
Compaq’s Web Language
A Programming Language for the Web

Hannes Marais

Compaq Systems Research Center (SRC)



2 WebL - A Programming Language for the Web

This document describes version  3.0 of Compaq’s Web Language,  hereinafter
abbreviated to WebL, its former name.  See also: http://www.compaq.com/WebL

Acknowledgements: WebL was initially designed and implemented by Thomas
Kistler and Hannes Marais. Service combinators were contributed by Luca Cardelli
and Rowan Davies. Tom Rodeheffer suggested many improvements to the
language and implementation. Monika Henzinger, Jeff Dean, Brian Eberman and
Jin Yu contributed many suggestions, bug fixes, and improvements. Cynthia
Hibbard, Dominique Marais, and Krishna Bharat corrected several mistakes in the
user manual. Since the release of the software in July 1998, many corrections and
improvements have been made by WebL users themselves. The list of contributors
and their contributions are contained in the file BugList.java, which is part of the
WebL source distribution.

(c) Copyright Compaq Computer Corporation, 1998-1999.
All rights reserved.

The WebL software contains regular expression software developed by
Daniel F. Savarese. Copyright (c) 1997-1999 by Daniel F. Savarese.
All rights reserved.



WebL - A Programming Language for the Web 3

Table of Contents

CHAPTER 1 Introduction 11

CHAPTER 2 The Language Core 17
Basic Terminology . . . . . . . . . . . . . . . . . . . 17

Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 17
Value Types  . . . . . . . . . . . . . . . . . . . . . . . . . 18
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Variables and Scoping . . . . . . . . . . . . . . . . . 20
Constructors  . . . . . . . . . . . . . . . . . . . . . . . . 22

Dynamic Types  . . . . . . . . . . . . . . . . . . . . . 23
Type Nil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Type Bool . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Type Char  . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Type String . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Type Int  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Type Real . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Type List  . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Type Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Type Fun  . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Type Object  . . . . . . . . . . . . . . . . . . . . . . . . . 29
Type Meth  . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Types Page, Piece, PieceSet and Tag  . . . . . 31

Value Equality . . . . . . . . . . . . . . . . . . . . . . 31
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Statements  . . . . . . . . . . . . . . . . . . . . . . . . . 35

Statement Sequences . . . . . . . . . . . . . . . . . . 35
If Statement  . . . . . . . . . . . . . . . . . . . . . . . . . 35
While Statement . . . . . . . . . . . . . . . . . . . . . . 36
Repeat Statement . . . . . . . . . . . . . . . . . . . . . 36
Try Statement . . . . . . . . . . . . . . . . . . . . . . . . 36
Every Statement . . . . . . . . . . . . . . . . . . . . . . 38
Lock Statement. . . . . . . . . . . . . . . . . . . . . . . 38



4 WebL - A Programming Language for the Web

Begin Statement . . . . . . . . . . . . . . . . . . . . . . 39
Return Statement . . . . . . . . . . . . . . . . . . . . . 39

Built-in Functions . . . . . . . . . . . . . . . . . . . 40
Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Service Combinators. . . . . . . . . . . . . . . . . 47

Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Sequential execution S ? T. . . . . . . . . . . . . . 48
Concurrent execution S | T  . . . . . . . . . . . . . 48
Time-out timeout(t, S)  . . . . . . . . . . . . . . . . . 49
Repetition Retry(S)  . . . . . . . . . . . . . . . . . . . 49
Non-termination Stall() . . . . . . . . . . . . . . . . 49

CHAPTER 3 Pages 51
Basic Protocol Terminology . . . . . . . . . . . 51
Markup  . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Retrieving Page Objects . . . . . . . . . . . . . . 59

CHAPTER 4 The Markup Algebra 67
Pages, Tags, Pieces, and Piece Sets  . . . . . 67

Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Pieces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Piece Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Searching Functions . . . . . . . . . . . . . . . . . 70
Element search  . . . . . . . . . . . . . . . . . . . . . . 70
Pattern search . . . . . . . . . . . . . . . . . . . . . . . 71
PCData search  . . . . . . . . . . . . . . . . . . . . . . 73
Sequence search  . . . . . . . . . . . . . . . . . . . . . 74
Paragraph search  . . . . . . . . . . . . . . . . . . . . 75
Filtering Pieces . . . . . . . . . . . . . . . . . . . . . . 78

