and applications started from the BASH

command line will also have those three file descriptors opened for

that same device.

When a command is executed in BASH, it’s possible to redirect these

descriptors so that other files are used instead. The greater than

symbol (>)redirects descriptors to a file in write mode, so it should

be used with descriptors 1 and 2, the less than symbol (<) redirects

descriptors to a file in read mode, so it should be used with

descriptor 0.

The general forms of application are: n<&m n>&m

Where n stands for the command’s internal file descriptor and m

stands for the external file descriptor of the overall command with

redirections applied, in both cases &m may also be a filename

instead.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 18

To be more precise the syntax is as follows:

[n]<&m|filename [n]>&m|filename

This means the command’s internal descriptor may be omitted. When

redirecting for reading (<), then if n is not specified, 0 (stdin) is

assumed. When redirecting for writing (>), then if n is not

specified, 1 (stdout) is assumed. So > is equivalent to 1> and < is

equivalent to 0<.

When redirecting to write into a file, instead of >, >> can be used.

In both cases the file is created if it doesn’t exist, however with a

singe > the file is rewritten if it already existed (the previous

content is erased), with a double > the new content is appended to

the previous content.

Examples: command > teste.txt

command 2>> errors.txt

command > teste.txt 2>> errors.txt

command 2>&1

command 1> teste.txt 2>&1 < input.txt

command 2> teste.txt 1>&2 < input.txt

command 1>&1 2>&2 0<&0

BASH – input and output redirection

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 19

Often it may be useful to use the output of a command as input to

another command. We could do that by using a temporary file to store

the output of the first command, and then use it as input for the

next command:

command1 > tmp.txt ; command2 < tmp.txt; rm tmp.txt

Yet there’s a simpler way to do the same through a pipe:

command1 | command2

If we want command2 to read on its stdin, not only command1’s stdout,

but also command1’s stderr, then the following variation can be used:

command1 |& command2

It’s equivalent to: command1 2>&1 | command2

This is called a pipeline of commands, the exit code of a pipeline is

the exit code of the last command in the pipeline.

Bear in mind, regarding both redirections and pipelining, options

presented here don’t include all available features.

BASH – pipelining commands execution

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 20

Scripts are text files with instructions/commands to be executed by

an interpreter program, so interpreted languages are used. The BASH

also works as interpreter, of course, for scripts with BASH commands,

they are named BASH scripts.

In order for a script to become a new useable command in a Unix/Linux

system, some conditions must be met:

- For users to be able to execute the script, they must have the

execute (x) permission on the script file, and they must also have

the read (r) permission. The read permission is not required to

execute binary (compiled) programs, but it’s required to execute

script files.

- The script file should be located in some folder that is included

in the PATH environment variable, otherwise, to run it from the

command line the full path to the file would have to be used.

- It must be recognized by the operating system as being a script,

and more precisely a BASH script. Unix/Linux systems identify the

file type by its content and not by the filename like in Windows

systems (filename extension). The file content is matched with a

list of known magic numbers, a magic number is a set of fixed

values bytes that exist is fixed positions of the file. For

scripts, the magic number is characters #! in the first two

positions.

Scripts in Linux/Unix

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 21

In Unix/Linux, the first line of every script starts with #!,

following that sequence, in the same line, the interpreter program

should be declared. For a BASH script it will be #!/bin/bash, that’s

the first line of every BASH script. When the kernel is asked to

execute such a file it will first execute the interpreter program an

then pass to it the file content for it to execute.

Because for interpreted languages any line started by # is regarded

as a comment by the programmer, it’s ignored in runtime, the

#!/bin/bash line doesn’t interfere with the program execution.

Each line in a BASH script contains a command exactly as we would

type it at the command line, so each line can also be a list of

commands putted together with characters ; && !! |

The most important concept is, commands in each line are executed on

after the other, one at a time, starting with the first line until

the last line is reached.

When the last line is reached, the script ends with exit code 0.

At any point in the script the exit CODE command can be used to exit

with code CODE, beware exit is a BASH internal command if called from

a script it exits the BASH that is running the script, so exits the

script, if called from the BASH command line it exits the login BASH

and consequently logs out the user.

BASH Scripts

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 22

Actually, a BASH script is always equivalent to a single very long

command line with the whole sequence of commands in the script.

Commands in successive lines within the script are equivalent to

commands separated by semicolon in the command line.

But there are several advantages on using BASH scripts. For a complex

and long commands sequence in a single line, it’s humanly unbearable

to analyse and edit it, specially if compound commands are used.

The script is a file, so it’s persistent and by placing it in an

appropriate folder, with appropriate permissions, it becomes a new

command available to all users.

Common software development techniques can be used when developing a

script, like for instance incremental programming.

Command line arguments used when starting the script are available

through variables:

$0 – the command name itself (script), argument zero.

$1, $2, … – the first argument, the second argument, and so on.

