
Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 1/22

SWitCH – Sistemas de Computação e Redes (SCOMRED)

2021/2022

Laboratory 03

BASH command line and command line utilities.

BASH programming – Algorithmics.

1. The filesystem

Operating systems organize mass storage devices (e.g. disks) by establishing partitions or volumes over
them, volumes/partitions may be then formatted. Formatting means creating a new and empty
filesystem, ready to store objects, some most notorious object types all filesystems supports are files
and folders (directories).

Unlike with volumes and partitions that follow some well-established standards and are recognized by
every operating system, filesystems are specific for each operating system, currently, Windows
operating systems use NTFS (NT filesystem) and most Linux distributions use EXT4 (fourth
extended filesystem).

1.1. Folders or directories

Folders or directories are containers of filesystem objects, they are very useful to organize the
filesystem and keep related objects together, and because a folder may contain one or several other
folders (often referred to as subfolders or subdirectories) the filesystem ends up being a tree of folders.
When a new filesystem is created (by formatting a partition/volume) it will then contain a single folder
named as the root folder or root directory, this will be where the first files and folders will be created.

In NTFS and the older FAT filesystem, the root folder is represented by a back slash (\), in EXT4 and
other Linux/Unix filesystems the root folder is represented by a forward slash (/). The same slash is
used to separate folder names and other object’s names in a path.

One other difference is that in Windows systems, each volume/partition is accessed through a different
drive letter and has its own root folder and directory tree, whereas in Unix/Linux there’s only one root
folder and different partitions/volumes are integrated in the same single directory tree by the mounting
concept.

Folders are created with the mkdir command and removed with the rmdir command. By default, the
rmdir command requires the folder to be empty. Like any other object, folders may be renamed and
moved with the mv command.

mkdir /tmp/scomred-folder

ls -l /tmp

mv /tmp/scomred-folder /tmp/scomred-dir

ls -l /tmp

rmdir /tmp/scomred-folder

ls -l /tmp

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 2/22

1.2. Files and file types

The file object type purpose is storing data, a file is a variable size sequence of bytes, each byte in a file
has a well-known position often referred as offset, the first byte in a file has offset zero. The operating
system provides to running applications a set of functions to use files.

Files are created by applications with the purpose of storing data, you may create an empty file with the
touch command. The touch command updates the access and modification times of as file to the
current time, if the file doesn’t exist, creates an empty file.

Files may be renamed and moved with the mv command and removed with the rm command. With
the -R option, the rm command will remove a folder and all its content. Files may be copied with the
cp command. With the -R option the cp command will copy directories and its content.

Example:

mkdir -p /tmp/f1/f2/f3

touch /tmp/f1/f2/f3/file1.sample

cp -R /tmp/f1 /tmp/F1

ls -l /tmp/f1/f2/f3

rm -R /tmp/f1

ls -l /tmp

ls -l /tmp/F1/f2/f3

rm -R /tmp/F1

The -p option used above with the mkdir command, allows the creation of sequence of folders and
subfolders with a single command, by default to create a directory with the mkdir command, the
parent directory must exist in the first place.

The above example also highlights that objet names are case sensitive in UNIX/Linux, and the same
goes for commands and commands’ options.

The use applications make of files is up to each application. For the filesystem and the operating
system, there’s only one objet type file, however, depending on the content of the file (bytes stored in
it) we may talk about different file types.

Unlike with Windows systems where the file type is established by looking at the filename’s last
characters, in Unix/Linux the file type is established by looking into its content, more precisely the
content of bytes in some key offsets, this is called the magic number.

In the Unix/Linux command line, the file command may be user to classify an object, and if it’s a file
the file type by checking the magic number.

Let’s try it to check the objects with a name started by the r letter, in folder /etc/:

file /etc/r*

The /etc/folder is used to store system configuration information, most files here are text files.

Let’s now check a folder with the purpose of storing executable files (commands and applications):

file /bin/b*

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 3/22

Some are compiled binary files to be directly executed by the CPU, others are scripts (text files with
source code to be executed by an interpreter).

