i}
I Instituto Superior de
| Engenharia do Porto

Instituto Superior de Engenharia do Porto

Mobile Agents

Sistemas Baseados em Agentes
Mestrado em Engenharia Informatica

Ramo Tecnologias do Conhecimento e Decisao

1090557 - Diogo Martinho

Abril 2014

Index

N o] 0 = ot 3
2. Agents and MODILILY ..o 4
3. Weak and Strong MODILILY ... sessssssssssssssssssssssses 5
4. Advantages and diSadVantages.......iss s 6
S AP PIICALIONS ..t s 9
6. Mobile AGENLS SYSTEIMS ... 11
7. CONCIUSION ittt bbb bbb 18
8. BIbliOGraphy ... 19

1. Abstract

Throughout the last decades, there has been an increasing need for developing
intelligent systems capable of solving problems that would help people with their
lives and routines. An area in Artificial Intelligence was brought into the
programming paradigm as an attempt to deal with that necessity.

Agent-based systems were created, made up of several interacting software agents
cooperating in order to solve issues where the opinion from single problem solver
would be inadequate.

These agents [1] “can be classified according to a set of possible characteristics
which will be used to describe an agent, such as Mobility, Intelligence, Reactivity,
Learning, Flexibility, Autonomy”, and others.

In this paper, it will be discussed the concept of mobile agents as well as the
importance of mobility in software development.

It will be exposed the two types of mobility including their main characteristics
and other relevant details.

It will also be presented the advantages and disadvantages for using mobile agents.

It will be shown all the relevant applications for mobile agent technology and then
several existing mobile agent systems and their features and architecture.

2. Agents and Mobility

Mobility is one of the most important characteristics found in software agents and
software development. It has been used in many technological fields such as
software distribution, network management and video conferencing as well as in
programming applications.

Agent mobility described as [1] “the ability to transfer itself to a different
computational location” allows the distribution of resources throughout a network
between several machines, relocating them according to the hardware capacity
involved in the execution of the necessary operations.

This is possible due to the autonomous nature of the mobile agent, allowing him to
schedule its own computation at a specific time at a specific location, according to
the execution times and that way avoiding cramming that is often verified in closed
environments where these agents are not allowed to operate. They can also decide
when to suspend execution and then transfer to another machine, reactivating its
function upon arrival.

While a mobile agent is moving across the network, a number of resources is also
being transferred, and it is important to assure there is no overuse or waste of
those resources. Furthermore according to [2], “Computational resources exported
by mobile-agent hosts are much more difficult to control. The host site generally has
no assurance that an arbitrary agent'’s actions will have any beneficial effects.”. This
means that the host system usually doesn’t know whether sharing resources with
an arbitrary agent could be advantageous or not. Many problems can be adverted
from the incorrect use of resources such as additional risks from denial-of-service
attacks or even additional congestion from incorrect use of mobile agents.

A correct use involves efficient agents that have the ability to evolve in a
distributed and heterogeneous environment, allowing them to travel through
different machines and operating systems during their lifecycle and having the
ability to perform correctly despite the policies and goals inherent to the
organizations taking advantage of them.

3. Weak and Strong Mobility

According to [3], agents can be divided into two models according to their type of
mobility (weak and strong).

Strong mobility is a process in which the full state of the agent is saved before
being transferred and then restored after the agent relocates into the new
machine. That state can be defined in the code of the program, as a set of
references towards available resources together with their execution state. After
saving all the required information the program will be transferred to a different
machine and then resume its previous execution. This becomes transparent to the
programmer considering that both the stop and resume for the program execution
can occur at any given time.

There are a few obstacles towards the implementation of strong mobility agents.
First of all, by saving the full state of the program, it will increase the overhead at
the moment of the transfer.

Secondly, and because Java has become more and more the preferred pattern
when developing mobile agents, it still doesn’t offer a mechanism that directly
allows the implementation of strong mobility. This is related with the fact, that the
Java Virtual Machine, for safety reasons, doesn’t provide full information on its
applications state and execution.

There have been many workarounds for this issue such as extra insertion and
manipulation of the application bytecode in order to retrieve the required
information of the application state, however because those alternatives aren’t
easy to develop, strong mobility is not often used.

In comparison we see more agents relying on weak mobility implementations,
which do not record the full state of the application, but instead transfer the code
of the program as well as the state of the object and any other referenced variables.
This type is not so transparent since it is necessary to manually define checkpoints
where the mobility can be performed without affecting the integrity of the
application. This forces the programmer to set explicitly several areas of the code
where the execution can be interrupted, and then reestablished on a different
machine.

