
Designing Data Tier Components
and Passing Data Through Tiers

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in
or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft, SQL Server, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

© 2002 Microsoft Corporation. All rights reserved.

Version 1.0

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Collaborators: Luca Bolognese, Mike Pizzo, Keith Short, Martin Petersen-Frey (PSS),
Pablo De Grande, Bernard Chen (Sapient), Dimitris Georgakopoulos (Sapient),
Kenny Jones, Chris Brooks, Lance Hendrix, Chris Schoon, and Franco Ceruti (VBNext).

Contents
Introduction . 1

Data Access Logic Components . 2
Representing Business Entities . 3
Technical Considerations . 4

Mapping Relational Data to Business Entities . 5
Recommendations for Mapping Relational Data to Business Entities 8

Implementing Data Access Logic Components . 9
Application Scenarios for Data Access Logic Components . 9
Implementing Data Access Logic Component Classes . 11
Using Stored Procedures in Conjunction with Data Access Logic Components 14
Managing Locking and Concurrency . 16
COM Interoperability . 22

Implementing Business Entities . 22
Representing Business Entities as XML . 23
Representing Business Entities As a Generic DataSet . 25
Representing Business Entities As a Typed DataSet . 28
Defining Custom Business Entity Components . 29
Defining Custom Business Entity Components with CRUD Behaviors 34
Recommendations for Representing Data and Passing Data

Through Tiers . 36
Transactions . 37

Implementing Transactions . 37
Recommendations for Using Manual Transactions in Data Access

Logic Components . 39
Recommendations for Using Automatic Transactions in Data Access

Logic Components . 39
Using Automatic Transactions in Business Entity Components 40

Validations . 40
How to Validate XML by Using an XSD Schema . 41
How to Validate Data in Property Accessors in Business Entity Components 42

Exception Management . 43
Recommendations for Managing Exceptions in a Data Access Logic Component . . . 43
Recommendations for Managing Exceptions in Business Entity Components 44

Authorization and Security . 45
Recommendations for Security in Data Access Logic Components 45
Recommendations for Security in Business Entity Components 48

Deployment . 48
Deploying Data Access Logic Components . 48
Deploying Business Entities . 49

Contentsiv

Appendix . 50
Appendix Contents . 50
How to Define a Data Access Logic Component Class . 50
How to Use XML to Represent Collections and Hierarchies of Data 51
How to Apply a Style Sheet Programmatically in a .NET Application 52
How to Create a Typed DataSet . 52
How to Define a Business Entity Component . 54
How to Represent Collections and Hierarchies of Data in a Business

Entity Component . 55
How to Bind Business Entity Components to User-Interface Controls 57
How to Expose Events in a Business Entity Component . 58
How to Serialize Business Entity Components to XML Format 60
How to Serialize Business Entity Components to SOAP Format 64
How to Serialize Business Entity Components to Binary Format 65

Introduction
When designing a distributed application, you need to decide how to access and
represent the business data associated with your application. This document pro-
vides guidance to help you choose the most appropriate way of exposing, persist-
ing, and passing that data through the tiers of an application.

Figure 1 depicts the common tiers of a distributed application. This document
distinguishes between business data and the business processes that use the data;
the business process tier is discussed only where needed for clarification. Likewise,
the presentation tier is discussed only where there are direct implications for the
way data is represented, such as the way ASP.NET Web pages expose business data.
Figure 1 introduces two new terms: data access logic components and business
entity components. These terms are described later in this document.

Presentation Tier

Presentation
Tier

Business
Process

Components

Data Access Logic
Components

Business
Entities

Application Data

Business Process Tier

Data Tier

Figure 1
Accessing and representing data in a distributed application

Designing Data Tier Components and Passing Data Through Tiers2

Most applications store data in relational databases. While there are other options
for storing data, this document focuses on how .NET applications interact with
relational databases, and does not specifically discuss how to interact with data
held in other data stores such as flat files or non-relational databases.

This document makes a clear distinction between persistence logic and the data
itself. The reasons for separating persistence logic from the data include the
following:
● Separate data persistence components can isolate the application from database

dependencies, such as the name of the data source, connection information, and
field names.

● Many of today’s applications use loosely coupled, message-based technologies,
such as XML Web services and Microsoft Message Queuing (also known as
MSMQ). These applications typically communicate by passing business docu-
ments, rather than by passing objects.

Note: For an introduction to XML Web services, see the article titled .NET Web Services:
Web Methods Make it Easy to Publish Your App’s Interface over the Internet in the March
2002 issue of MSDN Magazine. For more information about Message Queuing, see
Message Queuing Overview.

To attain the distinction between persistence logic and the data itself, this document
proposes two different component types.
● Data access logic components. Data access logic components retrieve data from

the database and save entity data back to the database. Data access logic compo-
nents also contain any business logic needed to achieve data-related operations.

● Business entity components. Data is used to represent real world business
entities, such as products or orders. There are numerous ways to represent these
business entities in your application — for example, XML or DataSets or custom
object-oriented classes — depending on the physical and logical design con-
straints of the application. Design options are investigated in detail later in this
document.

Data Access Logic Components
A Data Access Logic Component provides methods to perform the following tasks
upon a database, on behalf of the caller:
● Create records in the database.
● Read records in the database, and return business entity data to the caller.
● Update records in the database, by using revised business entity data supplied

by the caller.
● Delete records in the database.

> 3

The methods that perform the preceding tasks are often called “CRUD” methods,
where CRUD is an acronym based on the first letter of each task.

The Data Access Logic Component also has methods to implement business logic
against the database. For example, a Data Access Logic Component might have a
method to find the highest-selling product in a catalog for this month.

Typically, a Data Access Logic Component accesses a single database and encapsu-
lates the data-related operations for a single table or a group of related tables in the
database. For example, you might define one Data Access Logic Component to deal
with the Customer and Address tables in a database, and another Data Access Logic
Component to deal with the Orders and OrderDetails tables. The design decisions
for mapping data access logic components to database tables are discussed later in
this document.

Representing Business Entities
Each Data Access Logic Component deals with a specific type of business entity. For
example, the Customer Data Access Logic Component deals with Customer busi-
ness entities. There are many different ways to represent business entities, depend-
ing on factors such as the following:
● Do you need to bind business entity data to controls in a Windows form or on an

ASP.NET page?
● Do you need to perform sorting or searching operations on the business entity

data?
● Does your application deal with business entities one at a time, or does it typi-

cally deal with sets of business entities?
● Will you deploy your application locally or remotely?
● Will the business entity be used by XML Web services?
● How important are nonfunctional requirements, such as performance, scalability,

maintainability, and programming convenience?

This document outlines the advantages and disadvantages of the following imple-
mentation options:
● XML. You use an XML string or an XML Document Object Model (DOM) object

to represent business entity data. XML is an open and flexible data representa-
tion format that can be used to integrate diverse types of applications.

● DataSet. A DataSet is an in-memory cache of tables, obtained from a relational
database or an XML document. A Data Access Logic Component can use a
DataSet to represent business entity data retrieved from the database, and you
can use the DataSet in your application. For an introduction to DataSets, see
“Introducing ADO.NET” in the .NET Data Access Architecture Guide.

Designing Data Tier Components and Passing Data Through Tiers4

● Typed DataSet. A typed DataSet is a class that inherits from the ADO.NET
DataSet class and provides strongly typed methods, events, and properties to
access the tables and columns in a DataSet.

● Business Entity Component. This is a custom class to represent each type of
business entity. You define fields to hold the business entity data, and you define
properties to expose this data to the client application. You define methods to
encapsulate simple business logic, making use of the fields defined in the class.
This option does not implement CRUD methods as pass-through methods to the
underlying Data Access Logic Component; the client application communicates
directly with the Data Access Logic Component to perform CRUD operations.

● Business Entity Component with CRUD behaviors. You define a custom entity
class as described previously, and you implement the CRUD methods that call
the underlying Data Access Logic Component associated with this business
entity.

Note: If you prefer to work with your data in a more object-oriented fashion, you can use
the alternate approach of defining an object persistence layer based on the reflection
capabilities of the common language runtime. You can create a framework that uses
reflection to read the properties of the objects and use a mapping file to describe the
mapping between objects and tables. However, to implement this effectively would consti-
tute a major investment in infrastructure code. This outlay might be viable for ISVs and
solution providers, but not for the majority of organizations, and it is beyond the scope of
this document.

Technical Considerations
Figure 2 shows some of the technical considerations that influence the implementa-
tion strategy for data access logic components and business entities. This document
addresses each of these technical considerations and provides recommendations.

> 5

Business Entity

Business entity’s state

Data Access Logic Component

Subset of business entity’s state

Application Data

How do I
represent a
collection?

What is my data
format to data access
logic components?

How do I abstract
database schema?

When to use stored
procedures?

When not to?

How do I represent
a single instance?

How do I
represent a
hierarchy?

Figure 2
Technical considerations that influence the design of data access logic components and business entities

Mapping Relational Data to Business Entities
Databases typically contain many tables, with relationships implemented by pri-
mary keys and foreign keys in these tables. When you define business entities to
represent this data in your .NET application, you must decide how to map these
tables to business entities.

Designing Data Tier Components and Passing Data Through Tiers6

Consider the hypothetical retailer’s database shown in Figure 3.

Customers

CustomerID
Company Name

Addresses

AddressID
CustomerID
Street
City
PostalCode
Country
Phone

Orders

OrderID
CustomerID
OrderDate
ShippedDate

OrderDetails

OrderID
ProductID
UnitPrice
Quantity

Products

ProductID
ProductName
QuantityPerUnit
UnitPrice

*
*

*

1 1
*

11
1

Figure 3
Hypothetical table relationships in a relational database

The following table summarizes the types of relationships in the example database.

Type of relationship Example Description

One-to-many Customer: Address A customer can have many addresses,
such as a delivery address, a billing
address, and a contact address.

Customer: Order A customer can place several orders.

Many-to-many Order: Product An order can comprise many products; each
product is represented by a separate row in
the OrderDetails table. Likewise, a product
can be featured in many orders.

When you define business entities to model the information in the database, con-
sider how you will use the information in your application. Identify the core busi-
ness entities that encapsulate your application’s functionality, rather than defining
a separate business entity for each table.

> 7

Typical operations in the hypothetical retailer’s application are as follows:
● Get (or update) information about a customer, including his or her addresses.
● Get a list of orders for a customer.
● Get a list of order items for a particular order.
● Place a new order.
● Get (or update) information about a product or a collection of products.

To fulfill these application requirements, there are three logical business entities that
the application will handle: a Customer, an Order, and a Product. For each business
entity, a separate Data Access Logic Component will be defined, as follows:
● Customer Data Access Logic Component. This class will provide services to

retrieve and modify data in the Customer and Address tables.
● Order Data Access Logic Component. This class will provide services to retrieve

and modify data in the Order and OrderDetails tables.
● Product Data Access Logic Component. This class will provide services to

retrieve and modify data in the Product table.

Figure 4 illustrates the relationships between the data access logic components and
the tables that they represent in the database.

Customer
table

Address
table

Order
table

Product
table

OrderDetails
table

Product
Data Access Logic Component

Order
Data Access Logic Component

Customer
Data Access Logic Component

Figure 4
Defining data access logic components to expose relational data to .NET applications

For a description of how to implement data access logic components, see Imple-
menting Data Access Logic Components later in this document.

Designing Data Tier Components and Passing Data Through Tiers8

Recommendations for Mapping Relational Data to Business Entities
To map relational data to business entities, consider the following recommendations:
● Take the time to analyze and model the logical business entities of your applica-

tion, rather than defining a separate business entity for every table. One of the
ways to model how your application works is to use Unified Modeling Language
(UML). UML is a formal design notation for modeling objects in an object-
oriented application, and for capturing information about how objects represent
automated processes, human interactions, and associations. For more informa-
tion, see Modeling Your Application and Data.

● Do not define separate business entities to represent many-to-many tables in the
database; these relationships can be exposed through methods implemented in
your Data Access Logic Component. For example, the OrderDetails table in the
preceding example is not mapped to a separate business entity; instead, the
Orders data access logic component encapsulates the OrderDetails table to
achieve the many-to-many relationship between the Order and Product tables.

● If you have methods that return a particular type of business entity, place these
methods in the Data Access Logic Component for that type. For example, if you
are retrieving all orders for a customer, implement that function in the Order
Data Access Logic Component because your return value is of the type Order.
Conversely, if you are retrieving all customers that have ordered a specific
product, implement that function in the Customer Data Access Logic Component.

● Data access logic components typically access data from a single data source. If
aggregation from multiple data sources is required, it is recommended to define
a separate Data Access Logic Component to access each data source that can be
called from a higher-level business process component that can perform the
aggregation. There are two reasons for this recommendation:
● Transaction management is centralized to the business process component

and does not need to be controlled explicitly by the Data Access Logic Com-
ponent. If you access multiple data sources from one Data Access Logic
Component, you will need the Data Access Logic Component to be the root of
transactions, which will introduce additional overhead on functions where
you are only reading data.