1.3. Objects’ owner in Linux

In Unix/Linux, each object has an owner (a valid user), and a group of users associated to it. The
owner of an object is the user that creates the object, and the group of the object is the primary group
of the user that created it.

Only the root user is allowed to change the owner of an object. With the required permissions, a user
may change the group of an object but only if is a member of the new group.

Let’s check this by creating a /testing123 folder:

mkdir /testing123

To see the owner, group and permissions of the objects:

ls -l /

So, as expected, the new folder belongs to the root user and the group associated is the root group.
Now let’s use the chown command to make the admin user the owner, and then list it again:

chown admin /testing123

ls -l /

Now the owner is admin, but the group is still root, to change the group we can either use the chgrp
command or do it with chown, chown does both, possibly at the same time, for instance:

chown games:cdrom /testing123

ls -l /

The folder is now owned by the games user and the group is cdrom.

Some additional experiments:

chown :staff /testing123

ls -l /

chown admin: /testing123

ls -l /

The last chown command line is changing the owner, and at the same time, the group to match the
new owner’s primary group.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 4/22

1.4. Objects’ permissions in Linux

In a filesystem, each object, among other properties, has an ACL (Access Control List), the ACL is a
list of entities (e.g., users and groups), and for each, the permissions that entity has over the object.

The standard ACL in Unix/Linux has three fixed entries: the owner (u), the group (g), and others (o).
Others stands for every user except the owner and the members of the group.

Regarding the permissions an entity may have over the object, there are three permissions: read (r),
write (w), and execute (x). Permissions have a slightly different meaning depending on the object type:

 Files Folders

read (r) Read the file’s content

List the folder’s content (object names), to be
able to see details about each object (e.g.,

owner, group, and permissions) the execute
permission over the folder is also required.

write (w)
Write bytes into the file (append or

overwrite), remove the content of the
file

Change the properties of objects stored in the
folder (name, owner/group and permissions).
However, this is valid only with the execute

permission over the folder.

execute (x)

Execute the file, meaning loading its
content into a new process. If it’s a

script (interpreted program) the read
permission is as well required.

Access the folder, to be able to access a folder,
the execute permission is required on every

folder starting from the root folder.

Some point to take notice:

• To change the name or other properties of an object, the required permission is write over the
folder holding the object, not the object itself.

• Without the execute permission over a folder, every object stored in that folder and subfolders
is inaccessible.

The properties of objects are shown by the ls command with the -l option (long listing), check the
objects in the root folder:

ls -l /

For each object listed, the first character represents the object type, for instance d for a directory, l for
a symbolic link, and - for a regular file. Next 9 characters represent the ACL, first three characters rwx
for the owner, next for the group and the last three for others.

To change permission the chmod command may be used to change the ACL, to each entity (u, g, o),
permissions (r, w, x) may be granted (+) or removed (-). A list of comma separated changes may be
enforced in a single command line.

Check the following examples:

ls -l /

chmod u-r,g+w,g-x,o+w /testing123

ls -l /

chmod o-rwx /testing123

ls -l /

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 5/22

1.5. Text files

One of the most common file types is text files, in a text file each byte represents a character by
following the standard ASCII table, and most byte values in this table represent letters, digits and
punctuation marks.

Some byte values in the ASCII table have special meanings, some most relevant are CR (carriage
return) and LF (line-feed) which implement on text files key feature: being organized in variable
length lines.

In Unix/Linux operating systems, text file lines are terminated by LF, in Windows/DOS operating
systems, text files lines are terminated by CR followed by LF.

Text files are used for many purposes, to start they are used to store source code, if such source code is
to be run by an interpreter these files are usually referred as scripts. Most configuration files in a
Unix/Linux system are text files, we already know several of them, many stored in folder /etc/.

Because text files are so common, in Linux there are many commands to handle them, on thing to bear
in mind is these commands expect the files to be text files, meaning they use the byte values in the
ASCII table and no others.

Let’s download a text file from the Internet, it’s a document that establishes the HTTP protocol
standard, these documents that establish Internet standards are known as RFCs (Requests for
Comments).