Unlike strong mobility, there are several mechanisms in Java which allows saving
the state of the object as well as its variables, making it easy to send an application
from a machine to another.

Therefore weak mobility ends up being the most commonly used type of mobility.

4. Advantages and disadvantages

4.1. Advantages

Danny B. Lange and Mitsuru Oshima [4] believe that the “interest in mobile agents
is not motivated by the technology per se but rather by the benefits agents provide
for creating distributed systems. There are seven benefits, or good reasons, to start
using mobile agents” which are:

Network load reduction - When dealing with a specific task, distributed systems
usually demand high network traffic due to several communication protocols
interacting with each other. This issue can be diminished thanks to the mobile
agents’ ability to store a conversation and send it to a host where interactions can
be performed locally. Agents also decrease the flow of data by storing it at remote
hosts, which allows large volumes of data to be processed locally and not over the
entire network.

Network latency reduction - Manufacturing processes involve the use of systems
such as robots which should be ready to function correctly in a real-time
environment, and any latency can be problematic. Agents deal with this problem
by acting locally and that way undertake the controller’s actions directly.

Protocols encapsulation - One of the main issues relate with data transfer in
distributed systems is the is the fact that each host deals with the protocol’s
implementation in order to send and receive incoming data, whose maintenance is
problematic if the protocol keeps evolving and demanding more security or
efficiency measures. Agents based on proprietary protocols move to remote hosts
accordingly.

Autonomous and asynchronous execution - Another problem is related with
the fragile and expensive connections between mobile devices and the network
which usually last longer than what is supported by this sort of equipment. This
can be avoided by dispatching mobile agents in a network, which will be
responsible for the execution of specific tasks. They operate autonomously and
asynchronously and are later collected by the mobile device.

Dynamic adaptation - Mobile agents are fully aware of the environment where
they operate and have the ability to react according to changes. Besides that
multiple agents can distribute, if necessary, among the hosts in a network in order
to maintain an optimal configuration when dealing with a specific problem.

Heterogeneity - Network computing is mainly heterogeneous, which includes
both hardware and software perspectives and because agents are independent of
the computer and the layer they operate in, they are able to offer excellent
conditions for unified system integration.

Robust and fault-tolerant - Fault-tolerant distributed systems are easily built
thanks to the ability for an agent to react and adapt to an unfavorable situation. An
example of this is when a host is forced to shut down and the agents executing on
that machine are warned and then transfer themselves into a new host and then
proceed with their operation.

Benjamin Pierce [5] has also alerted for other positive aspects of mobile agent
computing:

High quality, high performance, economical mobile applications - Mobile
agents make the best use of the network and its resources as they travel through
all the hosts by taking advantage of their services. By processing the data at the
data sources instead of fetching it somewhere else this will contribute for a higher
performance and avoid unnecessary data transfer costs.

Portable, low-cost, personal communication devices - All the features related
to network support such as security are stored in a lightweight central which
manages the movement of the agents in a network. Besides that agents also
present a self-contained programming model. This allows recording a small
footprint on user devices without compromising the functionality for the
application.

Secure Intranet-style communications on public networks - Security over
public networks is achieved by using agents that carry user credentials as they
travel. Those credentials will be authenticated at every point of the network.
Besides that the data transferred with an agent is always encrypted.

4.2. Disadvantages

The first problem related to the use of mobile agents is associated with security
and integrity issues mainly due to the fact mobile agents is still a relatively new
technology [6], meaning that there barely are consistent mobile agent
development tools available so far (most of the versions are still in alpha and beta
state) and because of that it is common for unknown “bugs” and vulnerabilities to
appear that may compromise both the state of the machine and the agents
themselves.

The mobile agent management is also problematic. By increasing the number of
agents traveling throughout the network, it involves more control in all
communication processes which will affect the total overhead in the network.

Another issue is related with the fact that traditional security tools are not ready to
deal and adapt to mobile agent technology meaning that, even if a mobile agent can
provide fault-tolerant properties to these tools, it will still be vulnerable against
security threats and other risks.

Mobile agents may also require installing their working environment in each
node of the network on order to operate correctly.

Hervé Paulino [7] has identified other issues in mobile agent computing such as
code portability, which demands standardization in order for the code, upon an
agent’s arrival, to be properly interpreted and compiled to native code, despite the
mobile agent system installed on the host machine.