● Aggregation is usually not a requirement in all areas of the application, and
by separating the access to the data, you can let the type stand alone as well
as be part of an aggregation when needed.

> 9

Implementing Data Access Logic Components
A Data Access Logic Component is a stateless class, meaning that all messages
exchanged can be interpreted independently. No state is held between calls. The
Data Access Logic Component provides methods for accessing one or more related
tables in a single database, or in some instances, multiple databases as in the case
of horizontal database partitioning. Typically, the methods in a Data Access Logic
Component invoke stored procedures to perform their operations.

One of the key goals of data access logic components is to hide the invocation and
format idiosyncrasies of the database from the calling application. Data access logic
components provide an encapsulated data-access service to these applications.
Specifically, data access logic components handle the following implementation
details:
● Manage and encapsulate locking schemes
● Handle security and authorization issues appropriately
● Handle transaction issues appropriately
● Perform data paging
● Perform data-dependent routing if required
● Implement a caching strategy if appropriate, for queries of nontransactional data
● Perform data streaming and data serialization

Some of these issues are explored in more detail later in this section.

Application Scenarios for Data Access Logic Components
Figure 5 on the next page shows how a Data Access Logic Component can be called
from a variety of application types, including Windows Forms applications,
ASP.NET applications, XML Web services, and business processes. These calls might
be local or remote, depending on how you deploy your applications.

Designing Data Tier Components and Passing Data Through Tiers10

Windows Forms ASP.NET XML Web Service

Business entity data

Business Process
Workflows, .NET

Components, BizTalk
Orchestration

Remote call Local call
Local or

Remote call

Local call
Local or

Remote call

Data Access Logic Component

Database

CRUD and other data logic
functions

Business entity data Business entity data

Business entity data

Business entity data

Business entity data

External
Callers

Figure 5
Application scenarios for data access logic components

> 11

Implementing Data Access Logic Component Classes
Data access logic components use ADO.NET to execute SQL statements or call
stored procedures. For an example of a Data Access Logic Component class, see
How to Define a Data Access Logic Component Class in the appendix.

If your application contains multiple data access logic components, you can sim-
plify the implementation of Data Access Logic Component classes by using a data
access helper component. This component can help manage database connections,
execute SQL commands, and cache parameters. The data access logic components
still encapsulate the logic required to access the specific business data, whereas the
data access helper component centralizes data access API development and data
connection configuration, thereby helping to reduce code duplication. Microsoft
provides the Data Access Application Block for .NET, which can be used as a
generic data access helper component in your applications when you use Microsoft
SQL Server™ databases. Figure 6 shows how to use the data access helper compo-
nent to help implement data access logic components.

Data Access
Logic Component

Data Access
Logic Component

Data Access Helper Component

Figure 6
Implementing data access logic components by using the data access helper component

If there are utility functions that are common to all of your data access logic compo-
nents, you can define a base class for data access logic components to inherit from
and extend.

Design your Data Access Logic Component classes to provide a consistent interface
for different types of clients. If you design the Data Access Logic Component to be
compatible with the requirements of your current and potential business process
tier implementation, you can reduce the number of additional interfaces, façades,
or mapping layers that you must implement.

Designing Data Tier Components and Passing Data Through Tiers12

To support a diverse range of business processes and applications, consider the
following techniques to pass data to and from Data Access Logic Component
methods:
● Passing business entity data into methods in the Data Access Logic Component.

You can pass the data in several different formats: as a series of scalar values, as
an XML string, as a DataSet, or as a custom Business Entity Component.

● Returning business entity data from methods in the Data Access Logic Compo-
nent. You can return the data in several different formats: as output-parameter
calar values, as an XML string, as a DataSet, as a custom Business Entity Compo-
nent, or as a data reader.

The following sections present the options for passing business entity data to and
from your data access logic components, in addition to the advantages and disad-
vantages of each approach. This information will help you to make an informed
choice based on your specific application scenario.

Passing Scalar Values As Inputs and Outputs
The advantages of this option are as follows:
● Abstraction. Callers must know about only the data that defines the business

entity, but not a specific type or the specific structure of the business entity.
● Serialization. Scalar values natively support serialization.
● Efficient use of memory. Scalar values only convey the data that is actually

needed.
● Performance. When dealing with instance data, scalar values offer better perfor-

mance than the other options described in this document.

The disadvantages of this option are as follows:
● Tight coupling and maintenance. Schema changes could require method signa-

tures to be modified, which will affect the calling code.
● Collections of entities. To save or update multiple entities to a Data Access Logic

Component, you must make separate method calls. This can be a significant
performance hit in distributed environments.

● Support of optimistic concurrency. To support optimistic concurrency, time
stamp columns must be defined in the database and included as part of the data.

Passing XML Strings As Inputs and Outputs
The advantages of this option are as follows:
● Loose coupling. Callers must know about only the data that defines the business

entity and the schema that provides metadata for the business entity.

> 13

● Integration. Accepting XML will support callers implemented in various ways —
for example, .NET applications, BizTalk Orchestration rules, and third-party
business rules engines.

● Collections of business entities. An XML string can contain data for multiple
business entities.

● Serialization. Strings natively support serialization.

The disadvantages of this option are as follows:
● Reparsing effort for XML strings. The XML string must be reparsed at the receiv-

ing end. Very large XML strings incur a performance overhead.
● Inefficient use of memory. XML strings can be verbose, which can cause ineffi-

cient use of memory if you need to pass large amounts of data.
● Supporting optimistic concurrency. To support optimistic concurrency, time

stamp columns must be defined in the database and included as part of the
XML data.

Passing DataSets As Inputs and Outputs
The advantages of this option are as follows:
● Native functionality. DataSets provide built-in functionality to handle optimistic

concurrency (along with data adapters) and support for complex data structures.
Furthermore, typed DataSets provide support for data validation.

● Collections of business entities. DataSets are designed to handle sets and com-
plex relationships, so you do not need to write custom code to implement this
functionality.

● Maintenance. Schema changes do not affect the method signatures. However, if
you are using typed DataSets and the assembly has a strong name, the Data
Access Logic Component class must be recompiled against the new version,
must use a publisher policy inside the global assembly cache, or must define a
<bindingRedirect> element in its configuration file. For information about how
the runtime locates assemblies, see How the Runtime Locates Assemblies.

● Serialization. A DataSet supports XML serialization natively and can be serial-
ized across tiers.

The disadvantages of this option are as follows:
● Performance. Instantiating and marshalling DataSets incur a runtime overhead.
● Representation of a single business entity. DataSets are designed to handle sets

of data. If your application works mainly with instance data, scalar values or
custom entities are a better approach as you will not incur the performance
overhead.

Designing Data Tier Components and Passing Data Through Tiers14

Passing Custom Business Entity Components As Inputs and Outputs
The advantages of this option are as follows:
● Maintenance. Schema changes may not affect the Data Access Logic Component

method signatures. However, the same issues arise as with typed DataSets if the
Business Entity Component is held in a strong-named assembly.

● Collections of business entities. An array or a collection of custom business entity
components can be passed to and from the methods.

The disadvantages of this option are as follows:
● Supporting optimistic concurrency. To support optimistic concurrency easily,

time stamp columns must be defined in the database and included as part of the
instance data.

● Limited integration. When using custom business entity components as inputs
to the Data Access Logic Component, the caller must know the type of business
entity; this can limit integration for callers that are not using .NET. However, this
issue does not necessarily limit integration if the caller uses custom business
entity components as output from the Data Access Logic Component. For ex-
ample, a Web method can return the custom Business Entity Component that
was returned from a Data Access Logic Component, and the Business Entity
Component will be serialized to XML automatically using XML serialization.

Returning Data Readers As Outputs
The advantage of this option is as follows:
● Performance. There is a performance benefit when you need to render data

quickly and you can deploy your Data Access Logic Component with the presen-
tation tier code.

The disadvantage of this option is as follows:
● Remoting. It is inadvisable to use data readers in remoting scenarios, because of

the potential for client applications to hold the database connection open for
lengthy periods.

Using Stored Procedures in Conjunction with Data Access Logic
Components
You can use stored procedures to perform many of the data access tasks supported
by data access logic components.

Advantages
● Stored procedures generally result in improved performance, because the data-

base can optimize the data access plan used by the procedure and cache the plan
for subsequent reuse.

> 15

● Stored procedures can be individually secured within the database. An adminis-
trator can grant clients permission to execute a stored procedure, without grant-
ing any permissions on the underlying tables.

● Stored procedures may result in easier maintenance, because it is generally easier
to modify a stored procedure than to change a hard-coded SQL statement within
a deployed component. However, the benefit decreases as the business logic
implemented in the stored procedures increases.

● Stored procedures add an extra level of abstraction from the underlying database
schema. The client of the stored procedure is isolated from the implementation
details of the stored procedure and from the underlying schema.

● Stored procedures can reduce network traffic. SQL statements can be executed in
batches, rather than the application having to send multiple SQL requests.

Despite the advantages listed above, there are some situations where the use of
stored procedures is not recommended or may be infeasible.

Disadvantages
● Applications that involve extensive business logic and processing could place

an excessive load on the server if the logic was implemented entirely in stored
procedures. Examples of this type of processing include data transfers, data
traversals, data transformations, and intensive computational operations. You
should move this type of processing to business process or data access logic
components, which are a more scalable resource than your database server.

● Do not put all of your business logic into stored procedures. Maintenance and
the agility of your application becomes an issue when you must modify business
logic in T-SQL. For example, ISV applications that support multiple RDBMS
should not need to maintain separate stored procedures for each system.

● Writing and maintaining stored procedures is most often a specialized skill set
that not all developers possess. This situation may introduce bottlenecks in the
project development schedule.

Recommendations for Using Stored Procedures with Data Access Logic
Components
Consider the following recommendations for using stored procedures in conjunc-
tion with data access logic components:
● Exposing stored procedures. Data access logic components should be the only

components that are exposed to database schema information, such as stored
procedure names, parameters, tables, and fields. Your business entity implemen-
tation should have no knowledge of or dependency on database schemas.

● Associating stored procedures with data access logic components. Each stored
procedure should be called by only one Data Access Logic Component, and

Designing Data Tier Components and Passing Data Through Tiers16

should be associated with the Data Access Logic Component that owns the
action. For example, imagine that a customer places an order with a retailer. You
can write a stored procedure named OrderInsert, which creates the order in the
database. In your application, you must decide whether to call the stored proce-
dure from the Customer Data Access Logic Component or from the Order Data
Access Logic Component. The Order Data Access Logic Component is a better
choice because it handles all order-related processing (the Customer Data Access
Logic Component handles customer information, such as the customer’s name
and address).

● Naming stored procedures. When you define stored procedures for a Data
Access Logic Component to use, choose stored procedure names that emphasize
the Data Access Logic Component to which they pertain. This naming conven-
tion helps to easily identify which components call which stored procedures,
and provides a way to logically group the stored procedures inside SQL
Enterprise Manager. For example, you can proactively write stored procedures
named CustomerInsert, CustomerUpdate, CustomerGetByCustomerID, and
CustomerDelete for use by the Customer Data Access Logic Component, and
then provide more specific stored procedures — such as CustomerGetAllInRegion
— to support the business functions of your application.

Note: Do not preface your stored procedure names with sp_, because doing so reduces
performance. When you call a stored procedure that starts with sp_, SQL Server always
checks the master database first, even if the stored procedure is qualified with the
database name.

● Addressing security issues. If you accept user input to perform queries dynami-
cally, do not create a string by concatenating values without using parameters.
Also avoid using string concatenation in stored procedures if you are using
sp_execute to execute the resulting string, or if you do not take advantage
of sp_executesql parameter support.

Managing Locking and Concurrency
Some applications take the “Last in Wins” approach when it comes to updating data
in a database. With the “Last in Wins” approach, the database is updated, and no
effort is made to compare updates against the original record, potentially overwrit-
ing any changes made by other users since the records were last refreshed. How-
ever, at times it is important for the application to determine if the data has been
changed since it was initially read, before performing the update.

Data access logic components implement the code to manage locking and
concurrency. There are two ways to manage locking and concurrency:

> 17

● Pessimistic concurrency. A user who reads a row with the intention of updating it
establishes a lock on the row in the data source. No one else can change the row
until the user releases the lock.

● Optimistic concurrency. A user does not lock a row when reading it. Other users
are free to access the row in the meantime. When a user wants to update a row,
the application must determine whether another user has changed the row since
it was read. Attempting to update a record that has already been changed causes
a concurrency violation.

Using Pessimistic Concurrency
Pessimistic concurrency is primarily used in environments where there is heavy
contention for data, and where the cost of protecting data through locks is less than
the cost of rolling back transactions if concurrency conflicts occur. Pessimistic
concurrency is best implemented when lock times will be short, as in programmatic
processing of records.

Pessimistic concurrency requires a persistent connection to the database and is not
a scalable option when users are interacting with data, because records might be
locked for relatively large periods of time.