Miscellaneous Functions. . . . . . . . . . . . . . 80
Piece Comparison . . . . . . . . . . . . . . . . . . . 83
Piece Set Operators and Functions . . . . . . 87

I.  Basic Operators  . . . . . . . . . . . . . . . . . . . 88
II.  Positional Operators . . . . . . . . . . . . . . . 89
III.  Hierarchical Operators  . . . . . . . . . . . . 93
IV.  Regional Operators . . . . . . . . . . . . . . . . 95
V.  Miscellaneous Functions  . . . . . . . . . . . . 98



WebL - A Programming Language for the Web 5

Page Modification . . . . . . . . . . . . . . . . . . . 106
Creating Pieces . . . . . . . . . . . . . . . . . . . . . . 106
Inserting Pieces . . . . . . . . . . . . . . . . . . . . . . 108
Deleting Pieces  . . . . . . . . . . . . . . . . . . . . . . 109
Replacing Pieces . . . . . . . . . . . . . . . . . . . . . 111

CHAPTER 5 Modules 113
Module Base64  . . . . . . . . . . . . . . . . . . . . . 115
Module Browser  . . . . . . . . . . . . . . . . . . . . 116
Module Cookies. . . . . . . . . . . . . . . . . . . . . 117
Module Farm . . . . . . . . . . . . . . . . . . . . . . . 119
Module Files  . . . . . . . . . . . . . . . . . . . . . . . 121
Module Java. . . . . . . . . . . . . . . . . . . . . . . . 124
Module Servlet  . . . . . . . . . . . . . . . . . . . . . 131
Module Str . . . . . . . . . . . . . . . . . . . . . . . . . 136
Module Url  . . . . . . . . . . . . . . . . . . . . . . . . 138
Module WebCrawler . . . . . . . . . . . . . . . . . 141
Module WebServer  . . . . . . . . . . . . . . . . . . 143

CHAPTER 6 Examples 149
Reading Grades . . . . . . . . . . . . . . . . . . . . . 149
WebCrawler . . . . . . . . . . . . . . . . . . . . . . . . 153
Highlight Proxy . . . . . . . . . . . . . . . . . . . . . 156

CHAPTER 7 WebL Quick Reference 159
Running WebL Programs  . . . . . . . . . . . . . 159
WebL EBNF  . . . . . . . . . . . . . . . . . . . . . . . 162
Operator Precedence  . . . . . . . . . . . . . . . . . 166
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . 182
Regular Expressions  . . . . . . . . . . . . . . . . . 195