$# - the number of arguments (excluding argument zero).

$* - a list with all arguments (excluding argument zero).

The shift command may be used to shift left values $1 $2 $3 …

BASH Scripts – command line arguments

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 23

One thing scripts turn much more clear to the programmer is compound

commands, we have already mentioned the if command:

if commands1; then commands2; [else commands3;] fi

It’s called compound because it has several parts (if/then/else/fi),

with commands within those parts. Soon we will see more compound

commands. When used in a script, compound commands become more clear

if split into several lines. After any part of a compound command,

changing to a new line is ok, of course after every commands sequence

the semicolon may be replaced by changing to a new line as well.

So, the if command may be used in any of the following forms in a

script:

BASH Scripts – compound commands

#!/bin/bash

if

commands1

then

commands2

else

commands3

fi

#!/bin/bash

if commands1; then

commands2

else

commands3

fi

#!/bin/bash

if commands1; then commands2

else commands3

fi

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 24

Loops allow the repeated execution on the same commands, loops are

also compound commands.

while commands1; do commands2; done

This command executes commands1, if they return true (0), then

executes commands2, this repeats until commands1 return false, in

that case commands2 are not executed and the loop ends (done).

until commands1; do commands2; done

Same as before, but the loop keeps running until commands1 return

true and not while they return true.

From within the loop execution, an immediate end of the loop may be

forced by calling the internal command break.

When implementing loops, programmers must be cautious and ensure the

condition established to stop the loop is ever going to happens,

otherwise it will be an infinite loop and the program will never end.

BASH Scripts – loops

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 25

The for internal command has two alternative usages for creating a

loop, in both cases break may be used to end it:

for VARNAME in list; do commands1; done

The variable VARNAME is assigned sequentially each value in list, and

for each, commands1 are executed. Of course, in each commands1

execution the variable’s value is available ($VARNAME).

for ((expr1; expr2; expr3)); do commands1; done

This second usage is for arithmetic operations only, expr1, expr2,

and expr3 must be arithmetic expressions resulting in an integer. If

omitted, these expressions will be accounted as having result 1. The

arithmetic evaluation by BASH has its own rules, one is, within these

expressions variable names may be referred without the $ prefix.

This for command does the following. First it evaluates expr1, then

it evaluates expr2, if not zero, then executes commands1, then

evaluates expr3, and finally evaluates expr2 again. Now the loop

either continues, if expr2 is not zero, or stops.

Example: for ((i=1000;i;i--)); do echo $i; done

This example prints numbers starting with 1000 down to 1.

BASH Scripts – for loops

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 26

The internal case command matches a value with a sequence of

patterns, for the first match found, the corresponding commands are

executed.

case VALUE in pattern1) commands1;; pattern2) commands2;; esac

If commands end with a double semicolon as presented above, no

further matches are tried after executing commands. If commands end

with ;&, then commands in the next pattern are also executed. If

commands end with ;;&, then one additional matching is tried against

the next pattern.

Patterns use special characters for matching:

* - matches any sequence of characters, including an empty one.

? – matches any single character, not an inexistent character.

[chars] – matches one of the enclosed characters. If chars is made of

two characters separated by an hyphen, that’s a range (e.g. [A-G]).

The sense may be reversed by using [!chars], it matches any character

except those specified. Character classes may be used in the form

[:classname:], some valid class names are digit, upper, and lower.

For instance, pattern [:upper:]??[:lower] matches strings with 4

characters, starting with an up case letter and ending with a low

case letter.

BASH Scripts – case

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 27

In every command line, before executing it, the BASH expands some

sequences started by special characters. This is the case of

variables, $VARNAME or ${VARNAME} are expanded to the variable named

VARNAME current value. While expanding a variable, some interesting

manipulations are possible, there’s a huge number of options, they

may be found under section Parameter Expansion of the BASH manual

(man bash). Braces are now mandatory, some examples:

${#VARNAME} – expands to the VARNAME value’s length (number of

characters).

${VARNAME:offset:length} – expands to a substring of VARNAME’s value,

starting at position number offset (the first position has offset

value zero). The form ${VARNAME:offset} assumes length is up to the

end of the string.

${VARNAME#pattern} – prefix pattern matching. If pattern matches a

left part of the value, then the matching part is removed from the

expansion. With a single # the smallest matching part is removed,

with a double hash (##) the longest matching part is removed.

${VARNAME%pattern} – suffix pattern matching. If pattern matches a

right part of the value, then the matching part is removed from the

expansion. With a single % the smallest matching part is removed,

with a double percent (%%) the longest matching part is removed.

BASH – variables expansion

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 28

Defining a function in a script has similar effects to creating a new

external command in a separate script.

A function has a name and a set of commands to be executed, it may be

declared as:

function FUNCTION-NAME() { commands; }

If parenthesis are used the keyword function is optional, if the

keyword function is used then parenthesis are optional.