One funny thing is to download the file we are going to use HTTP. We could use lynx or curl, but we
are going to use yet another HTTP client, the wget command.

You must install it first:

apt install wget

Download the text file:

wget https://www.ietf.org/rfc/rfc2616.txt

Let’s check the files properties and print its content on the terminal.

ls -l rfc2616.txt

file rfc2616.txt

cat rfc2616.txt

The cat command simply copies the entire content to the terminal, to be able to see the content screen
by screen or line by line the more command may be used instead:

more rfc2616.txt

(use q to exit)

The less command allows the user roll up and down the content:

less rfc2616.txt

(use q to exit)

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 6/22

Other two useful commands are head and tail, they present respectively the first and the last lines of
the content of a text file, by default the first 10 lines and the last 10 lines:

head rfc2616.txt

tail rfc2616.txt

How many lines are there in this text file?

The wc command (stands for word count) gives you the answer, despite is name it also counts lines,
bytes and characters, it may also determine the longest line length. By default, it prints the number of
lines, the number of words, and the number of characters:

wc rfc2616.txt

The sort command sorts a text file content, there are several interesting options, try these command
lines:

sort rfc2616.txt

sort -n rfc2616.txt

sort -n -u rfc2616.txt

sort -r rfc2616.txt

The cut command is used to extract parts of each line of a text file.

For instance, to extract the first 20 characters of each line:

cut -c 1-20 rfc2616.txt

For instance, to extract the usernames and UID of each user in the /etc/passwd file:

cut -d ":" -f 1,3 /etc/passwd

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 7/22

2. Global Regular Expression Print - grep

The grep command is a very useful whenever we want to search for something in a text content. Given
a matching pattern, every line matching such pattern is printed. The matching pattern may be a simple
sequence of characters, for instance:

grep "http" rfc2616.txt

grep "3" rfc2616.txt

For a simple sequence of characters, the matching is for every line than contains that sequence,
however the matching pattern may also be a regular expression, a regular expression is as well a
sequence of characters, but it uses some special characters with special meanings under matching point
of view. Examples:

grep "^3" rfc2616.txt

grep "3$" rfc2616.txt

As you may have guessed, the ^ character matches the beginning of the line and the $ character the end
of the line.

This also presents a challenge when by hazard we want to match literally such a character, for instance
to match every line containing the ^ character you must protect it from being interpreted by a double
backslash:

grep "\\^" rfc2616.txt

Otherwise, of course, you will get all the lines because every line has a beginning.

Regular expressions have many applications (e.g., data validation) and they are supported by almost
every programming language, however, they are not fully standardized, and you may find some small
differences in the list of special characters between different implementations.

The grep itself supports some variants, from the manual page:

Pattern Syntax
 -E, --extended-regexp
 Interpret PATTERNS as extended regular expressions (EREs, see below).
 -F, --fixed-strings
 Interpret PATTERNS as fixed strings, not regular expressions.
 -G, --basic-regexp
 Interpret PATTERNS as basic regular expressions (BREs, see below). This is the default.
 -P, --perl-regexp
 Interpret PATTERNS as Perl-compatible regular expressions (PCREs). This option is experimental when combined
with the -z (--null-data) option, and grep -P may warn of unimplemented features.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 8/22

The use of the egrep command is equivalent to use grep -E …

The grep command manual page contains extensive information about supported regular expressions
features, some most relevant are:

\\ Avoid the next character’s interpretation.

^ Match the beginning of the line.

$ Match the end of the line.

. Match one character (any character).

* Match the previous character zero or more times.

[abc…] Match one occurrence of one of the characters in the list, may include ranges, e.g.: [a-z,0-9].

[^abc…] Match one occurrence of one character not in the list.

With the -E command line flag (extended regular expressions), some additional features are:

? Match the previous character zero or one time.

+ Match the previous character one or more times.

{n} Match the previous character n times.

(A|B) Match the occurrence of either A or B, both A and B may be themselves patterns.

Some examples:

egrep "^.4.{3}A" rfc2616.txt

grep "http.*HTTP" rfc2616.txt

Try to express these matching criteria in natural language.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 9/22

3. The find command

If you want to locate objects within the filesystem, the find command is a powerful tool you may use.