6 WebL - A Programming Language for the Web



WebL - A Programming Language for the Web 7

List of Tables

TABLE 1. Constant examples 19

TABLE 2. Operator examples 19

TABLE 3. Constructor expressions 22

TABLE 4. Boolean Expressions 23

TABLE 5. Character Expressions 24

TABLE 6. Escape Sequences 24

TABLE 7. String Expressions 25

TABLE 8. Integer Expressions 25

TABLE 9. Real Expressions 26

TABLE 10. List Expressions 26

TABLE 11. Set Expressions 27

TABLE 12. WebL Core Operators 33

TABLE 13. Core Built-in Functions 41

TABLE 14. Supported MIME Types 63

TABLE 15. Functions to Retrieve Web Pages 64

TABLE 16. Fields of the option object 65

TABLE 17. Piece Set Searching Functions 79

TABLE 18. Miscellaneous Functions 82

TABLE 19. Comparing Pieces x and y 86

TABLE 20. Piece and Piece Set Operators 101

TABLE 21. Piece and Piece Set Functions 104

TABLE 22. Formal Definitions of Piece Set 
Operators 105

TABLE 23. Page Modification Functions 112

TABLE 24. Standard WebL Modules 113

TABLE 25. Module Base64 115

TABLE 26. Module Browser 116

TABLE 27. Module Cookies 118

TABLE 28. Module Farm 120

TABLE 29. Methods of Farm Objects 120

TABLE 30. Module Files 121



8 WebL - A Programming Language for the Web

TABLE 31. Module Java 128

TABLE 32. Conversion of Java types into WebL 
types 129

TABLE 33. Conversion of WebL types into Java 
types 130

TABLE 34. Format of the Servlet request 
parameter object 134

TABLE 35. Format of the Servlet response 
parameter object 135

TABLE 36. Module Str 136

TABLE 37. Module Url 139

TABLE 38. URL constituents 140

TABLE 39. Module WebServer 145

TABLE 40. Fields of the Request Object 146

TABLE 41. Fields of the Response Object 147

TABLE 42. WebL Command Line Options 160

TABLE 43. String and Character Escape 
Sequences 165

TABLE 44. Operator Precedence Table 166

TABLE 45. WebL Operators 168

TABLE 46. Built-in Functions 173

TABLE 47. Exceptions thrown by the built-in 
functions 183

TABLE 48. Quantified Atoms 195

TABLE 49. Quantified Atoms with Minimal 
Matching 196

TABLE 50. Atoms 197

TABLE 51. Perl5 Extended Regular 
Expressions 198



WebL - A Programming Language for the Web 9

List of Figures

FIGURE 1. Converting Markup into Tag and 
PCData Sequences 68

FIGURE 2. Piece Notation 69

FIGURE 3. Results of Searching for “WebL” 71

FIGURE 4. Nested Unnamed Pieces 84

FIGURE 5. Example of Position Numbering 85

FIGURE 6. Operation of P without Q 96

FIGURE 7. Operation of P intersect Q 97

FIGURE 8. Flattening a Piece Set 99

FIGURE 9. Application of the Content 
Function 100

FIGURE 10. Application of the NewPiece 
function 107

FIGURE 11. Copying Pieces during Inserts 109

FIGURE 12. Deleting Pieces 110



10 WebL - A Programming Language for the Web



WebL - A Programming Language for the Web 11

CHAPTER 1 Introduction

WebL (pronounced “webble”) is a web scripting language for processing docu-
ments on the World Wide web. It is well suited for retrieving documents from the
web, extracting information from the retrieved documents, and manipulating the
contents of documents. In contrast to other general purpose programming lan-
guages, WebL is specifically designed for automating tasks on the web. Not only
does the WebL language have a built-in knowledge of web protocols like HTTP
and FTP, but it also knows how to process documents in plain text, HTML and
XML format.

The flexible handling of structured text markup as found in HTML and XML docu-
ments is an important feature of the language. In addition, WebL also supports fea-
tures that simplify handling of communication failures, the exploitation of
replicated documents on multiple web services for reliability, and performing mul-
tiple tasks in parallel. WebL also provides traditional imperative programming lan-
guage features like objects, modules, closures, control structures, etc.

To give a better idea of how WebL can be applied for web task automation, and
also what makes WebL different from other languages, it is instructive to discuss
the computational model that underlies the language. In addition to conventional
features you would expect from most languages, the WebL computation model is
based on two new concepts, namely service combinators and markup algebra. For
now we can describe these two concepts of WebL in the following way.



Introduction

12 WebL - A Programming Language for the Web

Service combinators is a formalism that can provide more reliable access to web
resources and services. Very succinctly, service combinators is an exception han-
dling mechanism that is powerful enough to encode robust behavior when commu-
nication failures occur. This concept is especially important for performing any
reliable computation on the unreliable web structures. It often happens that web
services are unavailable, suddenly fail or become unacceptably slow. These are
very serious complications for computations that depend so much on the web infra-
structure. Although service combinators cannot make a web-based computation
completely failure-proof, it does add a certain amount of robustness to program-
ming on the web. Service combinators are discussed in detail on page 47.

Markup algebra is a formalism for extracting information from structured text doc-
uments and the manipulation of those documents. It consists of functions to extract
elements and patterns from web documents, operators to manipulate what has been
extracted in this manner, and functions to change a page, for example to insert or
delete parts. The functions and operators all work on the high-level concept of a
parsed web page, and there is little need to do lower level string manipulation.
Markup algebra is discussed in detail in Chapter 4.

The purpose of this document is to introduce programmers to the WebL language
and its features. Before however introducing the language in its totality, we will
first summarize WebL’s main features.