After being defined (not before) the function may be called as with

any other command:

FUNCTION-NAME arg1 arg2 arg2 …

Within the function, variables $#, $*, $1, $2, … represent arguments

provided when calling it, however, $0 keeps the value it had. The

function’s exit code is its last executed command’s exit code.

Unlike with executing an external command or script, when a function

is called, the caller BASH process is used and no new BASH process is

created to run the function, this has some consequences.

BASH Script – functions

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 29

Calling the exit command from within a function ends the calling

command, this is because this command exits the shell and both the

calling command and the function share the same shell process.

Instead, the return internal command should be used to leave a

function and go back to the command after the calling point.

Sharing the same BASH process means variables are also shared, so

variables available on the calling point are also available in the

function, and vice versa.

A BASH script may be split into several files, by using the source

command, a text file with BASH commands may be included in a script:

source FILENAME

One way to describe it is, this command is replaced by the content of

file FILENAME, the file isn´t required to be a script or have the

execute permission. If FILENAME doesn´t contain a slash, then it will

be searched in PATH.

Functions are supposed to be reusable, so one scenario would be having

those functions definitions in a shared file to be included by several

scripts through the source command.

BASH Script – functions and source

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 30

One thing a programmer should do is taking the most of what already

exists and never write what has already been written, unless there’s

a good reason for that.

A vast number of external commands are available in Unix/Linux,

knowing them is going to save a lot of work when developing scripts

in BASH.

Many of these commands are dedicated to text contents processing, by

default they receive text in stdin, processes it and print the result

in stdout, some often used commands are:

cat – Does nothing, outputs its input. The tac command reverses

lines’ order (last line first).

tr – Outputs lines with some translated or deleted characters as

defined by arguments.

cut – Outputs parts of the lines, for instance characters in fixed

positions of each line, or fields, by using a field delimiter.

grep – Outputs only lines that match, or don’t match, a pattern.

sort – Outputs a sorted content, following specifications given by

arguments.

head and tail – Outputs the first or last lines.

External command line utilities

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 31

date – handling hour and date, a wide variety of options and formats

are supported.

find – finds objects in the filesystem, according to specified

properties. Outputs object’s properties as requested.

printf – prints data using a similar format to the printf function in

C language. Allows more precise output formatting than the echo

command.

read – reads a line from stdin an assigns values to variables.

Other useful commands

The text editor

Scripts are text files, to create and edit text files a program

usually called text editor is required, some options available for

the command line are:

vi – Standing for Visual Editor. This is the best command line text

editor, however, it’s not easy for beginners.

nano – User friendly text editor.

mc – The GNU Midnight Commander is a friendly file manager with its

own text editor. It includes mouse integration and it may be the best

option for beginners.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 32

When receiving integer numbers from the user, entered data should be

validated, although we are expecting a number it can be anything.

On the next example the readAndValidateV() function reads the user

input and checks if it has only numeric digits. This is just one,

possibly not the best, solution to overcome this issue.

BASH scripts – example 1

#!/bin/bash
echo "This command reads a list of positive integer numbers and calculates the biggest,"
echo "smallest, and the average"
read -p "Enter a positive integer number please (0 to end): " V
MIN=$V; MAX=$V
NUM=0; SUM=0;
while [$V -gt 0]; do
if [$V -gt $MAX]; then MAX=$V; fi
if [$V -lt $MIN]; then MIN=$V; fi
NUM=$(($NUM+1))
SUM=$(($SUM+$V))
read -p "Enter a positive integer number please (0 to end): " V

done
echo "$NUM numbers entered"
echo "MAX = $MAX"
echo "MIN = $MIN"
echo "SUM = $SUM"
if [${NUM} -gt 0]; then
echo "Integer average (truncated) = $(($SUM/$NUM))"

fi

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 33

BASH scripts – example 2

#!/bin/bash
echo "This command reads a list of positive integer numbers and calculates the biggest,"
echo "smallest, and the average"
function readAndValidateV() {
read -p "Enter a positive integer number please (0 to end): " V
HAS_ALPHA="$(echo "$V"|tr -d "[:digit:]")" # remove all digits
if [-n "$HAS_ALPHA"]; then # not empty
echo "Invalid number entered, zero assumed"
V=0

fi
}
readAndValidateV
MIN=$V; MAX=$V
NUM=0; SUM=0;
while [$V -gt 0]; do
if [$V -gt $MAX]; then MAX=$V; fi
if [$V -lt $MIN]; then MIN=$V; fi
NUM=$(($NUM+1))
SUM=$(($SUM+$V))
readAndValidateV

done
echo "$NUM numbers entered"
echo "MAX = $MAX"
echo "MIN = $MIN"
echo "SUM = $SUM"
if [${NUM} -gt 0]; then
echo "Integer average (truncated) = $(($SUM/$NUM))"

fi