The find command searches recursively the directory tree starting from a given folder, a wide range of
matching criteria is supported: object name, object type, size, permissions, owner, last change
timestamp …

For each match, several options are available, including a fully programmable printing of the object’s
properties, and the execution of a command.

A simplified vision of the command’s syntax is:

find [STARTING-FOLDER] [SEARCH-OPTIONS] [MATCHING-OPTIONS] [ACTION-OPTIONS]

The default STARTING-FOLDER is the current working directory (./). By default, every object is a
match, and the default action is -print which stands for printing the object’s name.

Examples of some MATCHING-OPTIONS

By default, multiple matching options are linked by the and logical operator (-a option), to specify
alterative criteria for match use the -o option (or logical operator). To reverse (negate) the sense of a
match option precede it with the -not option.

-name NAME

Match the object’s name, wildcards may be used. With wildcards, very
simple regular expressions may be created, the * character matches any
sequence of 0 or more characters, and the ? character matches one
character.

-user USERNAME The object is owned by the user USERNAME.

-type T

The object if of T type, T is:
 b block (buffered) special
 c character (unbuffered) special
 d directory
 p named pipe (FIFO)
 f regular file
 l symbolic link
 s socket

-writable The user running the command has the write permission over the object.

-regex PATTERN The object’s name is matched the PATTERN containing a regular
expression.

-size [+|-]N[U]

The objects size (rounded up) matches the N value. The + prefix stands
for size greater than, the - prefix stands for size smaller than. The default
unit is blocks of 512 bytes, the U suffix may be used to specify other units,
e.g. k, M, G.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 10/22

Examples of some ACTION-OPTIONS

-delete Remove the object.

-print Print the full object’s name (path from STARTING-FOLDER).

-printf FORMAT Customized print about the object in a C style printf format.

-exec COMMAND ;
Execute a custom command. This command ends with a semicolon, if
started from a shell, the semicolon must be protected by a backslash. Any
occurrence of {} is replaced by the matched object name.

-execdir COMMAND ;
Like the previous, however the command is executed with the CWD
matching the directory where the matched object was found. For the -exec
action, the CWD is the STARTING-FOLDER.

Examples:

find /usr -size +20M -printf "%s bytes -> File: %p\n"

find /etc -type f -name "*net*" -exec ls -l {} \;

4. Processes management

In UNIX/Linux, a process is a running application, when at the command line an external command,
like for instance find, is executed, a new process is created and the find application (binary file) is
loaded into that new process and executed, in the case of the find command it will not take long to
complete its mission so it will exit, and the process is destroyed.

As with users and groups, processes also have a unique identifier, known as PID (Process ID),
processes always have a parent (the process who created it). This is true except for the first process
created when the kernel is loaded on the operating system boot, all processes running in the system are
descendants of this initial process. The initial process is usually loaded from /sbin/init or
/usr/bin/systemd, and is assigned with PID 1.

The ps command (process status) shows the status of running processes in the system, several
command line options are available to change the processes that are listed and the printed details about
each listed process. By default, the ps command lists only processes that are owned by the current user
and associated current terminal. The -e option lists all processes.

Try it:

ps

ps -e

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 11/22

The pstree command presents a very interesting view of the running processes and their parenthood
relationships, try it:

pstree

Every running process has an owner, initially it’s the user who created it, but if started by root the
processes is allowed to change the UID, meaning to impersonate any user.

Let’s see the owner of the processes:

ps xau

4.1. Signals

One way to interact with a running process is through signals, only the owner of a process or the root
user are allowed to send signals to a process.

When a process receives a signal, it pauses temporarily what is doing and executes a function known as
signal handler, once the handler execution ends (the function returns), the process returns back to what
it was doing.