He also refers that a mobile agents are still not able to protect a machine from
the attacks of other malicious mobile agents, without restricting the access
rights for an agent to operate under that machine.

He concludes by saying that “It is unreasonable that any Internet service will be
willing to change radically from the client/server paradigm to the mobile agent
paradigm. An evolutionary path from current systems to mobile agent based systems
must be provided.”

5. Applications

The use of mobile agents has been growing over the years and we see more and
more applications taking advantage of the mobile agent paradigm [4]:

E-commerce - Commercial transactions often require real-time access to remote
resources that can managed by mobile agents. A good example of this is the agent-
to-agent negotiation. Agents negotiate between themselves and use different
strategies so that they can complete the tasks they’'ve been assigned with. Having
an agent that could act and show the intentions of its creator as well as negotiate
on its behalf would be the ideal scenario.

Personal assistance - We've seen already that mobile agents have the ability to
execute their tasks at a remote machine on behalf of their creators, and thanks to
that they are able to operate despite the state of the network connection. They are
able to perform actions such as scheduling meetings with other agents.

Secure brokering - This application happens when it’s necessary for several
mobile agents to collaborate and there is no certainty that all of them are trustful.
Because of that, the parties agree on a specific and secure meeting host where the
collaboration will take place, and that way avoid the host taking the side of one of
the visiting agents.

Distributed information retrieval - Mobile agents are used in order to access
remote information instead of transmitting large number of data throughout the
network. They also have the ability to operate during lean hours which helps the
overall performance of the entire network.

Telecommunication network services - Mobile agents provide flexibility and
efficiency to these systems by controlling their physical size which is an essential
requirement so that they can offer user customization and dynamic network
reconfigurations as part of the services available.

Workflow applications and groupware - These systems are based on
supporting the flow of information between coworkers. Mobile agents provide
mobility and autonomy to a workflow item allowing them to move through the
organization.

Monitoring and notification - Mobile agents have the ability to monitor the
information from a source, despite the system from where that source came from.
They can also be dispatched and wait for information before becoming available.
This means that a monitoring agent usually lasts longer than the process that
created it.

Information dissemination - Mobile agents can disseminate information, such as
news or updates, and act accordingly, for example, by installing new software
components directly on a remote computer and having the autonomy to keep that
machine always updated.

Parallel processing - Mainly used for processing parallel tasks, mobile agents can
clone themselves and administer tasks which will be run at the same time through
different processors. In a traditional sequential approach this could compromise
the performance of a single processor if it didn’t have the necessary processing
power to handle those tasks.

10

6. Mobile Agents Systems

Several mobile agent systems have been developed over the past years that take
advantage of some of the characteristics mentioned before. In this section it will be
described some of those systems and the reasons behind their development.

6.1. Ara

The Ara (Agents for Remote Action) System [8] was developed in the University of
Kaiserslautern, and its function is based on integrating mobility with existing
programming concepts. For that, the Ara agents travel through different programs
and have the ability to understand and use many different programming languages
associated with them.

The concept behind the Ara system programming model is rather simple. Like
mentioned before, an Ara agent moves between places and use resources such as
services in order to complete the task it has been assigned to.

A place is located in a remote machine and it will obviously force security
restrictions to the visiting agents before providing them the resources or
information they may need. The agents are identical to traditional programs where
they use a file system, a user interface and a network interface. This allows
separating the Ara architecture from high-level specific concepts and from
complex distributed services.

Due to these portability and security issues, most of the systems, like Ara use a
virtual area instead of running their agents directly over the real machine,
processor or operating system. For that it requires an interpreter and a run-time
system, called core, which will hide the details of the remote machine and restrain
the actions of the agent on that environment. The interpreter isolates language-
specific issues and the core collects all the language-independent functions.

Ara does not create a new agent programming language, but it provides an
interface instead, which is compatible with many existing languages making it
possible to employ several interpreters for each different language on the top of
the core.

11

The structure of the Ara architecture and its components using two interpreters
for language A and B is shown above:

*\ mobile B-agent /‘

1

system process

(compiled) mobile .3-agent

Binterpreter

A-interpreter

thread
Ara core I
host operating system I

Figure 1. High-level view of the Ara system architecture [8].

Ara agents use a fast thread package and are executed using parallel processes
allowing them to become transparent to wherever they decide to move. Besides
that the system also requires processes for executing internal tasks (system-
process) and that way keep the agent management under the control of the Ara
core. This will improve the system performance significantly.

