
Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 1

Web Services

AJAX example – voting

SCOMRED, February 2021

7/8

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 2

HTTP/HTTPS as general purpose application protocol

Designing and implementing a new application layer protocol for a distributed

applications architecture is a rather significant effort and investment. This investment

can be avoided if an already existing application layer protocol is reused, and

eventually adapted.

We must bear in mind this may not be the best technical option, however, it might be

the best option under investment point of view. Some adaptations to the original

protocol usage may be required because it was designed with a different purpose,

nevertheless, the protocol specification itself must be kept.

Because it’s standard, simple and flexible, HTTP/HTTPS is widely adopted for this

purpose. To achieve this, each application contains an HTTP server, an HTTP client,

or both. The client-server model is preserved, though one application can be client

and server at the same time.

Application D

HTTP Server

Application B

HTTP Server HTTP Client

Application A

HTTP Client

Application C

HTTP Server

HTTP Requests

HTTP Requests

HTTP Client

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 3

Web Services

The central concept on web services is the use of HTTP for application-to-application

communications without direct human involvement.

To make use of a web service, one application (the service requestor or consumer)

assumes the HTTP client’s role, and another (the service provider or publisher) the

HTTP server’s role. The web service is made available to service requestor

applications by the service provider application.

From this central concept, some typical distributed systems issues rise. One issue is

about data representation, it should be independent of individual local systems so

that received data can be understood on any kind of node. Another issue is about

publishers identification by requestors, this will encompass the publisher’s node

address or DNS name, and also, the resource itself within that node address.

Application A

Consumer

(service requestor)

Application B

Publisher

(service provider)

Consumer

(service requestor)

Application C

Publisher

(service provider)

HTTP Request (URI B)

HTTP Request (URI C)

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 4

Web Services – data representation

As it is, the web services concept is very wide. As far as the HTTP protocol is fulfilled

and respected, all kind of information exchanges between applications can be

implemented as web services.

Concerning data representation, the most widely used solution is extensible markup

language (XML), another alternative is JavaScript Object Notation (JSON).

Both represent data in a human readable text format, and yet also suitable for

automated parsing. In each case the appropriate content-type specification should be

used, correspondingly, application/xml and application/json.

Also, some higher level standards have been established on more details about how

applications can communicate through web services, two examples are SOAP

(Simple Object Access Protocol) and XML-RPC (Remote Procedure Calls in XML

format through HTTP).

Due to the client-server model, implicit by HTTP, requestors must know where to find

publishers, and then, what services are provided by that publisher.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 5

Web Services – resources identification

Resources are identified by an URL, an URL identifies a resource, and also, how to

access it. So, an URL starts by an access protocol name, for web services http:// or

https://, then it identifies the node’s address, usually through a DNS host’s name.

Optionally it may also specify a port number preceded by a colon. If the port number

is not specified, then the protocol’s default port number is assumed.

This is called the origin part of the URL. The remaining part of the URL identifies the

resource within that origin, it starts by a slash and may reflect an internal hierarchical

resources organization with names separated by a slashes.

Regarding the origin part, it shouldn't be hardcoded into applications because it

depends on the running environment, they should be provided to applications as

runtime configuration data. Each resource’s local identification within the origin, on

the other hand, may be hardcoded into requestor applications.

Usually requestors known what resources are provided by a publisher, nevertheless,

standards have been established on how publishers can inform requestors about

that. Web Services Description Language (WSD) and Universal Description,

Discovery, and Integration (UDDI) make that information available to requestors in

XML format.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 6

Web Services and Web Browsers

From the web services concept, which excludes direct end-users interaction, it could

be anticipated web browsers are out of scope. Nevertheless, modern web browsers

are themselves able to run applications, namely in JavaScript language. This makes

them able to take part in web services architecture.

Current web browsers support the XMLHttpRequest object, in essence it’s an HTTP

client and allows a web page to, whenever it desires, make an HTTP request, retrieve

data, and typically use that data to update parts of the page being displayed. This

may be done without actually reloading the page, by using the HTML DOM

(Document Object Model).

Requests with the XMLHttpRequest object are by default asynchronous, this means,

before triggering the request, a response handling function is defined (call-back

function). Then, the request itself will not block the web browser on waiting for the

response, if and when the response arrives, then the response handling function is

executed.