To send a signal to a process, the kill command is used, the command name comes from one of the
signals it may send, the SIGKILL, this signal is a last resource mean to force the termination of a
process and is handled by the kernel, not a handler within the process. There are many signals with
different purposes, you can list them with the kill command:

kill -l

To send a signal to a process, the PID must be used as argument, by default the sent signal is
SIGTERM which is used to ask the process to orderly terminate, unlike SIGKILL it’s handled by the
process itself. SIGKILL should be used only when a process fails to exit with the SIGTERM signal.

4.2. Running commands in background

So far, we have been running commands in foreground, this means the calling program (the shell)
suspends its execution and waits for the command to end, and meanwhile all command line
interactions take place with the running command and not with the calling program.

However, a command may be started in background, this means it will run in parallel with the calling
program that will not suspend its execution. To run a command in background you simply append to
the command line the ampersand (&).

Let’s try it with the sleep command which runs for several specified seconds, and then exits:

sleep 55555 &

The sleep command is now running in background for 55555 seconds, two numbers were printed, the
job, within brackets, and the PID. The job is a shell specific way to manage background processes
within a session, probably this will be your job 1.

Now, let’s see the process status:

ps

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 12/22

And the jobs status using the jobs command:

jobs

Jobs management by the shell allows some interesting options, we can transfer a job from background
into foreground by using the fg command:

fg 1

(Assuming is job 1)

Now the sleep command is no longer running in background, it’s running in foreground.

Press CTRL+Z, this sends the SIGTSTP to the foreground process making it suspend the execution,
now it’s not running, neither in foreground nor in background. Let’s check:

jobs

We can continue the process execution in foreground or in background, to continue the execution in
foreground we would use the fg command as before, to continue the execution in background we use
the bg command instead:

bg 1

(Assuming is job 1)

Let’s check:

jobs

Send to it the SIGTERM signal, for that you must know its PID:

kill PID

The process has gracefully terminated by itself. If it fails to do so, you could always use SIGKILL:

kill -SIGKILL PID

In the case of a foreground process, we can use CTRL+C to send to it the SIGINT signal to the
process, in that case the process should exit. Bear in mind that unlike SIGKILL, both SIGTSTP and
SIGINT may be intercepted by a specific handler in the process and fail the expected behaviour.

5. Processes’ input/output - file descriptors

In UNIX/Linux, processes are pretty much like closed boxes, a process is allowed to interact directly
with resources within the process only. Interactions with the system or with other processes are always
indirect by using kernel system-calls, one of such mean of interaction between processes is signals.

File descriptors are the main mean by which a process interacts with the external world resources,
even though they are called file descriptors, they may or not provide access to regular files, in
UNIX/Linux most resources are managed as if they were files.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 13/22

File descriptors are non-negative integer numbers, unique within each process, that allow the
interaction with an external resource.

Among many other resources and devices that are treated as files, the command line terminal is itself
managed as a file. The command line shell has three file descriptors open, and because open file
descriptors are inherited by child processes, any command started from the shell has these same file
descriptors open, they are:

File
descriptor

Description Resource

0 Standard Input (stdin)
Read-only file descriptor associated to the terminal input

(the keyboard). Used to read input data.

1 Standard Output (stdout)
Write-only file descriptor associated to the terminal

output (the screen). Used for regular prints.

2 Standard Error (stderr)
Write-only file descriptor associated to the terminal

output (the screen). Used for errors reporting.

For most text handling commands we have seen so far (cat; more; less; head; tail; wc; sort; cut;
grep) the default source of the text to process is descriptor 0 (stdin), when no filename is provided at
the command line.

5.1. Input/output redirection

When running a command from the command line, the three descriptors are directed to the terminal:

• Keyboard: descriptor 0

• Screen: descriptor 1 and descriptor 2

But they can be redirected to regular files (descriptor 1 and descriptor 2) or from regular files
(descriptor 0).

The < signal is used to redirect descriptor 0 from a regular file and the > signal to redirect descriptor 1
to a regular file. When redirecting the output, > stands for rewrite, meaning it will remove the content
if the destination files already exist, to append, >> is must be used instead.