Basic Features

• The WebL language and system is designed for rapid prototyping of Web com-
putations. It is well-suited for the automation of tasks on the WWW. 

• WebL’s emphasis is on high flexibility and high-level abstractions rather than 
raw computation speed. It is thus better suited as a rapid prototyping tool than a 
high-volume production tool.

• WebL is implemented as a stand-alone application that fetches and processes 
web pages according to programmed scripts. 

Programming Language

• WebL is a high level, imperative, interpreted, dynamically typed, multi-
threaded, expression, language. 

• WebL’s standard data types include boolean, character, integer (64-bit), double 
precision floats, Unicode strings, lists, sets, associative arrays (objects), func-
tions, and methods. 

• WebL has prototype-like objects. 



WebL - A Programming Language for the Web 13

• WebL supports fast immutable sets and lists. 

• WebL has special data types for processing HTML/XML that include pages, 
pieces (for markup elements), piece sets, and tags. 

• WebL uses conventional control structures like if-then-else, while-do, repeat-
until, try-catch, etc. 

• WebL has a clean, easy to read syntax with C-like expression and Modula-like 
control structures. 

• WebL supports exception handling mechanisms (based on Cardelli & Davies’ 
service combinators) like sequential combination, parallel execution, timeout, 
and retry. WebL can emulate arbitrary complex page fetching behaviors by 
combining services. 

Protocols Spoken

• WebL speaks whatever protocols Java supports, i.e. HTTP, FTP, etc. 

• WebL can easily fill in web-based forms and navigate between pages. 

• WebL has HTTP cookie support. 

• Programmers can define HTTP request headers and inspect response headers. 

• Programmers can explicitly override mimetypes and DTDs used when parsing 
Web pages.

• Proxy support. 

• Support for HTTP basic authentication (both client and proxy authentication).

Markup Algebra

• WebL ’understands’ HTML, XML and plain text mime-types.

• WebL uses a DTD-based HTML parser for extensibility (HTML 2.0, 3.2, and 
4.0 DTDs included). 

• WebL has relatively robust page parsing that attempts to make a faithful repre-
sentation of Web pages. 

• WebL supports a markup algebra for extracting elements and text from pages, 
and functions for manipulating the content of a page. Extraction functions 
include extracting all elements of a specific name, all occurrences of PERL5 
regular expressions, and all occurrences of simple element patterns. 

• Elements and patterns are mapped onto piece objects in WebL, and allow the 
direct access to markup attributes. 



Introduction

14 WebL - A Programming Language for the Web

• Markup algebra allows the expression of complicated access patterns easily (for 
example, "extract all the images in the third row of the table (that contains the 
word ’abc’"), and so on). 

• WebL can handle overlapping elements internally. (Page manipulation is not 
based on an internal tree-like representation of markup.) 

• Page manipulation functions include modifying attributes, deleting elements/
tags, copying elements/text, and replacing elements/text. 

• WebL allows programmers to look at both the markup structure of a page and 
the raw text (without any tags). 

Module Support

Standard modules supplied with WebL include: 

• File manipulation for writing or downloading pages to disk. 

• Displaying pages in your web browser, checking which pages are being viewed 
in Netscape, and instructing Netscape to navigate to a specific URL (Windows 
only). 

• Multi-processing with workers, jobs, and job queues. 

• General string manipulation including PERL5 regular expression searches. 

• Routines to split and glue together URLs. 

• An easily customizable multi-threaded web crawler. 

• A multi-threaded web server that allows the direct execution of WebL functions 
with full access to HTTP state. 

• Java servlet support.

• Examples to access information from public services like AltaVista, Yahoo!, 
etc. 

Java Support and Integration

• WebL is written in nearly completely in Java. (The Browser access module 
needs access to a few Windows API calls; WebL is completely portable on 
UNIX platforms.) 

• It is possible (however not recommeded) to directly code against the WebL API 
(thus not writing WebL scripts but still using its functionality). 

• Very easy to add bridges from WebL to Java code. Java objects can be called 
directly from WebL code without extending the WebL system (see module 
Java).