6.2. D’Agents

D’Agents [9], also known as Agent Tcl, is a mobile agent system developed by the
College of Darthmouth in Hanover, and has been used in many academic and
industrial research labs. It focuses on security issues and provides full protection
to the machines using this system. The agents are built using Tcl Java and Scheme
scripting language and relies on a server which will be the main component ran in
the remote machine.

This system architecture is divided into four different layers or levels, and each of
those levels will present specific characteristics and responsibilities.

12

k(O Agents

‘ Tel see Java

Server or engine

Electronic

TCP/1P see .
mail

Figure 2. High-level view of the D’Agents system architecture [9].

The first and lowest level is an interface responsible for all the transport
mechanisms.

The second level represents the server mentioned before running in the machine.
It is responsible for several tasks: tracks all the agents running on its machine;
provides communication mechanisms between agents; validate and authenticate
incoming agents, restarting them at the right working environment; saves the
agents state which can be restored in case of machine failure.

The third level is the interpreter, responsible for the execution of each
environment according to the language identified. There are three types of
interpreters used for this purpose: Tcl interpreter, Scheme 48 interpreter and Java
Virtual Machine. Whenever a new agent arrives, the server starts the right
interpreter which will identify that agent execution language and then run it.

The last level is the agents and consists in their execution by the interpreters, and
the use of resources provided by the server allowing them to communicate with
other agents.

6.3. Aglets

Aglets [10] are mobile agents created using Java programming language. They can
be created and executed though the AWB (Aglets Workbench) which has been
developed by the IBM in Japan. This workbench includes the ATP (Aglets Transfer
Protocol) and AAPI (Aglet Application Programming Interface) components that
will be used in order to control all the aglets execution, features and interactions.

13

An aglet is a serialized object that travels through the network visiting aglet-
enabled hosts. Like any other mobile agent, it has the ability to stop, pause and
resume its execution in a specific host. When it migrates it will also transport its
data and execution code. Because this system is implemented using Java language
the code is independent from the platform and can be easily executed in almost
any computer. Before being executed, the aglet will create its own execution thread
and proceed with the task it was assigned with, and respond to any incoming
messages or requests.

The aglet architecture is made up of several mechanisms:
Aglet - The agent itself that travels through the network.

Context - The aglet's workspace. It is a stationary object that controls the
environment in where the aglet operates.

Proxy - A proxy is a representation of the aglet. It protects the agent by hiding his
true location and controls the access to its public methods.

Message - The message is what is transmitted between the agents. It is usually an
object containing data and can be passed both synchronously and asynchronously.

Message Manager - Controls the flow of the transmitted messages as well as the
concurrency for several incoming messages.

Itinerary - The map representing the agent’s travel plan through the network.

Identifier - Bound to each agent in order to identify it, and is globally unique and
immutable.

The following figure represents the aglet lifecycle:

" <\ §§§f5/> ——Dispatch—>» <\ ﬁ§§?5/>
Cloning Creation Deactivated

Agglet Class | | Retract—> \étoragé)

A

Messaging Dispose

|

v
_Agglet
Agglet Class

Figure 3. Aglet Lifecycle [11].

14

Creation - Creates the aglet, which includes assigning it with an identifier, a
context and then initializes the object. Only after that, the aglet will be ready to be
executed.

Cloning - Copy an aglet and creates an object almost identical only having a
different identifier and restarting the execution in that copy.

Dispatching - Process of moving the aglet between two different contexts. It
removes the aglet in its original context and moves it into the destination
environment where its execution will be restarted.

Retraction - Removes the aglet from a context into another from where the
retraction was requested

Deactivation - Removes the aglet temporarily from its context into a storage area.
Activation - Restore the aglet into the context from the storage area.

Disposal - Stops the aglet’s execution and removes it from its context.

Messaging - Exchange of messages between aglets.

Naming - The process for binding the identifier to an aglet.

Aglets are also classified in two categories according to their reliance in the
system. It is critical to assure that a host doesn’t allow an agent to compromise its
security, and because of that aglets are divided into trusted and untrusted and
their actions in the system will be restricted accordingly, for example, to allow an
aglet to access a file system, network or other aglets.

The final decision to trust an aglet, however, will always be up to the host.

6.4. Concordia

Concordia [12] is a mobile agent development framework. It has been developed
using Java programming language in order to assure the independency and
interoperability between different mobile agent applications and its main goal is to
provide full coverage and support for agent’s features, such as state, security,
flexibility, and mobility.

15

The Concordia system runs under a JVM (Java Virtual Machine) and includes a
Concordia Server and at least one Concordia Agent. The JVM allows the system to
be run in any machine.