Using Optimistic Concurrency
Optimistic concurrency is appropriate in environments where there is low conten-
tion for data, or where read-only access to data is required. Optimistic concurrency
improves database performance by reducing the amount of locking required,
thereby reducing the load on the database server.

Optimistic concurrency is used extensively in .NET to address the needs of mobile
and disconnected applications, where locking data rows for prolonged periods of
time would be infeasible. Also, maintaining record locks requires a persistent
connection to the database server, which is not possible in disconnected applications.

Testing for Optimistic Concurrency Violations

There are several ways to test for optimistic concurrency violations:
● Use distributed time stamps. Distributed time stamps are appropriate when

reconciliation is not required. Add a time stamp or version column to each table
in the database. The time stamp column is returned with any query of the con-
tents of the table. When an update is attempted, the time stamp value in the
database is compared to the original time stamp value contained in the modified
row. If the values match, the update is performed and the time stamp column is
updated with the current time to reflect the update. If the values do not match,
an optimistic concurrency violation has occurred.

Designing Data Tier Components and Passing Data Through Tiers18

● Maintain a copy of original data values. When you query data from the database,
keep a copy of any original data values. When you update the database, verify
that the current values in the database match the original values.

● DataSets hold original values that the data adapter can use to perform optimistic
concurrency checks when you update the database.

● Use centralized time stamps. Define a centralized time stamp table in your
database, to log all updates to any row in any table. For example, the time stamp
table can indicate the following: “Row with ID 1234 on table XYZ was updated
by John on March 26, 2002 2:56 P.M.”
Centralized time stamps are appropriate in checkout scenarios and in some
disconnected client scenarios where clear owners and management of locks and
overrides may be needed. In addition, centralized time stamps provide the
benefit of auditing when needed.

Manually Implementing Optimistic Concurrency

Consider the following SQL query:

SELECT Column1, Column2, Column3 FROM Table1

To test for an optimistic concurrency violation when updating a row in Table1, issue
the following UPDATE statement:

UPDATE Table1 Set Column1 = @NewValueColumn1,
 Set Column2 = @NewValueColumn2,
 Set Column3 = @NewValueColumn3
WHERE Column1 = @OldValueColumn1 AND
 Column2 = @OldValueColumn2 AND
 Column3 = @OldValueColumn3

If the original values match the values in the database, the update is performed. If
a value has been modified, the update will not modify the row because the WHERE
clause will not find a match. You can use a variation of this technique and apply a
WHERE clause only to specific columns, resulting in data being overwritten unless
particular fields have been updated since they were last queried.

Note: Always return a value that uniquely identifies a row in your query, such as a primary key,
to use in your WHERE clause of the UPDATE statement. This ensures that the UPDATE state-
ment updates the correct row or rows.

If a column at your data source allows nulls, you may need to extend your WHERE
clause to check for a matching null reference in your local table and at the data
source. For example, the following UPDATE statement verifies that a null reference
in the local row still matches a null reference at the data source, or that the value in
the local row still matches the value at the data source:

> 19

UPDATE Table1 Set Column1 = @NewColumn1Value
WHERE (@OldColumn1Value IS NULL AND Column1 IS NULL) OR Column1 = @OldColumn1Value

Using Data Adapters and DataSets to Implement Optimistic Concurrency

The DataAdapter.RowUpdated event can be used in conjunction with the tech-
niques described earlier to provide notification to your application of optimistic
concurrency violations. The RowUpdated event occurs after each attempt to update
a modified row from a DataSet. You can use the RowUpdated event to add special
handling code, including processing when an exception occurs, adding custom
error information, and adding retry logic.

The RowUpdated event handler receives a RowUpdatedEventArgs object, which
has a RecordsAffected property that indicates how many rows were affected by an
update command for a modified row in a table. If you set the update command to
test for optimistic concurrency, the RecordsAffected property will be 0 when an
optimistic concurrency violation occurs. Set the RowUpdatedEventArgs.Status
property to indicate how to proceed; for example, set the property to
UpdateStatus.SkipCurrentRow to skip updating the current row, but to continue
updating the other rows in the update command. For more information about the
RowUpdated event, see Working with DataAdapter Events.

An alternative way to test for concurrency errors with a data adapter is to set the
DataAdapter.ContinueUpdateOnError property to true before you call the Update
method. When the update is completed, call the GetErrors method on the DataTable
object to determine which rows have errors. Then, use the RowError property on
these rows to find specific error details. For more information about how to process
row errors, see Adding and Reading Row Error Information.

The following code sample shows how the Customer Data Access Logic Component
can check for concurrency violations. This example assumes that the client has
retrieved a DataSet, made changes to the data, and then passed the DataSet to
the UpdateCustomer method on the Data Access Logic Component. The
UpdateCustomer method will invoke the following stored procedure to update the
appropriate customer record; the stored procedure updates the record only if the
customer ID and company name have not already been modified:

CREATE PROCEDURE CustomerUpdate
{
 @CompanyName varchar(30),
 @oldCustomerID varchar(10),
 @oldCompanyName varchar(30)
}
AS
 UPDATE Customers Set CompanyName = @CompanyName
 WHERE CustomerID = @oldCustomerID AND CompanyName = @oldCompanyName
GO

Designing Data Tier Components and Passing Data Through Tiers20

Inside the UpdateCustomer method, the following code sample sets the
UpdateCommand property of a data adapter to test for optimistic concurrency, and
then uses the RowUpdated event to test for optimistic concurrency violations. If an
optimistic concurrency violation is encountered, the application indicates the
violation by setting the RowError of the row for which the update was issued. Note
that the parameter values passed to the WHERE clause of the UPDATE command
are mapped to the Original values of the respective columns in the DataSet.

// UpdateCustomer method in the CustomerDALC class
public void UpdateCustomer(DataSet dsCustomer)
{
 // Connect to the Northwind database
 SqlConnection cnNorthwind = new SqlConnection(
 "Data source=localhost;Integrated security=SSPI;Initial Catalog=northwind");

 // Create a Data Adapter to access the Customers table in Northwind
 SqlDataAdapter da = new SqlDataAdapter();

 // Set the Data Adapter's UPDATE command, to call the "UpdateCustomer" stored
 // procedure
 da.UpdateCommand = new SqlCommand("CustomerUpdate", cnNorthwind);
 da.UpdateCommand.CommandType = CommandType.StoredProcedure;

 // Add two parameters to the Data Adapter's UPDATE command, to specify
 // information for the WHERE clause (to facilitate checking for optimistic
 // concurrency violation)
 da.UpdateCommand.Parameters.Add("@CompanyName", SqlDbType.NVarChar, 30,
"CompanyName");

 // Specify the original value of CustomerID as the first WHERE clause parameter
 SqlParameter myParm = da.UpdateCommand.Parameters.Add(
 "@oldCustomerID", SqlDbType.NChar, 5, "CustomerID");
 myParm.SourceVersion = DataRowVersion.Original;

 // Specify the original value of CustomerName as the second WHERE clause
 // parameter
 myParm = da.UpdateCommand.Parameters.Add(
 "@oldCompanyName", SqlDbType.NVarChar, 30,
"CompanyName");
 myParm.SourceVersion = DataRowVersion.Original;

 // Add a handler for Row Update events
 da.RowUpdated += new SqlRowUpdatedEventHandler(OnRowUpdated);

 // Update the database
 da.Update(ds, "Customers");

> 21

 foreach (DataRow myRow in ds.Tables["Customers"].Rows)
 {
 if (myRow.HasErrors)
 Console.WriteLine(myRow[0] + " " + myRow.RowError);
 }
}

// Method to handle Row Update events. If you register the event but do not handle
// it, a SQL exception is thrown.
protected static void OnRowUpdated(object sender, SqlRowUpdatedEventArgs args)
{
 if (args.RecordsAffected == 0)
 {
 args.Row.RowError = "Optimistic Concurrency Violation Encountered";
 args.Status = UpdateStatus.SkipCurrentRow;
 }
}

When executing multiple SQL statements within one SQL Server stored procedure,
you may, for performance reasons, choose to use the SET NOCOUNT ON option.
This option prevents SQL Server from returning a message to the client after
completion of each statement, thus reducing network traffic. However, you will not
be able to check the RecordsAffected property as demonstrated in the previous code
sample. The RecordsAffected property will always be –1. An alternative is to return
the @@ROWCOUNT function (or specify it as an output parameter) in your stored
procedure; @@ROWCOUNT contains the record count for the last statement com-
pleted in your stored procedure and is updated even when SET NOCOUNT ON is
used. Therefore, if the last SQL statement executed in your stored procedure is the
actual UPDATE statement and you specify the @@ROWCOUNT as a return value,
you can modify application code as follows:

// Add another parameter to Data Adapter's UPDATE command, to accept the return
// value. You can name it anything you want.
myParm = da.UpdateCommand.Parameters.Add("@RowCount", SqlDbType.Int);
myParm.Direction = ParameterDirection.ReturnValue;

// Modify the OnRowUpdated method, to check the value of this parameter
// instead of the RecordsAffected property.
protected static void OnRowUpdated(object sender, SqlRowUpdatedEventArgs args)
{
 if (args.Command.Parameters["@RowCount"].Value == 0)
 {
 args.Row.RowError = "Optimistic Concurrency Violation Encountered";
 args.Status = UpdateStatus.SkipCurrentRow;
 }
}

Designing Data Tier Components and Passing Data Through Tiers22

COM Interoperability
If you want your Data Access Logic Component class to be callable from COM
clients, the recommended approach is to define your data access logic components
by using the preceding guidelines and provide a wrapper component. However, if
you want COM clients to be able to access your data access logic components,
consider the following recommendations:
● Define the class and its members as public.
● Avoid using static members.
● Define event-source interfaces in managed code.
● Provide a constructor that does not use parameters.
● Do not use overloaded methods. Use methods with different names instead.
● Use interfaces to expose common operations.
● Use attributes to provide extra COM information for your class and members.
● Include HRESULT values in any exceptions thrown from .NET code.
● Use automation-compatible data types in method signatures.

For more information about COM interoperability, see the Microsoft .NET/COM
Migration and Interoperability guide.

Implementing Business Entities
Business entities exhibit the following characteristics:
● Business entities provide stateful programmatic access to business data and (in

some designs) related functionality.
● Business entities can be built from data that has complex schemas. The data

typically originates from multiple related tables in the database.
● Business entity data can be passed as part of the I/O parameters of business

processes.
● Business entities can be serializable, to persist the current state of the entities. For

example, applications may need to store entity data on a local disk, in a desktop
database if the application is working offline, or in a Message Queuing message.

● Business entities do not access the database directly. All database access is
provided by the associated Data Access Logic Component.

● Business entities do not initiate any kind of transaction. Transactions are initiated
by the application or business process that is using the business entities.

> 23

As mentioned earlier in this document, there are various ways to represent business
entities in your application, ranging from a data-centric model to a more object-
oriented representation:
● XML
● Generic DataSet
● Typed DataSet
● Custom business entity components
● Custom business entity components with CRUD behaviors

The sections that follow describe how to represent business entity data in each of
these formats. To help you decide the most appropriate representation for business
entities in your particular circumstances, the sections describe how to perform the
following tasks for each business entity format:
● Organize collections of business entities
● Data bind business entities to user interface controls
● Serialize business entity data
● Pass business entity data between tiers

The sections also consider the suitability of each business entity representation in
terms of nonfunctional requirements, including performance, efficiency, scalability,
and extensibility.

Representing Business Entities as XML
The following example shows how to represent a simple business entity as XML.
The business entity consists of a single product.

<?xml version="1.0"?>
<Product xmlns="urn:aUniqueNamespace">
 <ProductID>1</ProductID>
 <ProductName>Chai</ProductName>
 <QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
 <UnitPrice>18.00</UnitPrice>
 <UnitsInStock>39</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>10</ReorderLevel>
</Product>

For more information, see How to Use XML to Represent Collections and
Hierarchies of Data in the appendix.

Designing Data Tier Components and Passing Data Through Tiers24

When you use XML to represent business entity data, consider the following
guidelines:
● Decide whether the XML document should contain a single business entity or a

collection of business entities. The preceding example represents a single Product
business entity.

● Use a namespace to uniquely identify the XML document, to avoid name clashes
with content in other XML documents. The preceding example uses a default
namespace called urn:aUniqueNamespace.

● Choose appropriate names for elements and attributes. The preceding example
uses the column names from the Product table, but this is not a requirement.
Choose names that make sense for your application.

● Use one of the following approaches to retrieve your business entities in XML
format:
● If you are using SQL Server 2000, you can use the FOR XML clause in your

queries or stored procedures. In performance tests, using FOR XML is only
slightly faster than returning a DataSet.

● Retrieve a DataSet and transform it or write it out as an XML stream. With
this approach, you incur the overhead of creating the DataSet and additional
overhead if performing a transformation.

● Build an XML document from output parameters or by using a data reader.
Data readers are the fastest way to retrieve multiple rows from the database,
but the process associated with building XML may decrease the performance
benefit.

For more information and performance considerations, see Performance Compari-
son: Data Access Techniques.