WebL - A Programming Language for the Web 15

• Java extensions are loaded dynamically and it is possible to add and remove 
builtin functions by editing a standard script. 

Applications

WebL is a general purpose programming language, and can thus be used to build
whatever you can imagine. The example chapter of this book only gives a small
taste of what is possible with WebL. Some of the things that we at Compaq have
built with WebL include: 

• Web shopping robots, 

• Page and site validators, 

• Meta-search engines, 

• Tools to extraction connectivity graphs from the Web and analyze them, 

• Tools for collecting URLs, host names, word frequency lists, etc., 

• Page content analysis and statictics, 

• Reprocessing of results from public services, for example custom rankings of 
stocks, 

• Custom servers and proxy-like entities, 

• Locating and downloading multi-media content, 

• and downloading of complete Web sites.



Introduction

16 WebL - A Programming Language for the Web



WebL - A Programming Language for the Web 17

CHAPTER 2 The Language Core

The special features of WebL, like service combinators and markup algebra, are
integrated in a small programming language core. Stripped of special features, the
core language is conceptually similar to most other procedural programming lan-
guages. To lay some ground work, and to understand the examples introduced in
later chapters, we first need to study the language core without touching the special
features the language introduces for handling web pages. This chapter introduces
many of the essential and basic language concepts that you will need to know in
later chapters.

Basic Terminology

Expressions

WebL programs consist of sequences of expressions separated by semicolons. Run-
ning a WebL program involves evaluating the expressions in sequence. Each
expression either evaluates to a value (or result) or causes an exception that causes
the program evaluation to terminate at that point. (We say that the expression
throws an exception. More details about exceptions can be found in the sections
“Try Statement” on page 36 and  “Exceptions” on page 182.)



The Language Core

18 WebL - A Programming Language for the Web

The value of one expression is typically used by other expressions in the program.
We also define the value of a sequence of expressions to be the value that the last
expression in the sequence evaluated to. If no special steps are taken by the pro-
grammer, the results of the remainder of the single expressions in an expression
sequence are lost.

Running or executing a WebL program involves several integrated steps:1

• The program source text is parsed and checked for syntax errors. If syntax errors 
are detected, the execution of the program is terminated.

• A representation of the program in the form of an abstract syntax tree (AST) is 
constructed in memory. The AST consists of a sequence of expressions.

• The in-memory sequence of expressions are executed in turn. Side effects of the 
computation might be printing of results on the console, or communicating over 
the Internet. The value of the expression sequence (the last expression executed) 
is discarded.

Value Types

Each value has an associated value type or type. The type determines how the value
can be further used by expressions. For example, it is only possible to multiply two
values that have a numerical type. WebL is a dynamically typed programming lan-
guage. This means that at the point where values are used by expressions, they are
checked to be of the correct type as expected by the expression. If they are not, an
exception is thrown. 

The defined value types of WebL are: nil, boolean, int, real, char, string, fun, meth,
set, list, object, page, piece, pieceset, tag. (See “Dynamic Types” on page 23 for
more details.)

1. Note that WebL programs need not be compiled explicitly — compilation is performed 
automatically just before the program is executed. WebL’s execution model is similar to 
that of most scripting languages.



WebL - A Programming Language for the Web 19

Basic Terminology

Constants

Constants are simple expressions that evaluate to themselves. They are the simplest
WebL expressions. WebL allows nil, boolean, integer, real, character, and string
constants. Table 1 lists examples of constant expressions, what they evaluate to,
and the resulting value type.

Operators

Operators combine expressions into more complicated expressions. Evaluating an
expression involves evaluating the operands (constituent expressions), performing
some computation on the resulting values, and returning a result. Examples include
numerical, boolean and service combinator operators. The evaluation sequence of
operands is typically left to right.

TABLE 1. Constant examples

Expression Value Value Type

nil nil nil

true true bool

false false bool

21 21 int

1.41 1.41 real

’a’ ’a’ char

"abc" "abc" string

‘abc‘a

a. Back-quoted string constants differ from regular string con-
stants in that escape sequences contained in the string are not 
expanded.