Input redirection example:

wc -l < rfc2616.txt

Notice that this is not the same as:

wc -l rfc2616.txt

Output redirection:

wc < rfc2616.txt > results.text

ls -l /tmp >> results.text

ls -l /doesnt-exist >> results.text

The file named as results.text will contain the results of the commands:

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 14/22

cat results.text

Another example is creating a copy of a text file without using the cp command:

cat rfc2616.txt > rfc2616-copy.txt

But not for the last command, because the result is an error and is being sent to descriptor 2. To
redirect descriptor 2, we can use 2> or 2>>. We can also redirect both descriptor 1 and descriptor 2 to
the same file by using &> or &>>. One other option is redirecting one descriptor to the other, for
instance 2>&1 redirects descriptor 2 to descriptor 1, which in turn may be redirected do a file.

So to append both the standard out and the standard error of the execution of a command to a file we
have several options:

echo “Testing stdout and stderr” > 2ndRes.text

ls -l /tmp /Ups >> 2ndRes.text 2>> 2ndRes.text

ls -l /tmp /Ups &>> 2ndRes.text

ls -l /tmp /Ups >> 2ndRes.text 2>&1

cat 2ndRes.text

The echo command, used above, copies the provided text to descriptor 0 (prints the text).

5.2. Pipelining input/output

Often, we may want the output of a command to be the input of another command, for instance:

ps -e > tmp.txt

grep apache < tmp.txt > tmp1.txt

wc -l < tmp1.txt

rm tmp.txt tmp1.txt

The use of pipes avoids the need of temporary files to store data, a pipe is represented by | and means
the descriptor 1 (stdout) of the left side command is piped into the descriptor 0 (stdin) of the right side
command, this means the same goal of the above command lines sequence can be attained by:

ps -e | grep apache | wc -l

If you want to pipe both descriptor 1 (stdout) and descriptor 2 (stderr), then |& may be used instead:

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 15/22

ls /tmp /Ups |& sort

Some more pipelining examples:

cat rfc2616.txt | tr " " "_"

cat rfc2616.txt |tr "[:upper:]" "[:lower:]"

cat /etc/passwd | tr ":" "\t"

The tr command translates characters from standard input, writing to standard output. A character
matching the first list is replaced by the corresponding character in the second list. While translating it
may optionally squeeze (replace sequences of repeated character with a single character). Instead of
translating it may be used to delete specific characters.

6. Getting help about commands (manual pages)

Nobody is supposed to know the syntax of every command, what a BASH user and script developer is
required to know is about the commands that exist and may be useful to him. Once the command
name is known, the man command may be used to get the exact syntax (arguments usage).

For the sake of saving storage space, the servers we are using in these classes have a minimized
filesystem, which doesn’t include the manual pages. However, such pages are available at the internet,
you can simply search the man command at your favourite web browser as we will see in a following
example.

Manual pages are organized in sections (check man man), some sections are about commands, others
for instance about C functions, some pages exist in different sections because names are the same.

For instance, printf, is an external command, the manual page is in section 1, however there’s also a
printf library C function available at section 3. By default, the man command starts by searching the
manual page in section 1 (external commands).

One other issue regarding commands manual pages is about internal and external commands, the
manual pages are about external commands, to get information about internal commands the manual
page of the shell must be used, for instance for BASH man bash.

For the sake of efficiency many external commands have internal commands that replace them, usually
they will have the same features and syntax.

External commands can be directly called by specifying the full path, the full path of an external
command can be known by using the which command (as far as the executable file is on the PATH
environment variable).

Try it:

which printf

This returns /usr/bin/printf, that’s the external command executable file.

To get the manual page of the print command you would normally use the “man printf” command, but
that will not work in your server, instead, search the same on the internet, you will get something like:

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 16/22

As expected, we have a manual page in section 1 and another in section 3, we are interested in section 1
(external commands), click one of them.

This is the manual page of the printf external command, extensive information can be also attained by
using the command’s --help option:

/usr/bin/printf --help

This is the internal BASH version:

printf --help

The internal version doesn’t support the --help option. To get help you should use the BASH manual
page (man bash), though they should be similar.