There can be many Concordia servers spread throughout the entire network in
different nodes or machines, and they are all aware of each other and connect for
every agent’s transfer.

In order to successfully transfer an agent to a different host, it first creates an
Itinerary, which is an object containing the traveling plan, and then invokes the
Concordia server specific methods which will inspect that itinerary and determine
the destination. An image of the agent is then saved and transferred to that
destination.

After transferring, an agent queues up for restart and then execution in the new
host, and only after will be able to execute the method defined in the itinerary.

The agent permissions and access rights to services and information are always
under administrative control at all times.

The Concordia system is made up of several components, each having different
responsibilities:

Concordia Service
Server Bridge

& :I; _ Yo Persistence Agent Lhe s

G Network | oy | Manager Manager ek

Clyeye

Seacurity
Manager .

Manager

Concordia Server

IRemote Administration API

Administrator

Concordia
Server

Figure 4. High-level view of the Concordia system architecture [12].

16

Concordia Server - Installed and running at every node in the network and is
responsible for transferring Concordia agents by calling implemented methods

Agent Manager - Provides an infrastructure for allowing agents to be sent and
received in a node. It is also responsible for the agent lifecycle, including creation,
execution and destruction.

Administrator - Manages all the services accessed by the agent and monitors the
agent throughout the network.

Security Manager - Controls all the agent authentications, protects the server
resources, and ensures the security and integrity of agents while moving in the
system.

Persistence Manager - Checkpoints the state of the agent in the network and in
case of system failure, has the ability to restore an agent. It is also transparent
because it doesn’t need any monitoring or control, in order to perform its
functions, but it can still be managed if necessary.

Event Manager - Controls all the events associated with an agent, such as
registration, posting or notification.

Queues Manager - Prioritizes agents’ execution and schedules them accordingly.

Directory Manager - Responsible for all the naming functions in the Concordia
System.

Service Bridge - Provides an agent with services available at several hosts in the
network via an Interface.

Agent Tools Library - Responsible for all the classes needed in order to
implement Concordia agents.

17

7. Conclusion

Mobile agent technology has slowly, yet steadily changed the current concept of
distributed systems and the way they operate. The introduction of mobile agents in
network management brought huge improvements but also new risks.

Security is the major obstacle for believing in this new technology, and many
challenges still lie ahead before we are able to overcome this problem, such as code
standardization and better development frameworks.

It is my belief that mobile agents are being misunderstood as a dangerous rather
than powerful technology because of all the security and development issues
mentioned before and not because of all the important advantages they can bring
to real systems.

Only when the technological community is able to understand and accept mobile
agents, a door will open with many new opportunities and a certainty that mobile
agents will be here to stay and succeed.

18

8. Bibliography

1 - Ramos, C,, Silva, A.: Sistemas Baseados em Agentes. DEI-ISEP (2006-2008).

2 - Bredin, |., Kotz, D., Rus, D.: Economic Markets as a Means of Open Mobile-Agent
Systems. Dartmouth College (1999).

3 - Lacerra, L., Coraini, T.: Agentes Moveis e migra¢do de processos. Instituto de
Matematica e Estatistica, Universidade de Sao Paulo.

4 - Lange, D., Oshima, M.: Dispatch your agents; shut off your machine. General
Magic, Inc. Sunnyvale, California.

5 - Pierce, B.: Mobile Agent Computing, a White Paper.

6 - Karygiannis, T.: Network Security Testing Using Mobile Agents. National
Institute of Standards and Technology .

7 - Paulino,H.: A Mobile Agents’ Overview Departamento de Informatica,
Faculdade de Ciéncias e Tecnologia Universidade Nova de Lisboa (2002).

8 - Peine, H., Stolpmann, T.: The Architecture of the Ara Platform for Mobile Agents.
University of Kaiserslautern, Germany.

9 - Robert, G., Kotz, D., Cybenko, G., Rus, D.: D’Agents: Security in a multiple-
language, mobile agent-system. Darthmouth College.

10 - Lange, D.: Java Aglet Application Programming Interface (J-AAPI) White Paper.
IBM Tokyo Research Laboratory (1997).

11 - Karjoth, G., Ohsima M., Lange, D.: A Security Model for Aglets. IBM Research
Division, Zurich Research Laboratory (1997).

12 - Peng, |, Li, B.: Mobile Agent in Concordia. Mathematics and Computer Science
Department, Kent State University, Ohio, USA.

19