This technique is called AJAX (Asynchronous JavaScript and XML), by using it, the

traditional web pages’ behavior, requiring a reload or submission for an update with

fresh data from the server, is overcome.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 7

Web browsers as consumers - JavaScript

The standard use of web browsers: retrieve contents and display them to end-
users, has no place in the web services model.

Having said that, the fact is, modern web browsers are themselves platforms
where applications can be run, for instance using JavaScript.

The XMLHttpRequest object is an HTTP client available in JavaScript, by using
it, JavaScript applications/functions may become web services’ consumers.

In this object, the open() method is used to create a request (not actually send
it), any HTTP method can be used over a specified URL, by default the request
is asynchronous. HTTP header lines can be settled one by one with the
setRequestHeader() method before finally sending the request to the provider
by calling the send() method.

Asynchronous request means when calling the send() method the application
will not be blocked waiting for the response, this is most important for a web
browser.

If data it to be sent (PUT or POST), it can be specified as argument of the send()
method, data can also be sent with GET, but in that case it will be part of the
URI provided to the open() method.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 8

Web browsers as consumers - JavaScript

Before sending an asynchronous request, the object’s property onload must be
assigned with a call-back function to be called asynchronously when the response
arrives. Once the response arrives, within the onload call-back function, the status
property contains the HTTP status code, 200 for ok.

By default the XMLHttpRequest object has timeout zero, this stands for no
timeout, and it waits forever for a response. However, the timeout property can be
assigned with a value in milliseconds to change that default behaviour. If timeout is
settled, then the ontimeout property should be assigned with a call-back function
to handle that scenario.

Event property Standing for …

onreadystatechange The state has changed, the state property will contain one of the following values: 0 (request
not initialized); 1 (server connection established); 2 (request received); 3 (processing request);
4: (request finished and response is ready)

onabort The request was aborted by calling the abort() method.

onerror The request has failed.

onload The request was successful (load). The responseText property hold the response’s content.

onloadend The request processing has finished successfully or not.

ontimeout The request failed due to timeout (as defined by the timeout property value greater than zero).

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 9

The AJAX scenario

Standard Web Browser Application

(HTTP Server)

The displayed web
page

HTTP

Client

JavaScript and

XMLHttpRequest objects

GET
(static contents: html,

images and

JavaScript)

GET; POST;

PUT; DELETE

Static files

content

Web services

The Web Browser starts by using GET requests to load the page and all referred
static resources stored in files on the server side, including images and JavaScript
functions.

Then, loaded JavaScript functions are triggered by events or timers and they use
XMLHttpRequest objects to make HTTP requests to web services provided by the
server and change the page contents through DOM.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 10

An AJAX example

This example is a very simple application for online voting. The purpose is
making available an online voting service.

Voting is completely free and out of control, any one is allowed to cast as many
votes as wanted in whatever candidates.

The number of candidates is established on the backend configuration and
candidates are simply named as Candidate 1, Candidate 2, …

The backend is composed by a single BASH application, mapped to the /cgi-
bin/votes URI, the application accepts two types of requests:

• PUT /cgi-bin/votes?c=N – casts a vote on candidate number N.

• GET /cgi-bin/votes – returns a set of HTML tags making a content that will
show the current vote standings, together with buttons to cast a vote for
each candidate.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 11

AJAX example – the main HTML page

<!DOCTYPE html>
<html>
<head><title>Voting demo</title>
<script src="voting.js"></script>
</head>
<body bgcolor=#C0C0C0 onLoad="refreshVotes()"><h1>Voting demo - SCOMRED 2020/2021</h1>
<center><hr />
<div id=votes>
Please wait ...
</div>
</center><hr />
</body></html>

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 12

AJAX example – Frontend (voting.js)

function refreshVotes() {
var request = new XMLHttpRequest();
request.onload = function upDate() {

document.getElementById("votes").innerHTML = this.responseText;
setTimeout(refreshVotes, 1500);
};

request.ontimeout = function timeoutCase() {
document.getElementById("votes").innerHTML = "Still trying ...";

setTimeout(refreshVotes, 1000);
};

request.onerror = function errorCase() {
document.getElementById("votes").innerHTML = "Still trying ...";

setTimeout(refreshVotes, 1000);
};

request.open("GET", "/cgi-bin/votes", true);
request.timeout = 5000;
request.send();
}

function castVote(option) {
var request = new XMLHttpRequest();
request.open("PUT", "/cgi-bin/votes?c=" + option , true);
request.send();
}