7. BASH scripts

We already know a BASH script is an executable text file (with the execute permission) that starts with
#!/bin/bash line. The operating system will then recognise this file as an interpreted program to be
executed by /bin/bash (the interpreter). The file should contain a sequence of lines with commands
the BASH is able to execute, they will all get executed one after the other, line by line, starting from the
first line.

To create and edit text files a text editor is required, for beginners, either nano or the mc’s text editor
are two good alternatives. You may find mc (GNU Midnight Commander) interesting because it
supports mouse interaction.

To use mc (GNU Midnight Commander), it must be first installed (this is optional):

apt install mc

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 17/22

Create the following BASH script:

#!/bin/bash
echo "I've a number between 0 and 100, it may even be 0 or 100"
echo "Try to guess it!"
NUM=$(shuf -i 0-100 -n 1)
TRIES=0
GUESS=101
while [$NUM != $GUESS]; do
 read -p "Enter your guess please: " GUESS
 TRIES=$(($TRIES+1))
 if [$GUESS -gt $NUM]; then echo "Sorry, too large!"; fi
 if [$GUESS -lt $NUM]; then echo "Sorry, too short!"; fi
done
echo "Very well, you have guessed it in $TRIES tries"

Create this content in a new file named guessNumberGame in your current working directory, for
instance with nano type:

nano guessNumberGame

Warning: don’t copy & past the above content, you must type it by hand, otherwise some characters
won’t be correctly copied.

Give it the execute permission:

chmod +x guessNumberGame

Test the script by playing the game a couple of rounds.

./guessNumberGame

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 18/22

Suggested practical exercises

1. List the contents of /usr/bin using the command ls . (which lists
the contents of the current working directory). Use an absolute
path to navigate into /usr/bin.

2. List the contents of /usr/bin using the command ls . (which lists
the contents of the current working directory). Use only relative
path(s) to navigate into /usr/bin.

3. Create the /tmp/Exercise3 folder

a) Remove all permissions for the group and other over the created
folder.

b) Copy the /etc/passwd file into the created folder.

c) Rename the passwd file in the created folder to users.txt.

d) Make the admin user the owner of users.txt.

e) Remove the /tmp/Exercise3 folder and its content.

4. Create a single command line that tells:

a) How many user groups exist in the system?

b) How many users exist in the system?

c) How many regular files are there in folder /etc?

5. Without using the cp command, copy the /etc/services text file to
/root/my-services-list.

a) Make the admin user the owner of /root/my-services-list.

b) Append to my-services-list the list of running processes.

c) Append to my-services-list the sorted content of the /etc/group
file.

d) Append to my-services-list the first five usernames defined in
the /etc/passwd file.

6. Use the wget command to download this text file:

https://www.gutenberg.org/cache/epub/250/pg250.txt

About the pg250.txt file:

a) Print all lines started by The Internet.

b) Show how many words are there in this text file.

c) Print all sentences that are completely within quotes (start and
end with “).

d) Print the number of lines and the size of the longest line.

e) Print the first 5 lines of each chapter.

f) Print all lines that start with a number.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 19/22

7. For every file in the /var folder and subfolders that doesn’t
belong to the root user, print the owner’s name and the filename.

8. For every file in the /etc folder and subfolders that is newer than
the /etc/passwd file (more recently changed than …), print the last
access time and the filename.

9. For every file in the /usr/bin folder and subfolders with a size
bigger than 10 Mbytes, use the file command to show its content
type based on the magic number.

10. Execute the following command: sleep 5h

a) Make the command run in background. Hint: stop it first.

b) Send to the SIGTERM to the process that is running the command.

11. Create the following files:

a) A file named file1.txt, containing This is test 1. The only
command you are allowed to use is cat. Hint: end the input use
CTRL+D.

b) A file named file2.txt, containing This is test 2. The only
command you are allowed to use is echo.

c) A file named file3.txt, with the content of file1.txt, followed
by the content of file2.txt.

12. Execute the following command line:

shuf -i 1-100 -r -n 200 > numbers.txt

This shuf command usage example outputs 200 random numbers ranging
from 1 to 100.

a) Present a numerically sorted list of the numbers in the
numbers.txt file.

b) With a command line print the answer to: How many different
numbers are the in the numbers.txt file?

c) With a command line print the answer to: How many single digit
numbers are the in the numbers.txt file?

d) With a command line print the answer to: Which is the biggest
number in the numbers.txt file?