"abc" string

TABLE 2. Operator examples

Expression Value Value Type

true or false true bool

2 + 2 4 int

1.2 * 2 2.4 real

"abc" + "def" "abcdef" string



The Language Core

20 WebL - A Programming Language for the Web

Statements

WebL uses typical imperative program language constructs like while, if, and try
statements. These statements are expressions in WebL, which means that they also
evaluate to a value (often to the value nil).

Examples:

while x > 0 do x = x - 1 end

if x > y then y else x end

if x = 1 then y = x * 2
elsif x = 2 then y = x * 7
else y = 1
end

every s in “Hello World” do
PrintLn(s)

end

repeat x = x * 2 until x > y end

Variables and Scoping

A context is a set of variables and associated value bindings. Expression evaluation
is performed in a context which specifies the values of the variables that appear in
the expression. A context can be created in several ways. The most common way is
by the programmer, who defines the variables and their values explicitly (in the
current context) using variable declarations. After declaration, a variable can be
assigned arbitrary values with the assignment expression “=”.

Examples:

var x; // Defines the variable x.
var a, b, c; // Defines three variables a, b, c.
var name = “John”; // Defines a variable called name

// and assigns it a value.
var // Define and initialize several

x = 1, // variables.
y = 2,
z = 3 * x;

x = y * 2; // Assignment expression.



WebL - A Programming Language for the Web 21

Basic Terminology

A variable’s value is set to nil when no initializer is specified. A variable must be
declared before it is used for the first time, and should be declared only once in any
given context. Variable declarations are expressions that evaluate to the value the
variable is set to. Assignment expressions evaluate to the value that is assigned.

It is important to note that

var x = x + 1

is equivalent to

var x = nil;
x = x + 1

Both of these programs lead to a runtime exception because 1 and nil are not type
compatible under the plus operator. This definition of variable declaration allows
the introduction of self-recursive functions.

WebL uses lexical scoping for variables. This allows contexts to be nested in each
other according to the syntactic structure of the program. Nested contexts are auto-
matically created at points where sequences of statements can be used, for example
inside while, repeat, and if statements. A fresh context can be created explicitly
with the begin statement. A variable can be used in a specific context at all posi-
tions syntactically following the place where it was declared.

Variable resolution is done by searching for a binding from inner (nested) contexts
to outer contexts. This allows variables in inner contexts to override variables with
the same name in outer contexts. For example, in the following program the vari-
able sq is visible only inside the body of the while statement, and the variable i is
visible only inside the context defined by the begin statement:

var sum = 0;
Print(“The sum of the squares between 0 and 100 is “);
begin

var i = 0;
while i <= 100 do

var sq = i * i;
sum = sum + sq;
i = i + 1

end;
end;
PrintLn(sum)



The Language Core

22 WebL - A Programming Language for the Web

Constructors

WebL also supports lists of values, sets of values, and objects with fields. Construc-
tors perform the creation of these types of values from simpler values. Table 3
shows that lists are constructed by square brackets, sets by curly braces, and objects
by square brackets and a period token. More information about these value types is
given in the section “Dynamic Types” on page 23. Note that constructors consist of
sub-expressions that are evaluated during value construction.

TABLE 3. Constructor expressions

Expression Value

Valu
e 
Type

[ 1, 2, 2 + 1 ] [1, 2, 3] list

{ 1, 2, 1 + 1 } { 1, 2 } set

[. a = 1+1, b=2 .] [. a=2, b=2 .] object



WebL - A Programming Language for the Web 23

Dynamic Types

Dynamic Types

Recall that WebL values have a value type that determines to a large extent what
can be done with the value (i.e. what operators can be applied to it). The following
paragraphs will explain the characteristics of each value type and give examples.

Type Nil

The keyword “nil” denotes a special value that indicates that a variable has no
value. Note that we refer both to the value and the value type as nil. Variables that
are declared without an initial value are initialized to the nil value.

Type Bool

The lexical constants true and false evaluate to a value of type bool (short for bool-
ean). Expressions containing operators that compare values (for example equal or
less than) also evaluate to a boolean. Boolean expressions can be combined with
logical and and logical or operators, and are evaluated in a short-circuited fashion.