The advantages of representing business entities as XML are as follows:
● Standards support. XML is a World Wide Web Consortium (W3C) standard

data representation format. For more information about this standard, see
http://www.w3.org/xml.

● Flexibility. XML can represent hierarchies and collections of information. For
more information, see How to Use XML to Represent Collections and Hierarchies
of Data in the appendix.

● Interoperability. XML is an ideal choice for exchanging information with external
parties and trading partners, regardless of platform. If the XML data will be
consumed by ASP.NET or Windows Forms applications, you can load the XML
data into a DataSet to take advantage of the data binding support provided by
DataSets.

> 25

The disadvantages of representing business entities as XML are as follows:
● Preserving type fidelity. Type fidelity is not preserved in XML. However, you can

use XSD schemas for simple data typing.
● Validating XML. To validate XML, you can parse the code manually or use an

XSD schema. Both approaches are relatively slow. For an example of how to
validate XML by using an XSD schema, see How to Validate XML by Using an
XSD Schema.

● Displaying XML. You cannot automatically display XML data in the user inter-
face. You can write an XSLT style sheet to transform the data into a DataSet;
however, style sheets are not easy to write. Alternatively, the style sheet can
transform the XML into a displayable format such as HTML. For more informa-
tion, see How to Apply a Style Sheet Programmatically in a .NET Application in
the appendix.

● Parsing XML. To parse XML, you can use the Document Object Model (DOM)
or the XmlReader class provided in the Microsoft .NET Framework class library.
XmlReader provides fast-forward only, read-only access to XML data, but DOM
is more flexible because it provides random read/write access. However, parsing
an XML document by using DOM is slower; you must create an instance of
XmlDocument (or another XML parser class) and load the entire XML document
into memory.

● Sorting XML. You cannot automatically sort XML data. Instead, use one of the
following techniques:
● Deliver the data in presorted order. This option does not support dynamic

resorting of data in the calling application.
● Apply an XSLT style sheet to sort the data dynamically. If necessary, you can

alter the sort criteria in the XSLT style sheet at run time, by using DOM.
● Transform the XML data into a DataSet, and use a DataView object to sort and

search the data elements.
● Using private fields. You do not have the option of hiding information.

Representing Business Entities As a Generic DataSet
A generic DataSet is an instance of the DataSet class, which is defined in the
System.Data namespace in ADO.NET. A DataSet object contains one or more
DataTable objects to represent information that the Data Access Logic Component
retrieves from the database.

Designing Data Tier Components and Passing Data Through Tiers26

Figure 7 shows a generic DataSet object for the Product business entity. The DataSet
object has a single DataTable to hold information for products. The DataTable has a
UniqueConstraint object to denote the ProductID column as a primary key. The
DataTable and UniqueConstraint objects are created when the DataSet is created in
the Data Access Logic Component.

UniqueConstraint
Defines ProductID
as primary key in
Product DataTable

Product DataTable

Figure 7
Generic DataSet for the Product business entity

Figure 8 shows a generic DataSet object for the Order business entity. This DataSet
object has two DataTable objects to hold information for the orders and order
details, respectively. Each DataTable has a corresponding UniqueConstraint object
to identify the primary key in that table. Additionally, the DataSet has a Relation
object to associate order details with orders.

UniqueConstraint

Relation

Defines ProductID
as primary key in
Product DataTable

UniqueConstraint
Defines OrderID and
ProductID as composite
primary key in
OrderDetails DataTable

Associates Order and
OrderDetails DataTables

Product DataTable

Product DataTable

Figure 8
Generic DataSet for the Order business entity

The following code shows how to retrieve a generic DataSet from a Data Access
Logic Component, bind the DataSet to a DataGrid control, and then pass the
DataSet to the Data Access Logic Component to save data changes:

> 27

// Create a ProductDALC object
ProductDALC dalcProduct = new ProductDALC();

// Call a method on ProductDALC to get a DataSet containing information for all
// products
DataSet dsProducts = dalcProduct.GetProducts();

// Use DataSet in the client. For example, bind the DataSet to user interface
// controls
dataGrid1.DataSource = dsProducts.Tables[0].DefaultView;
dataGrid1.DataBind();

// When you are ready, pass the updated DataSet to the ProductDALC to save the
// changes back to the database
dalcProduct.UpdateProducts(dsProducts);

You can also query and modify the tables, constraints, and relations in a DataSet at
run time. For more information, see Creating and Using DataSets.

The advantages of representing business entities as a generic DataSet are as follows:
● Flexibility. DataSets can contain collections of data, and can represent complex

data relationships.
● Serialization. DataSets natively support serialization when passing across tiers.
● Data binding. DataSets can be bound to any user interface controls in ASP.NET

and Windows Forms applications.
● Sorting and filtering. DataSets can be sorted and filtered by using DataView

objects. An application can create several DataView objects for the same DataSet,
to view the data in different ways.

● Interchangeability with XML. DataSets can be read or written in XML format.
This is a useful technique in remote and disconnected applications, which can
receive a DataSet in XML format and recreate the DataSet object locally. Applica-
tions can also persist DataSets to XML format while the applications are discon-
nected from the database.

● Availability of metadata. Full metadata can be provided for a DataSet, in the
form of an XSD schema. You can also programmatically obtain metadata for the
DataSet by using methods in the DataSet, DataTable, DataColumn, Constraint,
and Relation classes.

● Optimistic concurrency. When you are updating data, you can use DataSets, in
conjunction with data adapters, to perform optimistic concurrency checks easily.

● Extensibility. If the database schema is modified, the methods in the Data Access
Logic Component can create DataSets that contain modified DataTable and
DataRelation objects as appropriate. The Data Access Logic Component method
signatures do not change. The calling application can be modified to use these
new elements in the DataSet.

Designing Data Tier Components and Passing Data Through Tiers28

The disadvantages of representing business entities as a generic DataSet are as
follows:
● Client code must access data through collections in the DataSet. To access a table

in a DataSet, client code must index into the DataTable collections by using an
integer indexer or a string indexer. To access a particular column, you must
index into the DataColumn collection by using a column number or a column
name. The following example shows how to access the ProductName column for
the first row in the Products table:

…
// Get the product name for the product in the first row of a DataSet called
// dsProducts. Note the collections are zero-based.
String str = (String)dsProducts.Tables["Products"].Rows[0]["ProductName"];
…

Note: Note that there is no compile-time checking of these indexer values. If you specify an
invalid table name, column name, or column type, the error is trapped at run time. There is
no IntelliSense support when you use generic DataSets.

● High instantiation and marshalling costs. DataSets result in the creation of
several subobjects (DataTable, DataRow, and DataColumn), which means that
DataSets can take longer to instantiate and marshal than XML strings or custom
entity components. The relative performance of DataSets improves as the
amount of data increases, because the overhead of creating the internal structure
of the DataSet is less significant than the time it takes to populate the DataSet
with data.

● Private fields. You do not have the option of hiding information.

Representing Business Entities As a Typed DataSet
A typed DataSet is a class that contains strongly typed methods, properties, and
type definitions to expose the data and metadata in a DataSet. For an example of
how to create a typed DataSet, see How to Create a Typed DataSet in the appendix.

The following lists describe the advantages and disadvantages of typed DataSets,
compared with generic DataSets. Note that typed DataSets exhibit approximately
the same instantiation and marshalling performance as generic DataSets.

The advantages of representing business entities as a typed DataSet are as follows:
● Code readability. To access tables and columns in a typed DataSet, you can use

typed methods and properties, as shown in the following code:

…
// Get the product name for the product in the first row of a typed DataSet
// called dsProducts. Note the collections are zero-based.
String str = dsProducts.Products[0].ProductName;
…

> 29

In this example, dsProducts is an instance of a typed DataSet. The DataSet has a
single DataTable, which is exposed by a property named Products. The columns
in this DataTable are exposed by properties such as ProductName, which returns
the appropriate data type for the column (rather than just returning Object).
The provision of typed methods and properties makes typed DataSets easier to
use than generic DataSets. When you use typed DataSets, IntelliSense is available.

● Compile type checking. Invalid table names and column names are detected at
compile time rather than at run time.

The disadvantages of representing business entities as a typed DataSet are as
follows:
● Deployment. The assembly containing the typed DataSet class must be deployed

to all tiers that use the business entity.
● Support of Enterprise Services (COM+) callers. If a typed DataSet will be used by

COM+ clients, the assembly containing the typed DataSet class must be given a
strong name and must be registered on client computers. Typically, the assembly
is installed in the global assembly cache. These steps will also be required for
custom entity classes, as described later in this document.

● Extensibility issues. If the database schema is modified, the typed DataSet class
might need to be regenerated to support the new schema. The regeneration
process will not preserve any custom code that was implemented in the typed
DataSet class. The assembly containing the typed DataSet class must be rede-
ployed to all client applications.

● Instantiation. You cannot instantiate the type by using the new operator.
● Inheritance. Your typed dataset must inherit from DataSet, which precludes the

use of any other base classes.

Defining Custom Business Entity Components
Custom classes that represent business entities typically contain the following
members:
● Private fields to cache the business entity’s data locally. These fields hold a

snapshot of the data in the database at the time the data was retrieved from the
database by the Data Access Logic Component.

● Public properties to access the state of the entity, and to access subcollections and
hierarchies of data inside the entity. The properties can have the same names as
the database column names, but this is not an absolute requirement. Choose
property names according to the needs of your application, rather than the
names in the database.

● Methods and properties to perform localized processing by using the data in the
entity component.

● Events to signal changes to the internal state of the entity component.

Designing Data Tier Components and Passing Data Through Tiers30

Figure 9 shows how custom entity classes are used. Note that the entity class has no
knowledge of the Data Access Logic Component or the underlying database; all
database access is performed by the Data Access Logic Component to centralize
data access policies and business logic. Also, the way in which you pass business
entity data through the tiers is not directly tied to the format of your business entity
representation; for example, you can represent business entities locally as objects,
yet choose a different approach (such as scalar values or XML) to pass business
entity data to a different tier.

OrderDALC.CreateOrder(OrderEntity.OrderData)

Subset of business entity’s state

Public string Name {
set{myData.Name = value} }

Business entity state

- Custom business entity classes expose state accessor functions

 - Exposes CRUD Operations that receive Order
 business entity data in some format

Business entity data passed to
business process components or

Data Access Logic Component

OrdersBusiness.PlaceOrder
(OrderEntity.OrderData)

Business entity’s state

Business Entity Component

Caller

Data Access Logic Component

FORMAT:
- User - defined XML
- Dataset
- Business Entity Component

Business
Process

Components

Data Access
Logic

Component

Figure 9
The role of custom business entity components

> 31

Recommendations for Defining Custom Business Entity Components
To help you implement your custom entity components, consider the following
recommendations:
● Choosing between structs and classes. For simple business entities that do not

contain hierarchical data or collections, consider defining a struct to represent
the business entity. For complex business entities, or for business entities that
require inheritance, define the entity as a class instead. For a comparison of
struct and class types, see Structures and Classes.

● Representing the business entity’s state. For simple values such as numbers and
strings, define fields by using the equivalent .NET data type. For a code example
that shows how to define a custom entity, see How to Define a Business Entity
Component in the appendix.

● Representing subcollections and hierarchies in a custom Business Entity Compo-
nent. There are two ways to represent subcollections and hierarchies of data in a
custom entity:
● A .NET collection such as ArrayList. The .NET collection classes offer a

convenient programming model for resizable collections, and also provide
built-in support for data binding to user interface controls.

● A DataSet. DataSets are well suited for storing collections and hierarchies of
data from a relational database or from an XML document. Additionally,
DataSets are preferred if you need to be able to filter, sort, or data bind your
subcollections.
For a code example that shows how to represent collections and hierarchies of
data in a custom entity, see How to Represent Collections and Hierarchies of
Data in a Business Entity Component in the appendix.

● Supporting data binding for user interface clients. If the custom entity will be
consumed by user interfaces and you want to take advantage of automatic data
binding, you may need to implement data binding in your custom entity. Con-
sider the following scenarios:
● Data binding in Windows Forms. You can data bind an entity instance to

controls without implementing data binding interfaces in your custom entity.
You can also data bind an array or a .NET collection of entities.

● Data binding in Web Forms. You cannot data bind an entity instance to
controls in a Web Form without implementing the IBindingList interface.
However, if you want to data bind only sets, you can use an array or a .NET
collection without needing to implement the IBindingList interface in your
custom entity.
For a code example that shows how to bind custom entities to user interface
controls, see How to Bind Business Entity Components to User Interface
Controls in the appendix.

Designing Data Tier Components and Passing Data Through Tiers32

● Exposing events for internal data changes. Exposing events is useful for rich-
client user interface design because it enables data to be refreshed wherever it is
being displayed. The events should be for internal state only, not for data
changes on a server. For a code example that shows how to expose events in a
custom entity class, see How to Expose Events in a Business Entity Component
in the appendix.