13. Add the following new functionality to the guessNumberGame
developed during this class.

For each user the best score he has ever achieved should be stored
persistently. When each round ends, he must be informed if he has or
not beaten his previous best score, and a congratulations message
should be presented if so.

Suggestions:

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 20/22

- To be persistent, the best score must be stored in a file, to be
personal, it should be stored in the user’s home folder, for
instance ~/.guessNumberGame.topScore

- To get the file’s content into a variable use VARNAME=$(cat
~/.guessNumberGame.topScore), remember on the first round the file
will not exist.

- To place a new value in the file just echo the variable’s value
redirecting the output to the file.

Test the game again with the new functionality you have implemented.

How could you cheat the game as if you have achieved a previous best
score of 2 tries only?

14. The following BASH script lists every valid user’s login name and
home folder:

#!/bin/bash
USERSLIST=$(getent passwd|cut -d ":" -f 1,6)
for USR in $USERSLIST; do
 echo "${USR%:*} - ${USR#*:}"
done

To list valid users and valid groups, the getent command should be
used instead of listing the contents of files /etc/passwd and
/etc/group. Valid users and groups in Linux may not be limited to
those files contents. The output format of getent is the same as on
those files.

The output of the getent command is sent (through a pipe) to the cut
command to extract required data, the fields separator is the colon (-
d “:”) and we want fields number 1 (username) and number 6 (home
folder). Each element of the list will have the format
USERNAME:HOMEFOLDER.

Afterwards, by using the variable expansion with suffix and prefix
pattern removal, the two elements are isolated.

Create the script file with the above content, for instance named
usershomes and test it.

Add a new functionality so that the script checks if the home folder
exists and it’s a directory, if otherwise a conforming warning message
should be presented.

Suggestion: check the test command, man test. Even though this manual
page is about the external command, the internal test command should

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 21/22

work the same way. You may also check it on the BASH manual page (man
bash).

15. Create a BASH script that for each valid group (getent group)
counts how many valid users (getent passwd) have that group as
primary group.

Before proceeding let’s add some groups and some users having those
groups as their primary group:

groupadd scomredgrp1

groupadd scomredgrp2

useradd -m -g scomredgrp1 scomredusr1

useradd -m -g scomredgrp1 scomredusr2

useradd -m -g scomredgrp2 scomredusr3

useradd -m -g scomredgrp1 scomredusr4

Notes:

- The –m option instructs the useradd command to create the new
user’s home directory.

- The –g option sets the new user’s primary group.

Users named scomredusr1, scomredusr2, and scomredusr4 have primary
group scomredgrp1, and user scomredusr3 has primary group
scomredgrp2.

Suggestions for the script implementation:

- The primary group of each user is a user account’s attribute (forth
field), but is stored there as a GID (Group Identifier). To list
every user’s primary group GID (forth field) you may use:

getent passwd|cut -d “:” -f 4

- The group identifier (GID) of each group is an attribute of the
group account (third field), to get both the group name and GID
(first and third fields) for every group you may use:

getent group|cut -d “:” -f 1,3

To go through the list of groups, use a for loop. Each element of
this list will have the form GROUP-NAME:GID

If one of these elements is stored in variable GNAMEGID, then you
can extract the group name by expanding it as ${GNAMEGID%:*}, and
you can extract the GID by expanding ${GNAMEGID#*:}. In the first
case it’s a prefix pattern removal and in the second case a suffix
pattern removal.

- Once you have the GID of each group, then you can use the grep
command to filter user accounts with that GID and pass the output
(pipe) to the wc command to count the number of lines (man wc for
details).

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 22/22

Before adding commands to the script, test those commands on the
command line to see if they are working as expected.

The desired output for this script is a sequence of lines in the
following format:

GROUPNAME - NUM users

Where NUM is the number of users having GROUPNAME as their primary
group.

