
Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 1/10

SWitCH – Sistemas de Computação e Redes (SCOMRED)

2021/2022

Laboratory 04

BASH programming – Algorithmics.

Scheduled commands execution in Linux – CRON.

Command-line utilities - using and managing Docker containers.

1. Practical exercise: a BASH script for network monitoring

Create a BASH script to check hosts availability on the network, such checking will be implemented by
performing ICMP echo tests (ping).

1.1. The script is to meet the following requirements:

• The script file to be created is /root/bin/check-hosts.

• The script must be designed to run unattended, possibly in background, therefore it shouldn’t
interact with the terminal (stdin, stdout or stderr).

• The hosts to be checked are stored in the text file /etc/check-hosts.conf. Hosts may be
represented by an IP address or a DNS name. Several hosts may be placed in the same line
separated by spaces. Any line containing a hash signal should be ignored.

• A host availability checking is performed by sending to its address a single ICMP echo
request, if an ICMP echo response is received within 2 seconds the test is successful and the
host is regarded as being available, otherwise as unavailable.

• The script should log its actions into the file /var/log/check-hosts.log, this means appending
text lines describing what is doing and each achieved result, bear in mind timestamps are
mandatory on log files.

• Whenever a host is unavailable, a message should be sent to the root user in the system. For
this purpose, the write command is to be used. The write command has some outstanding
limitation, the target user is required to have an active terminal session on the system, otherwise
the message is lost. One other issue with the write command is that if the user has several
terminal sessions open, then the message is delivered only to one of those sessions.

• When the script is run, it will create an HTML page and store it on file
/var/www/html/check-hosts.html. (Thus, this page will be available as
https://vsX.dei.isep.ipp.pt/check-hosts.html, where vsX is your virtual server’s DNS
name). This file’s content is replaced each time the script is run, the contents must encompass
at least a timestamp for when the file was generated, the list of hosts being checked and for
each the status at that time (available/unavailable).

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 2/10

1.2. Implementation guidelines and hints.

• Use good programming practices, e.g., avoid constants spread around your code, always store
them on variables on the first lines of the script, and of course this includes filenames.

• Use incremental programming, this algorithm encompasses a main loop than will go through
the hosts list, then for each host several features are required to be implemented. Start by
implementing the main loop, then other features can be gradually added and tested one by one
at a time.

• Regarding the test itself, you may use the ping command. You could focus on the command’s
output, but a much better option is focusing on its return value (exit code).

2. Task scheduling in Linux – the CRON service

Tasks scheduling is an important capability most operating systems make available to users, it allows a
user to schedule a task execution (e.g., a program or a script) to a given time and date, and the user is
not required to be logged in at the time of execution.

This is especially useful for systems administrators as they can schedule the periodic execution of
unattended maintenance operations, most often at a time of low load on systems. Some examples of
such operations are software updates and data backups.

CRON is the most popular tasks scheduler for Linux and other UNIX like operating systems, CRON
is a service running in background (in UNIX such processes and services are commonly referred to as
daemons).

2.1. The /etc/crontab configuration file

For every minute tick, the CRON service wakes and reads the content of the /etc/crontab
configuration file, then it matches the current date/time with each entry on the file, for every match the
corresponding task is executed.

Each line in /etc/crontab has at least seven attributes separated by spaces, the first five are a
time/date pattern, if the current time matches that pattern, then CRON will execute the command
specified as 7th attribute using the username specified as 6th attribute. After the 7th attribute
arguments to be passed to the command may be used.

The first five attributes (time/data pattern) are:

1st – minute – legal values are integers from 0 up to 59.

2nd – hour – legal values are integers from 0 to up to 23.

3rd – day of the month – legal values are integers from 1 up to 31.

4th – month – legal values are integers from 1 to up to 12.

5th – day of the week – legal values are integers from 0 up to 7. Both 0 and 7 stand for Sunday.

For each of these attributes, a single value or a list of comma-separated alternative values may be
specified, a match will happen if the corresponding current date/time value is present in the list.

