
Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) 1/3

SWitCH – Computing systems and networks (SCOMRED)

2021/2022

Laboratory 07

BASH based CGI applications.

Backend and web services testing - postman.

Team project development.

1. Online voting application – this week’s lecture example

Activity:

Deploy into your VS the example AJAX application from lecture 7 – online voting, it’s made of three
files.

Thoroughly test the application’s frontend.

1.1. Simulating a server unreachable scenario

The frontend was designed to be able to cope with network issues and recover from them, let’s test
such feature.

While the frontend is running and showing the current voting standings, let’s make the server
unavailable simply by stopping the apache2 service:

systemctl stop apache2

Check your frontend.

Make the server reachable again by starting the apache2 service:

systemctl start apache2

Check your frontend again, it’s expected to have fully recovered the normal operation.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) 2/3

1.2. Testing concurrent accesses to the web service

We already know from the lecture this application has a serious flaw due to the absence of concurrent
access control, it may not have been noticed yet because tests so far have been rather modest.

Let’s now create a “voting flood” in one candidate to see what happens, the idea is having several PUT
requests at the same time and for that purpose we can run the curl command in background, the
following bash script sends 10 PUT requests in parallel to cast 10 votes on candidate number 4:

#!/bin/bash
URL="http://vs129.dei.isep.ipp.pt/cgi-bin/votes"
CANDIDATE=4
for((i=0;i<10;i++))
do
 curl -X PUT ${URL}?c=${CANDIDATE} &
done

Create the script, for instance in file votesFlood.

Don’t forget to change the server’s name in the URL to match your own.

Grant to the file the execute permission and run it, check the voting standings at the frontend …

Fraud!!

Not all votes are being counted, or even odder things are happening.

For those with doubts, here is the evidence locking is a must in these cases of
concurrent accesses encompassing write operations.

Instituto Superior de Engenharia do Porto (ISEP) – Departamento de Engenharia Informática (DEI) – SWitCH – Computing systems and networks (SCOMRED) – André Moreira (ASC) 3/3

1.3. Implement a locking mechanism for voting

The issues are rising when several clients are simultaneously executing these three lines of our
/var/www/cgi-bin/votes backend:

(…)
N_CAND="${QUERY_STRING#c=}"
STANDING_FILE=${STANDING_FILE_BASENAME}.$N_CAND
VOTES=$(cat $STANDING_FILE)
VOTES=$((${VOTES}+1))
echo "$VOTES" > $STANDING_FILE
exit
(…)

While these three lines are being run by one instance of the script, no other instance may be running
these same lines, so while running these lines, a lock must be acquired.

As discussed in the lecture, one way to implement a lock over a filesystem is by using the folder
creating operation (mkdir command):

(…)
N_CAND="${QUERY_STRING#c=}"
STANDING_FILE=${STANDING_FILE_BASENAME}.$N_CAND
while ! mkdir ${STANDING_FILE_BASENAME}.$N_CAND.lock ; do sleep 1; done
VOTES=$(cat $STANDING_FILE)
VOTES=$((${VOTES}+1))
echo "$VOTES" > $STANDING_FILE
rmdir ${STANDING_FILE_BASENAME}.$N_CAND.lock
exit
(…)

While the creation of the lock folder fails (because it already exists as it was created by another instance
of the script) we wait one second and retry. Once we have acquired the lock, we may safely access and
change the shared voting standing. Notice that there´s a lock for each candidate, voting in different
candidates is not required to be mutually exclusive because there’s an independent file to store each
candidate votes.

Add these two green lines to your backend and test again the “votes flooding” with the previously
created script (votesFlood), now all votes are expected to be counted, check at the frontend.