● Making your business entities serializable. Making business entities serializable
enables the business entity’s state to be persisted in interim states without
database interactions. The result can be to ease offline application development
and design of complex user interface processes that do not affect business data
until they are complete. There are two types of serialization:
● XML serialization by using the XmlSerializer class. Use XML serialization

when you need to serialize only public fields and public read/write proper-
ties to XML. Note that if you return business entity data from a Web service,
the object is automatically serialized to XML through XML serialization.
You can perform XML serialization on business entities without implementing
any additional code inside the entity. However, only the public fields and
public read/write properties in the object are serialized to XML. Private
fields, indexers, private properties, read-only properties, and object graphs
are not serialized. You can control the resulting XML by using attributes in
your custom entity. For more information about how to serialize custom
entity components to XML format, see How to Serialize Business Entity
Components to XML Format in the appendix.

● Formatted serialization by using the BinaryFormatter or SoapFormatter class.
Use formatted serialization when you need to serialize all the public and
private fields and object graphs of an object, or if you will pass an entity
component to or from a remoting server.
The formatter classes serialize all of an object’s fields and properties, both
public and private. BinaryFormatter serializes the object to binary format, and
SoapFormatter serializes an object to SOAP format. Serialization by using
BinaryFormatter is faster than serialization by using SoapFormatter. To use
either of these formatter classes, you must mark your entity class with the
[Serializable] attribute. If you need explicit control over the serialization
format, your class must also implement the ISerializable interface. For more
information about how to use formatted serialization, see How to Serialize
Business Entity Components to Binary Format and How to Serialize Business
Entity Components to SOAP Format in the appendix.

Note: Default constructors are not called when an object is deserialized. This constraint is
placed on deserialization for performance reasons

> 33

The advantages of defining a custom entity are as follows:
● Code readability. To access data in a custom entity class, you can use typed

methods and properties, as shown in the following code:

// Create a ProductDALC object
ProductDALC dalcProduct = new ProductDALC();

// Use the ProductDALC object to create and populate a ProductEntity object.
// This code assumes the ProductDALC class has a method named GetProduct,
// which takes a Product ID as a parameter (21 in this example) and returns a
// ProductEntity object containing all the data for this product.
ProductEntity aProduct = dalcProduct.GetProduct(21);

// Change the product name for this product
aProduct.ProductName = "Roasted Coffee Beans";

In the preceding example, a product is an instance of a custom entity class
named ProductEntity. The ProductDALC class has a method named GetProduct,
which creates a ProductEntity object, populates the object with data for a specific
product, and returns the ProductEntity object. The calling application can use
properties such as ProductName to access the data on the ProductEntity object,
and can call methods to manipulate the object.

● Encapsulation. Custom entities can contain methods to encapsulate simple
business rules. These methods operate on the business entity data cached in the
entity component, rather than accessing the live data in the database. Consider
the following example:

// Call a method defined in the ProductEntity class.
aProduct.IncreaseUnitPriceBy(1.50);

In the preceding example, the calling application calls a method named
IncreaseUnitPriceBy on the ProductEntity object. This change is not made per-
manent until the ProductEntity object is saved back to the database when the
calling application invokes an appropriate method on the ProductDALC object.

● Modeling of complex systems. If you are modeling a complex domain problem
that has many interactions between different business entities, it may be benefi-
cial to define custom entity classes to absorb the complexity behind well-defined
class interfaces.

● Localized validation. Custom entity classes can perform simple validation tests
in their property accessors to detect invalid business entity data. For more
information, see How to Validate Data in Property Accessors in Business Entity
Component.

● Private fields. You can hide information that you do not want to expose to the
caller.

Designing Data Tier Components and Passing Data Through Tiers34

The disadvantages of defining a custom entity are as follows:
● Collections of business entities. A custom entity represents a single business

entity, not a collection of business entities. The calling application must create
an array or a .NET collection to hold multiple business entities.

● Serialization. You must implement your own serialization mechanism in a
custom entity. You can use attributes to control how entity components are
serialized, or you can implement the ISerializable interface to control your own
serialization.

● Representation of complex relationships and hierarchies in a business entity. You
must implement your own mechanism for representing relationships and hierar-
chies of data in a Business Entity Component. As described previously, DataSets
are often the easiest way to achieve this effect.

● Searching and sorting of data. You must define your own mechanism to support
searching and sorting of entities. For example, you can implement the
IComparable interface to allow entity components to be held in a SortedList or
Hashtable collection.

● Deployment. You must deploy, on all physical tiers, the assembly containing the
custom entity.

● Support for Enterprise Services (COM+) clients. If a custom entity will be used
by COM+ clients, the assembly containing the entity must be given a strong
name and must be registered on client computers. Typically, the assembly is
installed in the global assembly cache.

● Extensibility issues. If the database schema is modified, you might need to
modify the custom entity class and redeploy the assembly.

Defining Custom Business Entity Components with CRUD Behaviors
When you define a custom entity, you can provide methods to completely encapsu-
late the CRUD operations on the underlying Data Access Logic Component. This is
the more traditional object-oriented approach, and may be appropriate for complex
object domains. The client application no longer accesses the Data Access Logic
Component class directly. Instead, the client application creates an entity compo-
nent and calls CRUD methods on the entity component. These methods forward to
the underlying Data Access Logic Component.

Figure 10 shows the role of custom entity classes with CRUD behaviors.

> 35

OrderDALC.CreateOrder(OrderEntity.OrderData)

Subset of business entity’s state

 - Exposes CRUD Operations that receive Order
 business entity data in some format

Data Access Logic Component

FORMAT:
- User - defined XML
- Dataset
- Business Entity Component
- Scalars

- Business entity exposes state accessor functions
- Business entity exposes control functions
 (Save, Load, Delete)

Business entity’s state

Business Entity Component

Caller

Business entity state

OrdersBusiness.PlaceOrder (OrderEntity.OrderData)

Business
Process

Components

Data Access Logic
Component

Figure 10
The role of custom business entity components with CRUD behaviors

Designing Data Tier Components and Passing Data Through Tiers36

The advantages of defining custom entity classes with CRUD behaviors are as
follows:
● Encapsulation. The custom entity encapsulates the operations defined by the

underlying Data Access Logic Component.
● Interface to caller. The caller must deal with only one interface to persist business

entity data. There is no need to access the Data Access Logic Component directly.
● Private fields. You can hide information that you do not want to expose to the

caller.

The disadvantages of defining custom entity classes with CRUD behaviors are as
follows:
● Dealing with sets of business entities. The methods in the custom entity pertain

to a single business entity instance. To support sets of business entities, you can
define static methods that take or return an array or a collection of entity compo-
nents.

● Increased development time. The traditional object-oriented approach typically
requires more design and development effort than working with existing objects,
such as DataSets, requires.

Recommendations for Representing Data and Passing Data
Through Tiers
The way in which you represent data throughout your application, and the way in
which you pass that data through the tiers, do not necessarily need to be the same.
However, having a consistent and limited set of formats yields performance and
maintenance benefits that reduce your need for additional translation layers.

The data format that you use should depend on your specific application require-
ments and how you want to work with the data. There is no universal way to
represent your data, especially because many of today’s applications are required to
support multiple callers. However, it is recommended that you follow these general
guidelines:
● If your application mainly works with sets and needs functionality such as

sorting, searching, and data binding, Datasets are recommended. However, if
your application works with instance data, scalar values will perform better.

● If your application mainly works with instance data, custom business entity
components may be the best choice because they prevent the overhead caused
when a DataSet represents one row.

● In most cases, design your application to use a data-centric format, such as XML
documents or DataSets. You can use the flexibility and native functionality
provided by the DataSets to support multiple clients more easily, reduce the
amount of custom code, and use a programming API that is familiar to most

> 37

developers. Although working with the data in an object-oriented fashion pro-
vides some benefits, custom coding complex business entities increases develop-
ment and maintenance costs in proportion to the amount of features you want to
provide.

Transactions
Most of today’s applications need to support transactions for maintaining the
integrity of a system’s data. There are several approaches to transaction manage-
ment; however, each approach fits into one of two basic programming models:
● Manual transactions. You write code that uses the transaction support features

of either ADO.NET or Transact-SQL directly in your component code or stored
procedures, respectively.

● Automatic transactions. Using Enterprise Services (COM+), you add declarative
attributes to your .NET classes to specify the transactional requirements of your
objects at run time. You can use this model to easily configure multiple compo-
nents to perform work within the same transaction.

This section provides guidance and recommendations to help you implement
transaction support in data access logic components and business entity compo-
nents. For examples and a more in-depth discussion of transactions in .NET, see
the .NET Data Access Architecture Guide.

Implementing Transactions
In most circumstances, the root of the transaction is the business process rather
than a Data Access Logic Component or a Business Entity Component. The reason
is that business processes typically require transactions that span multiple business
entities, not just a single business entity.

However, situations may arise where you need to perform transactional operations
on a single business entity without the assistance of a higher-level business process.
For example, to add a new customer to the database discussed earlier, you must
perform the following operations:
● Insert a new row in the Customer table.
● Insert a new row or rows in the Address table.

Both of these operations must succeed, or the customer will not be added to the
database. If the Customer business entity will never be a part of a larger business
process that will initiate the transaction, use manual transactions within the Cus-
tomer business entity. Manual transactions are significantly faster than automatic
transactions because they do not require any interprocess communication with the
Microsoft Distributed Transaction Coordinator (DTC).

Designing Data Tier Components and Passing Data Through Tiers38

Figure 11 shows how to decide whether to use manual transactions or automatic
transactions. Due to the overhead of COM+ transactions, the recommended
approach is to push the transaction to the database and control the transactional
behavior in stored procedures where possible.

Need
transactions

Do not implement
automatic transaction

support

Implement automatic
transaction with the
Supports attribute

Push transaction
processing to the

database

Use ADO.NET
transaction

support

Component called
by business

process?

Using stored
procedures?

Component needs
to vote in

transaction?

Yes Yes

Yes

No

No No

Figure 11
Deciding how to implement transactions

Note: If you are calling from an ASP.NET-based client, and there is no business process to
initiate the transaction, you may be tempted to start the transaction in the ASP.NET code-
behind. This is not a good design; you should never initiate a transaction from an ASP.NET-
based client. Instead, separate the presentation of the data from the business process.
Performance is also an issue due to issues such as network latency, because this is the most
common layer to be physically deployed on another tier.

> 39

Recommendations for Using Manual Transactions in Data Access Logic
Components
When you implement manual transactions in data access logic components, con-
sider the following recommendations:
● Where possible, perform your processing in stored procedures. Use the Transact-

SQL statements BEGIN TRANSACTION, END TRANSACTION, and ROLL-
BACK TRANSACTION to control transactions. For a code example, see “How To
Perform Transactions With Transact-SQL” in the .NET Data Access Architecture
Guide.

● If you are not using stored procedures, and the data access logic components will
not be called from a business process, you can control transactions programmati-
cally by using ADO.NET. For a code example, see “How to Code ADO.NET
Manual Transactions” in the .NET Data Access Architecture Guide.

Recommendations for Using Automatic Transactions in Data Access
Logic Components
Despite the overhead associated with COM+ transactions, automatic transactions
provide a simpler programming model than manual transactions, and are necessary
when your transactions span multiple distributed data sources as they work in
conjunction with the DTC. If you implement automatic transactions in data access
logic components, consider the following recommendations:
● The Data Access Logic Component must inherit from the ServicedComponent

class in the System.EnterpriseServices namespace. Note that any assembly
registered with COM+ services must have a strong name. For more information
about strong-named assemblies, see Creating and Using Strong-Named
Assemblies.

● Annotate the Data Access Logic Component with the
Transaction(TransactionOption.Supported) attribute so that you can perform
read and write operations in the same component. This option avoids the over-
head of transactions where they are not required — unlike
Transaction(TransactionOption.Required), which always requires a transaction.

The following code sample shows how to support automatic transactions in a Data
Access Logic Component class:

using System.EnterpriseServices;

[Transaction(TransactionOption.Supported)]
public class CustomerDALC : ServicedComponent
{
 ...
}

Designing Data Tier Components and Passing Data Through Tiers40

If you use automatic transactions, your data access logic components should vote in
transactions to indicate whether the operation succeeded or failed. To vote implic-
itly, annotate your methods by using the AutoComplete attribute and throw an
exception if the operation fails. To vote explicitly, call the SetComplete or SetAbort
method on the ContextUtil class.

For more information about automatic transactions, see “Using Automatic Transac-
tions” in the .NET Data Access Architecture Guide.

Using Automatic Transactions in Business Entity Components
If you implement custom business entity components that have behaviors, you
can use automatic transactions to specify the transactional behavior of these objects.
The recommendations for using automatic transactions to specify the transactional
behavior of business entity components are the same as the previously listed recom-
mendations for implementing automatic transactions in data access logic components.

Note: If the Business Entity Component does not contain any business logic that requires it to
vote in the transaction, it can ignore the transaction context altogether. The custom Business
Entity Component does not need to inherit from ServicedComponent; the transaction context
will still flow, but the entity component will ignore the context.