Instead of a comma separated list of values, for a set of consecutive values an inclusive range may be
specified, with the first and last values separated by a dash.

The asterisk character represents the comma separated list of all possible values for an attribute, so it’s
equivalent to an inclusive range between the lowest possible value and the highest possible value.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 3/10

The asterisk character (all possible values) may be associated by a forward slash with a step to create a
subset of all possible values. For instance, */20 in the minute specification is equivalent to 0,20,40.

For a match to happen, a match on every attribute is required, so if no
specific value is required for an attribute, the asterisk should be used.

Instead of the first five fields (time/data pattern), some special strings may be used, one very useful is
@reboot which means run the task when the CRON service is started, something that happens when
the server starts, but also whenever the CRON service is restarted. Nevertheless, it is a good solution to
execute something on the server boot.

2.2. An example of a CRON configuration file

Here is an example for a /etc/crontab file content:

Try figuring out when and at what time each of these tasks will get executed.

2.3. Schedule the periodic execution of today’s class BASH
script.

The hosts availability checking script, we have previously developed, may now be automatically
executed from time to time.

Create a new configuration line in /etc/crontab, such as the hosts availability checking script is
executed by the root user, every ten minutes, from Monday to Friday.

3. Using and managing Docker containers

The Docker software is one of the most popular PaaS (Platform as a Service) solutions, it uses the
operating system virtualization concept to establish containers. A container may be seen as a closed
box inside which programs can be run safely without interfering with the exterior world, namely the
host operating system and other applications and services running on it.

Containers are useful in many ways, for instance when testing applications under development, it is
rather simple to create a set of containers to simulate the production environment where the
applications will run later.

As you know, the virtual server each student has created for the SCOMRED lab classes is itself a
docker container, even though is looks much like a normal Linux Server running several applications
and services. In fact, one of such services is the docker service, as you may check:

systemctl status docker

So yes, you can run docker containers inside your virtual server (itself a Docker container).

*/5 * * * * root /usr/bin/prog1 /etc/pptt.cfg

5,35 * * * * root /root/update –g all

45 2 * 8 6 root /root/make-backup

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 4/10

Some important concepts about containers and Docker:

Containers are created from images; the main content of an image is the filesystem. The operating
system kernel is not in the image because containers use operating system virtualization, this means
applications running inside the container will use the operating system kernel that is hosting the
container.

For Docker, many images are available at the internet, for instance at Docker Hub
(https://hub.docker.com/), they are fetched on demand and stored locally so that they become
available to create and run containers locally.

Running (starting) a Docker container is in fact running a specific application inside the container,
it must be an executable file somewhere in the filesystem inside the container, when that application
exits, the container stops running. The application to be run is defined in the image, however that
may be override, and another application inside the container may be run instead.

Containers may be ephemeral, an ephemeral container is created with the purpose of running only
once, when it stops it’s immediately destroyed.

3.1. Let’s now test these concepts with the docker
command.

3.1.1. Listing locally available Docker images:

docker image ls

Most likely there is none.

You can get help about a docker command by using the --help option, for instance:

docker image --help

3.1.2. Listing local Docker containers:

docker ps -a

Again, most likely none. The -a flag instructs the docker ps command to list stopped containers as
well, by default, only running containers are listed.

3.1.3. Creating and running containers

The docker run command creates a new container from an image and starts it. If the requested image
is not available locally, it will be downloaded from Docker Hub. Then, a container is created from it,
and it is started. By default, docker containers are not ephemeral, this means they are kept after
stopping.

To be identifiable, within a host each container should have a unique name, for non-ephemeral
containers it’s best to baptise the container when it is created by using the --name option.

Let’s create and start a container using the hello-world image, this is a test image, it simply prints a
hello world greeting along with some other information and stops running.

Images are referred by their name, but they also have an additional sub identifier called tag that may be
used as suffix, separated by the image name by a colon. Tags are most often used to identify
different versions of the same image.