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 13

AJAX example – the backend application

#!/bin/bash
N_CANDIDATES=8;
STANDING_FILE_BASENAME=/tmp/.voting.demo
if ["$REQUEST_METHOD" == "GET"]; then

echo "Content-type:text/plain"
echo ""
for((i=1;i<=N_CANDIDATES;i++));do

STANDING_FILE=${STANDING_FILE_BASENAME}.$i
if [! -f $STANDING_FILE]; then echo "0" > $STANDING_FILE; fi
echo "<p>Candidate $i - $(cat $STANDING_FILE) votes <input type=button value=VOTE onClick='castVote(${i})'>"

done
exit

fi
if ["$REQUEST_METHOD" == "PUT" -a "${QUERY_STRING#c=}" != "$QUERY_STRING"]; then

echo ""
N_CAND="${QUERY_STRING#c=}"
STANDING_FILE=${STANDING_FILE_BASENAME}.$N_CAND
VOTES=$(cat $STANDING_FILE)
VOTES=$((${VOTES}+1))
echo "$VOTES" > $STANDING_FILE
exit

fi
echo "Status: 400 Bad Request“
echo “”

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 14

AJAX example – Final look

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 15

Concurrent access issues

In the lab class, this very simple example is going to be implemented and
tested, at first glance it may seem to be working pretty fine, nevertheless is has
some flaws one of which is the total absence of concurrent access control.

As with any network service, in a real environment, a web service will often
have several clients accessing it at the same time. We can’t make those clients
wait in a queue, they are simply not willing to wait. So, such clients are all
served at the same time by using multiple processes or multiple threads.

Having several clients being served at the same time, each by a dedicated
process or thread is perfectly ok, and has several advantages, however, it’s a
fact that must be taken into account when implementing the service. And in
our last example it wasn’t.

Having several clients being served at the same time means several clients may
access the same resource (e.g. a file) at the same time. This is a concurrent
access to the resource, and becomes a big problem if such accesses
encompasses changing the resource (write operations), the result will be
simply unpredictable and thus it’s a scenario to avoid.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 16

Concurrent access control

It’s ok to allow concurrent access to a resource, as far as all accesses are read
operations, and thus the resource is completely static and never changes. Once
write operations are involved, then concurrent access must be avoided at all
cost.

One approach is ensuring each client being served uses its specific resources
not shared with others. That approach was used in the previous class’s
/var/www/cgi-bin/hashCalculate web service:

#!/bin/bash
I’m in file /var/www/cgi-bin/hashCalculate
###
M_CONTENT_FILE=/tmp/.scomred-hash-calculate.$$.tmp
###
(...)

The trick is on the red line, because the $$ sequence is expanded by the shell
to the current process’s PID, we have the guarantee each client will be using a
different filename to temporarily store the request’s content.

In today’s example, this method is not an option because clients have to
update a shared resource: the current voting standings, implemented as a set
of files, one for each candidate. For these cases, a mechanism known a lock or
mutex must be used.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática(DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (asc@isep.ipp.pt) 17

Concurrent access control – lock/mutex

A lock or mutex has two states (free or acquired) and the acquire operation is
mutually exclusive (from where the mutex designation comes). Being mutually
exclusive means if several different entities try to acquire it, there’s the
guarantee only one will be successful, the lock is then acquired until the lucky
guy frees it.

For a lock to be effective, it must be used (acquired) by everyone before trying
to access the shared resource, once the access ends the lock has to be freed,
otherwise it becomes indefinitely inaccessible to everyone.

Most programming languages and operating systems provide locking
mechanisms, like for instance semaphores. In the Java language, each class and
each object has an intrinsic lock that may be acquired by using the
synchronized declaration.

One popular way to implement a lock over a filesystem is through the folder
creation operation, if several applications try to create a same folder at the
same time, only one will be successful, the others get an error because the
folder already exists. In our lab class this technique will be used.