Validations
You can perform data validation at many tiers in your application. Different types
of validation are appropriate in each tier:
● The client application can validate business entity data locally, before the data

is submitted.
● Business processes can validate business documents as the documents are

received by using an XSD schema.
● Data access logic components and stored procedures can validate data to ensure

referential integrity and to enforce constraints and nontrivial business rules.

There are two general kinds of validation:
● Point-in-time validation. This is validation that is performed at a specific point in

time. For example, a business process validates an XML document when the
document is received.

> 41

● Continuous validation. This is validation that is performed on an ongoing basis
at many different levels in your application. Examples of continuous validation
include the following:
● User interfaces can specify maximum field lengths to prevent the user from

entering strings that are too long.
● DataSets can specify the maximum length of data columns.
● Custom business entity components can perform range checks, length checks,

non-null checks, and other simple tests on entity data.
● Data access logic components, stored procedures, and the database itself can

perform similar tests to ensure that data is valid before it is saved in the
database.

At times, you may want to implement an out-of-band aggregator or a transformer
process. This approach may be useful if the validations and transformations change
often, but it incurs a performance penalty. For example, if an ISV wanted to use the
same components to support two versions of a database schema, you could create a
separate component to perform validation and transformations between the two
database schema versions.

How to Validate XML by Using an XSD Schema
To validate an XML document against an XSD schema, take the following steps:
1. Create an XmlValidatingReader object as a wrapper around an XmlTextReader

object, as shown in the following code:

' Create an XmlValidatingReader object, to read and validate Product.xml
XmlTextReader tr = new XmlTextReader("Product.xml");
XmlValidatingReader vr = new XmlValidatingReader(tr);

2. Specify the type of validation required, by using the ValidationType enumera-
tion. The .NET Framework supports three types of XML validation:
● Document type definitions (DTDs); specify ValidationType.DTD.
● Microsoft XML data-reduced (XDR) schemas; specify ValidationType.XDR.
● W3C-standard XSD schemas; specify ValidationType.Schema.

The following code shows the use of the ValidationType enumeration:

vr.ValidationType = ValidationType.Schema; ' Specify XSD schema validation

3. Register a validation event-handler method, as shown in the following code:

vr.ValidationEventHandler += new ValidationEventHandler(MyHandlerMethod);

Designing Data Tier Components and Passing Data Through Tiers42

4. Provide an implementation for the validation event-handler method, as shown in
the following code:

public void MyHandlerMethod(object sender, ValidationEventArgs e)
{
 Console.WriteLine("Validation Error: " + e.Message);
}

5. Read and validate the document, as shown in the following code. Validation
errors are picked up by the validation event-handler method.

try
{
 while (vr.Read())
 {
 // Process the XML data, as appropriate ...
 }
}
catch (XmlException ex)
{
 Console.WriteLine("XmlException: " + ex.Message);
}
vr.Close();

How to Validate Data in Property Accessors in Business
Entity Components
The following code fragment shows how to perform simple validation in property
accessors in a custom entity. If the validation test fails, you can throw an exception
to indicate the nature of the problem. You can also use regular expressions within
your set property accessors to validate specific data and formats.

public class ProductDALC
{
 …
 public short ReorderLevel
 {
 get { return reorderLevel; }
 }
 set
 {
 if (value < 0)
 {
 throw new ArgumentOutOfRangeException("ReorderLevel cannot be negative.");
 }
 reorderLevel = value;
 }

 // Plus other members in the ProductDALC class...
}

> 43

Exception Management
When errors occur in .NET applications, the general advice is to throw exceptions
rather than return error values from your methods. This advice has implications for
the way you write data access logic components and business entity components.
There are two general kinds of exceptions that will occur:
● Technical exceptions, which include:

● ADO.NET
● Connection to database
● Resources (such as database, network share, and Message Queuing) are

unavailable
● Business logic exceptions, which include:

● Validation errors
● Errors in stored procedures that implement business logic

Recommendations for Managing Exceptions in a Data Access Logic
Component
Data access logic components should propagate exceptions, and should wrap
exception types only if doing so makes the exception easier for the client to manage.
Wrapping the exceptions in two main exception types (technical and business) helps
exception handling structure and exception publishing logic for the potentially
diverse callers.

Your application should publish exception information. Technical exceptions can be
published to a log that is monitored by administrators or by a Windows Manage-
ment Instrumentation (WMI) monitoring tool like Microsoft Operations Manager.
Business exceptions can be published to an application-specific log. In general,
allow the exceptions to propagate from your Data Access Logic Component and be
published by the caller so that you have the entire context of the exception.

The following example illustrates these recommendations:

public class CustomerDALC
{
 public void UpdateCustomer(Dataset aCustomer)
 {
 try
 {
 // Update the customer in the database...
 }
 catch (SqlException se)
 {

Designing Data Tier Components and Passing Data Through Tiers44

 // Catch the exception and wrap, and rethrow
 throw new DataAccessException("Database is unavailable", se);
 }
 finally
 {
 // Cleanup code
 }
 }
}

Recommendations for Managing Exceptions in Business
Entity Components
Business entity components should propagate exceptions to callers. Business entity
components may also raise exceptions if they are performing validation, or if the
caller tries to perform an operation without providing all the required data for the
operation.

The following example illustrates how a business entity component can raise an
exception. In this example, the Update method throws an exception if the
customer’s first name is not provided:

public class CustomerEntity
{
 public void Update()
 {
 // Check that the user has provided the required data. In this case a first
 // name for the customer
 if (FirstName == "")
 {
 // Throw a new application exception that you have defined
 throw new MyArgumentException("You must provide a First Name.);
 }
 ...
 }
}

For more information about dealing with exceptions in .NET applications, see
Exception Management in .NET. You can inherit your custom technical exceptions
and custom business exceptions from the ApplicationException class or the
BaseApplicationException class provided in the Exception Management Applica-
tion Block.

> 45

Authorization and Security
This section explains how security applies to your data access logic components and
your business entity components. The .NET common language runtime uses per-
missions objects to implement its mechanism for enforcing restrictions on managed
code. There are three kinds of permissions objects, each with a specific purpose:
● Code access security. These permissions objects are used to protect resources and

operations from unauthorized use.
● Identity. These permissions objects specify the required identity characteristics

that an assembly must have in order to run.
● Role-based security. These permissions objects provide a mechanism for discov-

ering whether a user (or the agent acting on the user’s behalf) has a particular
identity or is a member of a specified role. The PrincipalPermission object is the
only role-based security permissions object.

Managed code can discover the identity or the role of a principal by using a Princi-
pal object, which contains a reference to an Identity object. It might be helpful to
compare identity and principal objects to familiar concepts like user and group
accounts. In the .NET Framework, identity objects represent users, whereas roles
represent memberships and security contexts. The principal object encapsulates
both an identity object and a role. Applications in the .NET Framework grant rights
to the principal object based on its identity or, more commonly, its role membership.

For more information about permissions and security in .NET, see Key Security
Concepts.

Recommendations for Security in Data Access Logic Components
Data access logic components are designed to be used by other application compo-
nents, and are the last place in your application code where you can implement
security before the caller has access to your data.

Often, data access logic components can rely on the security context set by the
caller. However, there are some situations where the Data Access Logic Component
should perform its own authorization checks to determine whether a principal is
allowed to perform a requested action. Authorization occurs after authentication
and uses information about the principal’s identity and roles to determine what
resources the principal can access.

Perform authorization checks at the Data Access Logic Component level if you
need to:
● Share data access logic components with developers of business processes that

you do not fully trust.
● Protect access to powerful functions exposed by the data stores.

Designing Data Tier Components and Passing Data Through Tiers46

After you define identity and principal objects, there are three different ways to
perform role-based security checks:
● Use the PrincipalPermission object to perform imperative security checks.
● Use the PrincipalPermissionAttribute attribute to perform declarative security

checks.
● Use the properties and the IsInRole method in the Principal object to perform

explicit security checks.

The following code sample shows how to use PrincipalPermissionAttribute to
specify a declarative role-based security check on a method in a Data Access Logic
Component class:

using System;
using System.Security.Permissions;

public class CustomerDALC
{

 public CustomerDALC()
 {
 }

 // Use PrincipalPermissionAttribute to demand that the caller of this method
 // has an identity named "MyUser", and belongs to the "Administrator" role.
 [PrincipalPermissionAttribute(SecurityAction.Demand,
 Name="MyUser", Role="Administrator")]
 public void DeleteCustomer(string customerID)
 {
 // Delete customer code here
 }
}

The following code shows how to create a principal object that has the required
identity and role, so that you can call the DeleteCustomer method on a
CustomerDALC object:

using System;
using System.Security.Principal;
using System.Threading;

public class MainClass
{
 public static int Main(string[] args)
 {
 Console.Write("User Name: ");
 string UserName = Console.ReadLine();

 Console.Write("Password: ");
 string Password = Console.ReadLine();

> 47

 if (Password == "password" && UserName == "MyUser")
 {
 // Create a generic identity with the name "MyUser"
 GenericIdentity MyIdentity = new GenericIdentity("MyUser");

 // Create roles
 String[] MyString = {"Administrator", "User"};

 // Create a generic principal
 GenericPrincipal MyPrincipal = new GenericPrincipal(MyIdentity, MyString);

 // Set this thread's current principal, for use in role-based security
 Thread.CurrentPrincipal = MyPrincipal;
 }

 // Create a CustomerDALC object, and try to call its DeleteCustomer method.
 // This will only succeed if the current principal's identity and role are OK.
 CustomerDALC c = new CustomerDALC();
 c.DeleteCustomer("VINET");
 }
}

Windows Authentication
Ideally, you should use Windows Authentication, rather than using SQL Server
Authentication, when you connect to the database. However, you should use
service accounts and avoid impersonating through to the database, because this will
impede connection pooling. Connection pooling requires identical connection
strings; if you try to open the database by using different connection strings, you
will create separate connection pools, which will limit scalability.

For more information about Windows Authentication and connection pooling, see
the “Managing Database Connections” section in the .NET Data Access Architecture
Guide.

Secure Communication Recommendations
To achieve secure communication between calling applications and data access logic
components, consider the following recommendations:
● If your data access logic components are called over the wire from diverse tiers,

and the exchange involves sensitive information that needs to be protected, use
Distributed Component Object Model (DCOM), Secure Sockets Layer (SSL), or
Secure Internet Protocol (IPSec) secure communication technologies.

● If data is stored encrypted in a database, data access logic components are
usually responsible for encrypting and decrypting the data. If the risk of expos-
ing the information is high, strongly consider securing the communication
channel to and from the data access logic components.

Designing Data Tier Components and Passing Data Through Tiers48

Recommendations for Security in Business Entity Components
If you implement your business entities as data structures (such as XML or
DataSets), you do not need to implement security checks. However, if you imple-
ment your business entities as custom business entity components with CRUD
operations, consider the following recommendations:
● If the entities are exposed to business processes that you do not fully trust,

implement authorization checks in the business entity components and in the
data access logic components. If you do implement checks at both levels, how-
ever, you may encounter the maintenance issue of keeping the security policies
synchronized.

● Business entity components should not deal with communication security or
data encryption. Leave these tasks to the corresponding Data Access Logic
Component.

Deployment
This section provides recommendations to help you decide how to deploy data
access logic components and business entity components.

Deploying Data Access Logic Components
There are two ways to deploy data access logic components:
● Deploy data access logic components together with the business process objects.

This deployment method provides optimum performance for data transfers, and
has several additional technical benefits:
● Transactions can flow seamlessly between the business process objects and the

data access logic components. However, transactions do not flow seamlessly
across remoting channels. In the remoting scenario, you need to implement
transactions by using DCOM. Furthermore, if the business process and the
Data Access Logic Component were separated by a firewall, you would
require firewall ports open between both physical tiers to enable DTC com-
munication.

● Deploying business process objects and data access logic components together
reduces the number of transaction failure nodes.

● The security context flows automatically between the business process
objects and the data access logic components. There is no need to set principal
objects.

● Deploy data access logic components together with the user-interface code. Data
access logic components are sometimes used directly from UI components and
UI process components. To increase performance in Web scenarios, you can

> 49

deploy data access logic components together with the UI code; this deployment
method enables the UI layer to take advantage of data reader streaming for
optimum performance. However, if you do consider this deployment method,
bear in mind the following:
● A common reason for not deploying data access logic components together

with UI code is to prevent direct network access to your data sources from
your Web farms.

● If your Web farm is deployed in a DMZ scenario, firewall ports must be
opened to access SQL Server. If you are using COM+ transactions, additional
firewall ports must be opened for DTC communication. For more information,
see the .NET Data Access Architecture Guide.

Deploying Business Entities
Business entities are used at many different tiers in your application. Depending on
how you implement your business entities, you may need to deploy them to mul-
tiple locations if your application spans physical tiers. The following list describes
how to deploy business entities in different implementation scenarios:
● Deploying Business Entities implemented as typed DataSets. The typed DataSet

class must be accessed by the Data Access Logic Component and by the calling
application. Therefore, the recommendation is to define typed DataSet classes in
a common assembly to be deployed on multiple tiers.