If no tag is used to refer an image, then the latest tag is used by default. For instance, when we refer
the hello-world image, the image that will be used is hello-world:latest.

https://hub.docker.com/

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 5/10

Let’s try it, the new container will be named as myHello, try to understand what is happening:

docker run --name myHello hello-world

Now let’s list again existing images and containers:

docker image ls

docker ps -a

The hello-world image has been downloaded, and is being used by the myHello container, therefore
the image can’t be removed. However, even if no containers were using the image, it would not be
automatically removed while there was no need to free disk space.

Now, let’s create and start another container using the same image:

docker run --name myHello2 hello-world

This time there was no need to download the image. Check that both containers exist:

docker ps -a

If the purpose is running once only, we can create an ephemeral container instead, we can do that by
simply adding the --rm option to the docker run command:

docker run --rm --name myHello3 hello-world

Check that this last container has not been preserved:

docker ps -a

One other way to create a Docker container is by using the docker create command it’s identical to
the docker run command, however, once created, the container is not started. The docker create
command also supports the --name option, but not the --rm option.

3.1.4. Starting existing containers

A non-ephemeral, previously created, stopped container may be started by using the docker start
command. Unlike with the docker run command that will usually execute in foreground (interactive
mode), the docker start command will usually execute in background, to force the interactive mode,
the -i option should be used. This container prints data to the stdout, and in background mode you
wouldn’t see anything.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 6/10

Let’s try starting the myHello2 container in interactive mode:

docker start -i myHello2

3.1.5. Removing stopped containers

Non-ephemeral, stopped containers we no longer need can be removed with the docker rm command,
let´s remove the containers created so far (myHello and myHello2):

docker rm myHello myHello2

By default, containers must be stopped before being removed, however, the docker rm command
accepts the -f option that will force the running containers to stop (SIGKILL) before removing them.

3.2. Networking with Docker

In your server, every Docker container is connected to a virtual switch (software bridge) under control
of the Docker service. This virtual switch is a private network within your server, IP packets are
forward to your server’s eth0 interface (the outside world) by applying NAT (Network Address
Translation).

Remember nodes in a private network are allowed to access the internet, however they are not
addressable from the internet because they use private addresses. So, at first glance, a server (e.g.,
Apache) in a private network is not reachable from the outside world. To overcome this issue, most
devices applying NAT allow administrators to set static port redirections from the public address to
private addresses, and Docker also allows that.

When creating a Docker container (e.g., run and create commands) you may use the -p option to
specify which port numbers at the public address should be redirected to a port number at the
container, for this purpose you will use -p PORT1:PORT2, where PORT1 stands for the source port
number at the public interface, and PORT2 stands for the destination port number at the container.

3.2.1. Running a network service inside a container

Let’s now use the httpd image, it’s a minimal image with the Apache 2 web server. Unlike the
previously used hello-world image than simply prints something and then exits, a container running a
network service runs forever and never stops unless requested to do so (docker stop command).

One other difference between the hello-world image and a typical network service is that unlike the
former, a network service runs in background (non-interactive mode).

We are now going to use the docker run command to create an ephemeral container (--rm), named as
myApp, and run it in background (-d option, standing for detach STDIN, STDOUT, and STDERR).

The Apache server running inside this container serves HTTP clients at port number 80, to make it
accessible to the outside world we will redirect port number 8080 of your server to port number 80 of
the container (-p 8080:80).

Here is the full command-line:

docker run --rm -d --name myApp -p 8080:80 httpd

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 7/10

Check that the container is running:

docker ps -a

Now let’s test if the Apache server running inside the container is accessible to the outside world. At
your laptop, with the DEI VPN connected, and using your favourite web browser, type:

http://vsXXX.dei.isep.ipp.pt:8080

Replacing vsXXX with the DNS name of your server.

If everything went ok, you are expected to get something like:

It works!

This is the default web page (index.html) of the Apache web server running inside the myApp
container.