● Deploying Business Entities implemented as custom business entity components.
The custom entity class may need to be accessed by the Data Access Logic
Component, depending on how you defined the method signatures in the Data
Access Logic Component. Follow the same recommendation as for typed
DataSets by defining custom entity classes in a common assembly to be de-
ployed on multiple tiers.

● Deploying Business Entities implemented as generic DataSets or XML strings.
Generic DataSets and XML strings do not represent a separate data type. There
are no deployment issues for business entities implemented in these formats.

Designing Data Tier Components and Passing Data Through Tiers50

Appendix

Appendix Contents
How to Define a Data Access Logic Component Class

How to Use XML to Represent Collections and Hierarchies of Data

How to Apply a Style Sheet Programmatically in a .NET Application

How to Create a Typed DataSet

How to Define a Business Entity Component

How to Represent Collections and Hierarchies of Data in a Business Entity Compo-
nent

How to Bind Business Entity Components to User Interface Controls

How to Expose Events in a Business Entity Component

How to Serialize Business Entity Components to XML Format

How to Serialize Business Entity Components to SOAP Format

How to Serialize Business Entity Components to Binary Format

How to Define a Data Access Logic Component Class
The code that follows is a sample definition of a class named CustomerDALC,
which is the Data Access Logic Component class for Customer business entities. The
CustomerDALC class implements the CRUD operations for the Customer business
entity and provides additional methods to encapsulate business logic for this object.

public class CustomerDALC
{
 private string conn_string;

 public CustomerDALC()
 {
 // Acquire the connection string from a secure or encrypted location
 // and assign to conn_string
 }

 public CustomerDataSet GetCustomer(string id)
 {
 // Code to retrieve a typed DataSet containing Customer data
 }

 public string CreateCustomer(string name,
 string address, string city, string state, string
zip)
 {

> 51

 // Code to create a new customer in the database, based on the scalar
 // parameters passed into this method.
 // Return the customerID from this method.
 }

 public void UpdateCustomer(CustomerDataSet updatedCustomer)
 {
 // Code to update the database, based on the Customer data sent in as a
 // parameter of type CustomerDataSet
 }

 public void DeleteCustomer(string id)
 {
 // Code to delete the customer with the specified ID
 }

 public DataSet GetCustomersWhoPurchasedProduct(int productID)
 {
 // Code to retrieve customers using a generic DataSet, because this method is
 // not retrieving all the information associated with a customer
 }
}

How to Use XML to Represent Collections and Hierarchies of Data
The following example shows how to represent collections and hierarchies of data
in an XML document. The XML document represents a single order made by a
customer; note that the <OrderDetails> element holds a collection of order detail
information for the order.

<Order xmlns="urn:aUniqueNamespace">
 <OrderID>10248</OrderID>
 <CustomerID>VINET</CustomerID>
 <OrderDate>1996-07-04</OrderDate>
 <ShippedDate>1996-07-16</ShippedDate>
 <OrderDetails>
 <OrderDetail>
 <ProductID>11</ProductID>
 <UnitPrice>14.00</UnitPrice>
 <Quantity>12</Quantity>
 </OrderDetail>
 <OrderDetail>
 <ProductID>42</ProductID>
 <UnitPrice>9.80</UnitPrice>
 <Quantity>10</Quantity>
 </OrderDetail>
 <OrderDetail>
 <ProductID>72</ProductID>
 <UnitPrice>34.80</UnitPrice>
 <Quantity>5</Quantity>
 </OrderDetail>
 </OrderDetails>
</Order>

Designing Data Tier Components and Passing Data Through Tiers52

How to Apply a Style Sheet Programmatically in a .NET Application
To apply a style sheet programmatically in a .NET application, take the following
steps:
1. Import the System.Xml.Xsl namespace as shown in the following code. The

System.Xml.Xsl namespace contains the XSLT transformation classes in the .NET
Framework class library.

using System.Xml.Xsl;

2. Create an XslTransform object as shown in the following code:

XslTransform stylesheet = new XslTransform();

3. Load the required style sheet into the XslTransform object as shown in the
following code:

stylesheet.Load("MyStylesheet.xsl");

4. Call the Transform method on the XslTransform object as shown in the following
code. Calling the Transform method specifies the names of the XML source
document and the result document.

stylesheet.Transform(sourceDoc, resultDoc);

How to Create a Typed DataSet
You can use typed DataSets to represent business entities. There are several ways to
create a typed DataSet:
● From a data adapter within Visual Studio .NET
● From an XSD schema file within Visual Studio .NET
● From the .NET Framework command prompt window by using the XSD Schema

Definition Tool (xsd.exe)

Note: It is also possible to define a typed DataSet programmatically by inheriting from the
DataSet and defining methods, properties, and nested classes to represent the structure of
the DataSet. The easiest way to do this is to create a typed DataSet by using one of the
procedures that follow, and then use this typed DataSet class as the basis for your own typed
DataSet classes in the future.

> 53

Creating a Typed DataSet by Using a Data Adapter
To create a typed DataSet by using a data adapter, follow these steps:
1. In Visual Studio .NET, add a data adapter to your form or component. In the

data adapter Configuration Wizard, specify connection information for the data
adapter. Also specify SQL strings or stored procedures for the Select, Insert,
Update, and Delete commands for your data adapter, as appropriate.

2. In the Component Designer, right-click the Data Adapter object, and then click
Generate DataSet.

3. In the Generate DataSet dialog box, click New, type a name for the new DataSet
class, and then click OK.

4. To verify that the typed DataSet has been created, in Solution Explorer, click the
Show All Files button. Expand the node for the XSD schema file, and verify that
there is a code file associated with the XSD schema. The code file defines the new
typed DataSet class.

Creating a Typed DataSet from an XSD Schema File
To create a typed DataSet from an XSD schema file by using Visual Studio .NET,
follow these steps:
1. In Visual Studio .NET, create a new project or open an existing project.
2. Add an existing XSD schema to the project, or create a new XSD schema in the

Component Designer.
3. In Solution Explorer, double-click the XSD schema file to view the XSD schema

in the Component Designer.
4. Select the primary XSD schema element in the Component Designer.
5. On the Schema menu, click Generate DataSet.
6. To verify that the typed DataSet has been created, in Solution Explorer, click the

Show All Files button. Expand the node for the XSD schema file, and verify that
there is a code file associated with the XSD schema. The code file defines the new
typed DataSet class.

Creating a Typed DataSet by Using the XSD Schema Definition Tool (xsd.exe)
The XML Schema Definition tool can generate a typed DataSet from an XSD schema
file, an XDR schema file, or an XML instance document. The following command
uses an XSD schema file named XsdSchemaFile.xsd to generate a typed DataSet in a
Visual C# source file named XsdSchemaFile.cs in the current directory:

xsd /dataset /language:C# XsdSchemaFile.xsd

For more information, see Generating a Strongly Typed DataSet.

Designing Data Tier Components and Passing Data Through Tiers54

How to Define a Business Entity Component
The following example shows how to define a custom entity class for the Product
business entity:

public class ProductEntity
{
 // Private fields, to hold the state of the Product entity
 private int productID;
 private string productName;
 private string quantityPerUnit;
 private decimal unitPrice;
 private short unitsInStock;
 private short unitsOnOrder;
 private short reorderLevel;

 // Public properties, to expose the state of the entity
 public int ProductID
 {
 get { return productID; }
 set { productID = value; }
 }
 public string ProductName
 {
 get { return productName; }
 set { productName = value; }
 }
 public string QuantityPerUnit
 {
 get { return quantityPerUnit; }
 set { quantityPerUnit = value; }
 }
 public decimal UnitPrice
 {
 get { return unitPrice; }
 set { unitPrice = value; }
 }
 public short UnitsInStock
 {
 get { return unitsInStock; }
 set { unitsInStock = value; }
 }
 public short UnitsOnOrder
 {
 get { return unitsOnOrder; }
 set { unitsOnOrder = value; }
 }
 public short ReorderLevel
 {
 get { return reorderLevel; }
 set { reorderLevel = value; }
 }

> 55

 // Methods and properties to perform localized processing
 public void IncreaseUnitPriceBy(decimal amount)
 {
 unitPrice += amount;
 }
 public short UnitsAboveReorderLevel
 {
 get { return (short)(unitsInStock - reorderLevel); }
 }
 public string StockStatus
 {
 get
 {
 return "In stock: " + unitsInStock + ", on order: " + unitsOnOrder;
 }
 }
}

How to Represent Collections and Hierarchies of Data in a Business
Entity Component
The following example shows how to define a custom entity class for the Order
business entity. Each order comprises many order items; these order items are
stored in a DataSet in the OrderEntity class.

public class OrderEntity
{
 // Private fields, to hold the order information
 private int orderID;
 private string customerID;
 private DateTime orderDate;
 private DateTime shippedDate;

 // Private field, to hold the order details information
 private DataSet orderDetails;

 // Public properties, to expose the order information
 public int OrderID
 {
 get { return orderID; }
 set { orderID = value; }
 }
 public string CustomerID
 {
 get { return customerID; }
 set { customerID = value; }
 }
 public DateTime OrderDate
 {
 get { return orderDate; }
 set { orderDate = value; }

Designing Data Tier Components and Passing Data Through Tiers56

 }
 public DateTime ShippedDate
 {
 get { return shippedDate; }
 set { shippedDate = value; }
 }

 // Public property, to expose the order details information
 public DataSet OrderDetails
 {
 get { return orderDetails; }
 set { orderDetails = value; }
 }

 // Additional method, to simplify access to order details information
 public bool IsProductOrdered(int productID)
 {
 // Primary key column must be defined in DataTable
 DataRow row = orderDetails.Tables[0].Rows.Find(productID);

 if (row != null)
return true;

 else
return false;

 }

 // Additional property, to simplify access to order details information
 public int NumberOfOrderItems
 {
 get
 {
 return orderDetails.Tables[0].Rows.Count;
 }
 }
}

Note the following points concerning the OrderEntity class:
● The class contains private fields to hold information about the order. There is

also a private DataSet field, to hold additional details about the order. The Data
Access Logic Component will populate all these fields when it creates the
OrderEntity object.

● The class has public properties to expose information about the order. There is
also a property to expose the DataSet, to enable the calling application to access
the order details.

● The class has an additional method and property to provide simplified access to
order details:
● The IsProductOrdered method receives a ProductID parameter and returns a

Boolean value to indicate whether this product appears in the order.
● The NumberOfOrderItems property indicates the number of order lines in the

order.

> 57

How to Bind Business Entity Components to User-Interface Controls
You can bind user interface controls to custom entities in Windows Forms and in
ASP.NET applications. There are two possible scenarios:
● Binding a single business entity to user interface controls. The following code

sample shows how you can get an OrderEntity object from the OrderDALC
object and bind the OrderEntity object to controls in a Windows Form. When the
user changes values in these controls, the data in the underlying OrderEntity
object is also changed automatically.

// Create an OrderDALC object.
OrderDALC dalcOrder = new OrderDALC();

// Use dalcOrder to get an OrderEntity object for order ID 10248.
// This code assumes the OrderDALC class has a method named GetOrder(), which
// returns an OrderEntity object for a particular order ID.
OrderEntity order = dalcOrder.GetOrder(10248);

// Bind the OrderID property of the OrderEntity to a TextBox control.
textBox1.DataBindings.Add("Text", order, "OrderID");

// Bind the CustomerID property of the OrderEntity to another TextBox control.
textBox2.DataBindings.Add("Text", order, "CustomerID");

// Bind the OrderDate property of the OrderEntity to a DatePicker control.
dateTimePicker1.DataBindings.Add("Value", order, "OrderDate");

// Bind the ShippedDate property of the OrderEntity to another DatePicker
// control.
dateTimePicker2.DataBindings.Add("Value", order, "ShippedDate");

// Bind the OrderDetails DataSet of the OrderEntity to a DataGrid control.
// The DataGrid displays each DataRow of the DataSet in a separate row in the
// grid.
dataGrid1.DataSource = order.OrderDetails.Tables[0].DefaultView;

When you are ready, you can pass the modified OrderEntity object back to the
OrderDALC so that the data can be saved in the database, as shown in the
following code.

// Save the OrderEntity object back to the database, via dalcOrder.
// This code assumes the OrderDALC class has a method named UpdateOrder(),
which
// receives an OrderEntity parameter and updates the appropriate entry in the
// database
dalcOrder.UpdateOrder(order);

Designing Data Tier Components and Passing Data Through Tiers58

● Binding a collection of business entities to a DataGrid control. The following
code sample shows how to get an array of OrderEntity objects from the
OrderDALC and then bind the array to a DataGrid control in a Windows Form.
The DataGrid displays each array element (that is, each OrderEntity object) in a
separate row in the grid.

// Create an OrderDALC object.
OrderDALC dalcOrder = new OrderDALC();

// Use dalcOrder to get an array of OrderEntity objects for customer "VINET".
// This code assumes the OrderDALC class has a method named
GetOrdersForCustomer(),
// which returns an array of OrderEntity objects for a particular customer.
OrderEntity[] orderEntities = dalcOrder.GetOrdersForCustomer("VINET");

// Bind the array to a DataGrid control.
dataGrid1.DataSource = orderEntities;

When you are ready, you can pass the modified array back to the OrderDALC so
that the data can be saved in the database, as shown in the following code:

// Save the OrderEntity objects back to the database, via dalcOrder.
// This code assumes OrderDALC has a method named UpdateOrders(), which takes an
// array
// of OrderEntity objects and updates the appropriate entries in the database.
dalcOrder.UpdateOrders(orderEntities);

How to Expose Events in a Business Entity Component
Custom entities can raise events when the business entity state is modified. These
events are useful for rich client, user-interface design because data can be refreshed
wherever it is being displayed. The following code sample shows how to raise
business entity-related events in the OrderEntity class:

// Define a common event class for all business entity events
public class EntityEventArgs : EventArgs
{
 // Define event members, to provide information about the event
}

// Define a delegate specifying the signature for business entity-related events
public delegate void EntityEventHandler(Object source, EntityEventArgs e);

// Define a custom Entity class that raises events when the business entity state
// changes
public class OrderEntity
{

> 59

 // Define 'before' and 'after' events for business entity state changes
 public event EntityEventHandler BeforeChange, AfterChange;

 // Private fields, to hold the business entity's state
 private int orderID;
 private int customerID;
 private DateTime orderDate;
 private DateTime shippedDate;
 private DataSet orderDetails;

 // Public properties, to expose the business entity's state
 public int OrderID
 {
 get { return orderID; }
 set
 {
 BeforeChange(this, new EntityEventArgs()); // Raise a 'before' event
 orderID = value;
 AfterChange(this, new EntityEventArgs()); // Raise an 'after' event
 }
 }
 public int CustomerID
 {
 get { return customerID; }
 set
 {
 BeforeChange(this, new EntityEventArgs()); // Raise a 'before' event
 customerID = value;
 AfterChange(this, new EntityEventArgs()); // Raise an 'after' event
 }
 }
 public DateTime OrderDate
 {
 get { return orderDate; }
 set
 {
 BeforeChange(this, new EntityEventArgs()); // Raise a 'before' event
 orderDate = value;
 AfterChange(this, new EntityEventArgs()); // Raise an 'after' event
 }
 }
 public DateTime ShippedDate
 {
 get { return shippedDate; }
 set
 {
 BeforeChange(this, new EntityEventArgs()); // Raise a 'before' event
 shippedDate = value;
 AfterChange(this, new EntityEventArgs()); // Raise an 'after' event
 }
 }

 // Additional members, as required ...
}

Designing Data Tier Components and Passing Data Through Tiers60

Note the following points concerning the preceding code:
● The EntityEvent class provides information about business entity-related events.

The EntityEventHandler delegate specifies the signature for all business entity-
related events raised by custom entity classes. The delegate signature follows the
recommended .NET Framework guidelines for event-handler delegates. For
guidelines on how to define and use events in .NET, see Event Usage Guidelines.

● The OrderEntity class defines two events named BeforeChange and
AfterChange.

● The property setters in OrderEntity raise a BeforeChange event before the
business entity state is changed, and an AfterChange event after the business
entity state is changed.

How to Serialize Business Entity Components to XML Format
This section discusses the following issues:
● Using XmlSerializer to serialize a custom entity object
● XML serialization of objects in XML Web services
● Default XML format of a serialized custom entity object
● Controlling the XML format of a serialized custom entity object

Using XmlSerializer to Serialize a Custom Entity Object
The following code sample shows how to use the XmlSerializer class to serialize an
OrderEntity object to XML format:

using System.Xml.Serialization; // This namespace contains the XmlSerializer
class
...
// Create an XmlSerializer object, to serialize OrderEntity-type objects
XmlSerializer serializer = new XmlSerializer(typeof(OrderEntity));

// Serialize an OrderEntity object to an XML file named "MyXmlOrderEntity.xml"
TextWriter writer = new StreamWriter("MyXmlOrderEntity.xml");
serializer.Serialize(writer, order);
writer.Close();

Serializing Objects in XML Web Services
The following code sample shows how to write an XML Web service that uses
custom entity objects:

namespace MyWebService
{
 [WebService(Namespace="urn:MyWebServiceNamespace")]
 public class OrderWS : System.Web.Services.WebService
 {
 [WebMethod]

> 61

 public OrderEntity GetOrder(int orderID)
 {

 // Create an OrderDALC object.
 OrderDALC dalcOrder = new OrderDALC();

 // Use dalcOrder to get an OrderEntity object for the specified order ID.
 // This code assumes the OrderDALC class has a method named GetOrder,
 // which takes an Order ID as a parameter and returns an OrderEntity object
 // containing all the data for this order.
 OrderEntity order = dalcOrder.GetOrder(10248);

 // Return the OrderEntity object. The object will be serialized
 // automatically.
 return order;
 }

 [WebMethod]
 public void UpdateOrder(OrderEntity order)
 {

 // Create an OrderDALC object.
 OrderDALC dalcOrder = new OrderDALC();

 // Use dalcOrder to save the OrderEntity object's data to the database.
 // This code assumes the OrderDALC class has a method named UpdateOrder,
 // which receives an OrderEntity object and saves the data to the database.
 dalcOrder.UpdateOrder(order);

 }

Note the following points concerning the preceding code:
● The GetOrder method receives an order ID as a parameter and returns an

OrderEntity object that contains the data for this order.
● The UpdateOrder method receives an OrderEntity object and saves the object’s

data to the database.
● If the client application invokes the GetOrder and UpdateOrder methods,

OrderEntity objects will automatically be serialized to XML format for the
method call.

Default XML Format of a Serialized Custom Entity Object
The following XML document shows the default XML serialization format for
OrderEntity objects:

<?xml version="1.0" encoding="utf-8"?>
<OrderEntity xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <OrderID>10248</OrderID>
 <CustomerID>VINET</CustomerID>
 <OrderDate>1996-07-04T00:00:00.0000000+01:00</OrderDate>
 <OrderDetails> ... see below ... </OrderDetails>
 <ShippedDate>1996-07-16T00:00:00.0000000+01:00</ShippedDate>
</OrderEntity>

Designing Data Tier Components and Passing Data Through Tiers62

The preceding document illustrates the default rules for XML serialization:
● The root element in the XML document is the same as the class name,

OrderEntity.
● Each public property (and field) in the OrderEntity object is serialized to an

element that has the same name.

The OrderDetails property in the OrderEntity class is a DataSet. DataSets provide
built-in support for XML serialization. The OrderDetails DataSet is serialized as
follows:

<OrderDetails>
 <xs:schema id="NewDataSet" xmlns=""
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="NewDataSet" msdata:IsDataSet="true" msdata:Locale="en-UK">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="OrderDetails">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OrderID" type="xs:int" minOccurs="0" />
 <xs:element name="ProductID" type="xs:int" minOccurs="0" />
 <xs:element name="UnitPrice" type="xs:decimal" minOccurs="0" />
 <xs:element name="Quantity" type="xs:short" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 <diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <NewDataSet>
 <OrderDetails diffgr:id="OrderDetails1" msdata:rowOrder="0"
 diffgr:hasChanges="inserted">
 <OrderID>10248</OrderID>
 <ProductID>11</ProductID>
 <UnitPrice>14</UnitPrice>
 <Quantity>12</Quantity>
 </OrderDetails>
 <OrderDetails diffgr:id="OrderDetails2" msdata:rowOrder="1"
 diffgr:hasChanges="inserted">
 <OrderID>10248</OrderID>
 <ProductID>42</ProductID>
 <UnitPrice>9.8</UnitPrice>
 <Quantity>10</Quantity>
 </OrderDetails>
 <OrderDetails diffgr:id="OrderDetails3" msdata:rowOrder="2"
 diffgr:hasChanges="inserted">
 <OrderID>10248</OrderID>

> 63

 <ProductID>72</ProductID>
 <UnitPrice>34.8</UnitPrice>
 <Quantity>5</Quantity>
 </OrderDetails>
 </NewDataSet>
 </diffgr:diffgram>
</OrderDetails>

Note the following points concerning the serialization of DataSets:
● The <xs:schema> section describes the structure of the DataSet, including tables,

column names, and column types.
● The <xs:diffgram> section contains the data of the DataSet. Each <OrderDetails>

element represents a separate row in the OrderDetails table in the DataSet.

Controlling the XML Format of a Serialized Custom Entity Object
You can use .NET attributes in your custom entity class to control how the proper-
ties and fields are serialized to XML. Consider the following revised version of the
OrderEntity class:

[XmlRoot(ElementName="Order", Namespace="urn:MyNamespace")]
public class OrderEntity
{
 [XmlAttribute(AttributeName="ID")]
 public int OrderID { ...get and set code, as before... }

 [XmlAttribute(AttributeName="CustID")]
 public string CustomerID { ...get and set code, as before... }

 [XmlElement(ElementName="Ordered")]
 public DateTime OrderDate { ...get and set code, as before... }

 public DataSet OrderDetails { ...get and set code, as before... }

 [XmlElement(ElementName="Shipped")
 public DateTime ShippedDate { ...get and set code, as before... }

 // Additional members, as required...
}

When an OrderEntity object is serialized to XML, it now has the following format:

<?xml version="1.0" encoding="utf-8" ?>
<Order ID="10248"
 CustID="VINET"
 xmlns="urn:MyNamespace"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Ordered>1996-07-04T00:00:00.0000000+01:00</Ordered>

Designing Data Tier Components and Passing Data Through Tiers64

 <OrderDetails> ...details same as before... </OrderDetails>
 <Shipped>1996-07-16T00:00:00.0000000+01:00</Shipped>
</Order>

For more information about how to use attributes to control XML serialization, see
Attributes that Control XML Serialization.

How to Serialize Business Entity Components to SOAP Format
The following code sample shows how to use the SoapFormatter class to serialize
an OrderEntity object to SOAP format. SOAP serialization also occurs (implicitly)
when you pass an object to or from an XML Web service by using the SOAP proto-
col, and when you pass an object to or from a Remoting server by using an HTTP
remoting channel. In addition, you can specify SOAP formatting when you use the
TCP remoting channel.

using System.Runtime.Serialization.Formatters.Soap; // For the SoapFormatter
class
...
// Create a SoapFormatter object, to serialize OrderEntity-type objects
SoapFormatter formatter = new SoapFormatter();

// Serialize an OrderEntity object to a SOAP (XML) file named
// "MySoapOrderEntity.xml"
FileStream stream = File.Create("MySoapOrderEntity.xml");
formatter.Serialize(stream, order);
stream.Close();

To use SOAP serialization for custom entity components, you must annotate your
entity class by using the Serializable attribute, as shown in the following code:

[Serializable]
public class OrderEntity
{
 // Members, as before

If you want to customize the SOAP format generated during serialization, your
entity class must implement the ISerializable interface. You must provide a
GetObjectData method for the SoapFormatter to call during serialization, and you
must provide a special constructor for the SoapFormatter to call to recreate the
object during deserialization. The following code demonstrates the use of the
ISerializable interface, the GetObjectData method, and the special constructor:

using System.Runtime.Serialization; // For ISerializable interface, and related
types
...
[Serializable]

> 65

public class OrderEntity : ISerializable
{
 // Serialization function, called by the SoapFormatter during serialization
 void ISerializable.GetObjectData(SerializationInfo info, StreamingContext ctxt)
 {
 // Add each field to the SerializationInfo object
 info.AddValue("OrderID", orderID);
 // Additional code, as required...
 }

 // Deserialization constructor, called by the SoapFormatter during
deserialization
 public OrderEntity(SerializationInfo info, StreamingContext ctxt)
 {
 // Deserialize from the SerializationInfo object to the OrderEntity fields
 orderID = (int)info.GetValue("OrderID", typeof(int));
 // Additional code, as required...
 }

 // Other members, as before...
}

For more information about customized SOAP serialization, see Basic Serialization.

How to Serialize Business Entity Components to Binary Format
The following code sample shows how to use the BinaryFormatter class to serialize
an OrderEntity object to binary format. Binary serialization also occurs (implicitly)
when you pass an object to or from a Remoting server by using a TCP remoting
channel. In addition, to improve performance, you can specify binary formatting
when you use the HTTP remoting channel.

using System.Runtime.Serialization.Formatters.Binary; // For the
BinaryFormatter class
...
// Create a BinaryFormatter object, to serialize OrderEntity-type objects
BinaryFormatter formatter = new BinaryFormatter();

// Serialize an OrderEntity object to a binary file named
// "MyBinaryOrderEntity.dat"
FileStream stream = File.Create("MyBinaryOrderEntity.dat");
formatter.Serialize(stream, order);
stream.Close();

To use binary serialization for custom entity objects, you must annotate your
custom entity class by using the Serializable attribute. To customize the binary
format generated during serialization, your custom entity class must implement the
ISerializable interface. The coding details in both scenarios are the same as for
SOAP serialization.

For more information about binary serialization, see Binary Serialization.