3.2.2. Executing commands inside a running container

While a container is running you can execute commands inside it by using the docker exec command.
Though remember the single purpose of this specific image is running the Apache server, so many
commands will be missing.

Let’s try running some commands inside your myApp container:

docker exec myApp pwd

docker exec myApp ls -l

docket exec myApp ls -l htdocs

docker exec myApp cat /usr/local/apache2/htdocs/index.html

Right, here is the default page presented before at your web browser.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 8/10

Which Linux distribution is being used inside your myApp container?

Many distributions have that information in the text file /etc/issue.net, with the purpose of being
shown at the terminal before the user logins.

So, let’s check, first your server, and then your myApp container:

cat /etc/issue.net

docker exec myApp cat /etc/issue.net

We can also start a shell session inside the container, but again, remember that your myApp
container is not a full distribution, it contains only what is required for the Apache server to run.

To be able to properly interact with the shell inside the container, two options of the docker exec
command should be used, -t to create a terminal environment, and -i to interact through STDIN.

Presuming the bash is available inside this image, let’s try:

docker exec -t -i myApp bash

You are now in a command-line session inside your container, try some basic bash commands.

To exit you can use the exit command and you will be back on your server’s command line.

3.3. Using volumes with Docker containers

While we were at the command line inside the container, we could have changed the Apache pages
contents, and other configurations, in fact, because there’s no text editor inside this image, we would
also have to install one.

However, there is a big catch, this is an ephemeral container, so when it stops is immediately
destroyed, and all those changes and date stored inside the container would be lost.

Stop your container and check that it no longer exists:

docker stop myApp

docker ps -a

Does this mean it’s pointless to change the configuration or store data inside an ephemeral container?

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 9/10

No, the most popular workaround to this issue is volumes, volumes are folders and files at the host
system (outside the container) that are mounted inside the container replacing the ones existing in the
image being used.

The -v option, available with the docker run and docker create commands, establishes objects, most
often folders, to be mounted. The basic syntax is -v OUTSIDE-FOLDER:INSIDE-FOLDER.

From the previous exploration to this image, we now know that the web documents being served by
Apache are stored at the /usr/local/apache2/htdocs folder inside the container. Therefore, if we
want to continue using an ephemeral container and at the same time being able to manage and preserve
the contents being served, that folder must be a mounted volume.

Let’s put this idea into practice, first we will create a folder to store the web files, we will also create an
index.html file in this folder. Later when the container is created, we will use the -v option to replace
the /usr/local/apache2/htdocs folder inside the container by this external folder.

mkdir /root/my-web

nano /root/my-web/index.html

Add some content to the index.html file, for instance:

<html><body bgColor=gray>

<h1>This web page is on a volume</h1>

</body></html>

Now we can create and start the ephemeral container as before, but now replacing the
/usr/local/apache2/htdocs folder inside the container, mind that this is a single command-line:

docker run --rm -d --name myApp -p 8080:80 -v
/root/my-web:/usr/local/apache2/htdocs httpd

Test the server. At your laptop, with the DEI VPN connected, and using your web browser, type:

http://vsXXX.dei.isep.ipp.pt:8080

Replacing vsXXX with the DNS name of your server. The page we have just created should now be
shown.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Sistemas de Computação e Redes (SCOMRED) – André Moreira (asc@isep.ipp.pt) 10/10

Notice that you can now manage the documents being served by the container, from outside
the container. It will have the same result as managing them from inside the container.

Edit the /root/my-web/index.html file, for instance:

<html><body bgColor=gray>

<h1>This web page is on a volume</h1>

<h2>Changed from outside the container</h2>

</body></html>

Reload the page at your web browser.

http://vsXXX.dei.isep.ipp.pt:8080

Stop the container:

docker stop myApp

docker ps -a

It no longer exists, but the content of the /usr/local/apache2/htdocs folder is not lost.

Create and start the container again:

docker run --rm -d --name myApp -p 8080:80 -v
/root/my-web:/usr/local/apache2/htdocs httpd