TABLE 4. Boolean Expressions

Expression Value Value Type

true true bool

false false bool

true or false true bool

true and false false bool

1 == 1 true bool

1 <= 1 true bool

1 != 1 false bool



The Language Core

24 WebL - A Programming Language for the Web

Type Char

A lexical character constant evaluates to a value of type char (or character). Char-
acters are enclosed with single quotes. The internal coding of characters is Unicode.
Character expressions may contain escape sequences that denote special characters.
Table 6 lists the escape sequences used in WebL.

TABLE 5. Character Expressions

Expression Value Value Type

’a’ ’a’ char

’\n’ ’\n’ char

’a’ + ’b’ "ab" string

TABLE 6. Escape Sequences

Escape Description

\b Backspace

\t Horizontal tab

\n Newline

\f Form feed

\r Carriage return

\" Double quote

\’ Single quote

\\ Backslash

\xxx Character of octal value 
xxx

\uxxxx Character of hexadecimal 
value xxxx



WebL - A Programming Language for the Web 25

Dynamic Types

Type String

A lexical string constant enclosed in double quotes evaluates to a value of type
string. A string consists of a sequence of characters. The number of characters in a
string is called its size. The empty string, denoted by "", contains no characters and
has a size of zero. There is no limit to the string size. Strings may be wrap across
several lines in WebL programs. Strings may also contain the escape sequences
defined in Table 6. Note that escape sequences are not expanded in strings that are
written with the back-quote character.

Type Int

A lexical integer constant evaluates to a value of type int (or integer). The internal
representation of integers is 64-bit signed two’s-complement. Overflows or unde-
flows during integer computations do not throw exceptions. 

TABLE 7. String Expressions

Expression Value Value Type

"abc" "abc" string

‘ab\nc‘ "ab\nc" string

"abc" + ’d’ "abcd" string

Size("abc") 3 int

TABLE 8. Integer Expressions

Expression Value Value Type

1 + 2 3 int

2 * (1 - 1) 0 int

6 div 4 1 int

6 mod 4 2 int



The Language Core

26 WebL - A Programming Language for the Web

Type Real

A lexical real constant evaluates to a value of type real. The internal representation
of reals is 64-bit IEEE 754 floating-point. No exceptions are thrown in real math.

Type List

The list constructor [] constructs values of type lists. All expressions between the
square brackets are evaluated from left to right and the values inserted into the list
in that sequence. The parallel list constructor [| |] evaluates the expression between
the brackets in parallel (using multiple threads) instead of left to right. There is no
restriction on the size of the list or the value types that it can contain. 

TABLE 9. Real Expressions

Expression Value Value Type

1.2 1.2 real

2 / 2 1.0 real

0 / 0 NaN real

1 / 0 +Inf real

TABLE 10. List Expressions

Expression Value Value Type

[ 1 + 1, 2, "a"] [1, 2, "a"] list

[1, 2] + [3] [1, 2, 3] list

First([1, 2]) 1 int

Rest([1, 2, 3]) [2, 3] list

[| 1 + 1, 2 * 2 |] [ 2, 4 ] list

Size([1, 2, 6]) 3 int



WebL - A Programming Language for the Web 27

Dynamic Types

Type Set

The set constructor { } constructs values of type set. All the expressions between
the curly braces are evaluated and their values inserted in the set (if not already an
element of the set). There is no ordering between the elements, no restrictions on
the type of elements, and no restriction on the size of the set.

Type Fun

The fun statement constructs values of type fun (or function). The format of the fun
statement is of the following form:

fun (arg1, arg2, ...) 
... StatementSequence ...

end

The identifiers in brackets are the formal arguments of the function. A function can
be applied with the same number of actual arguments enclosed in parenthesis fol-
lowing the function constructor. The actual arguments are evaluated and assigned
in a paired manner to the formal arguments. The resulting variable bindings form a
new context in which the statement sequence of the function is executed. The value
of the applied function is the value of the function statement sequence (executed in
the new context). For example,

fun(x, y) x + y end (3, 4)

evaluates a function that sums two numbers with arguments x=3 and y=4. More
typically, functions are constructed and then assigned to variables for later use. For
example, the following program calculates the factorial of 10:

TABLE 11. Set Expressions

Expression Value Value Type

{ 1+ 1, 2, 3} {2, 3} set

{1, 2, 3} + {2, 4} {1, 2, 3, 4} set

{1, 2, 3} * {2, 4} {2} set

{1, 2, 3} - {2, 4} {1, 3} set

Size({1, 2, 3, 6}) 4 int



The Language Core

28 WebL - A Programming Language for the Web

var fac = fun(n)
if n == 1 then 1
else n * fac(n - 1)
end

end;

fac(10)

The function context created during function execution is nested in the context in
which the function was initially created. This allows the construction of higher
order functions and closures. As an example, we define a function that returns a
function that adds a certain number to its argument:

var MakeAdder = fun(c) 
fun(x) x + c end 

end;
var Add5 = MakeAdder(5);

Add5(10); // Add 5 to 10

WebL requires the introduction of a new variable before its first use. This creates a
problem when functions need to mutually refer to each other, because one function
has not been introduced yet at the place where it is called. Fortunately, as functions
are first class citizens in WebL, the problem can be overcome by declaring mutu-
ally recursive functions by introducing the function variable names and afterwards
assigning them values:

var f, g;

f = fun() ... g() ... end;
g = fun() ... f() ... end;



WebL - A Programming Language for the Web 29

Dynamic Types

Type Object

The object constructor [. .] constructs values of type object. Objects have fields,
each field having a specific field value. Fields are typically used to store object
variables, functions, and methods inside the object. The fields themselves may be
of any value type, i.e. they are untyped. 

Indexing an object with the field retrieves the value of that field. There are two
common ways of indexing into object fields:

• The o.x notation denotes a field called x of object o.

• The o[e] notation evaluates e to a value x, and retrieves the field x of a. This 
effectively makes the object an associative array.

The expression o.x and o["x"] refers to the same field. Trying to access an object
field that does not exist will throw an exception. A special assignment expression
“:=” is used to insert new fields into an object. (If the field already existed, its pre-
vious value is overridden.) A builtin function called DeleteField allows the removal
of a field from an object.

Examples:

[. .] // The empty object
[. x = 1, y = 1 + 1 .] // Object with x & y field

var o = [. x = 1 .];
o.x // Field x of o
o[“x”] // The same field again
o.y := “hello” // Defines field y of o
o[1+2] := 42 // Defines field 3 of o
o[4-1] // Accesses field 3 of o
Size(ToList(o)) // # fields of o
DeleteField(o, "x") // Remove field "x"

The associative array behavior is so useful that it is used for other WebL types too.
These object-like types are called special objects. Examples include types page and
piece. To the programmer these types look very similar to objects, but they have
“hidden” state attached to them (i.e. they function as opaque data types). 

Object fields are ordered in the sequence of their definition (i.e. left-to-right, top-to-
bottom in the object). The ordering of fields only has little impact in programs; it
only defines the sequence in which fields are enumerated and how objects are
printed. It does however play an important role for certain functions where parame-



The Language Core

30 WebL - A Programming Language for the Web

ter ordering is important. (See “Retrieving Page Objects” on page 59.) Note that
there is no way to remove a field from an object. 

Object-based programming in WebL. Combining objects and functions allows
us to program in an object-based or object-oriented manner. For example, the fol-
lowing program implements a bank account object with “methods” to deposit and
withdraw money. Note how we need to pass the bank account object as first actual
argument to the deposit and withdraw methods. In both cases the self formal argu-
ment refers to the bank account object. 

var myaccount = [.
balance = 0,
deposit = fun(self, amount)

self.balance = self.balance + amount
end,
withdraw = fun(self, amount)

self.balance = self.balance - amount
end

.]
myaccount.deposit(myaccount, 100);// Deposit $100
myaccount.withdraw(myaccount, 50);// Withdraw $50

Type Meth

The meth constructor constructs values of type meth (or method). Methods behave
in all aspects, except for application (i.e. execution), in the same manner as func-
tions. They are in fact used as a notational short-hand for method invocation with-
out the need to pass a self parameter. We can recode the bank account program with
methods in the following manner:

var myaccount = [.
balance = 0,
deposit = meth(self, amount)

self.balance = self.balance + amount
end,
withdraw = meth(self, amount)

self.balance = self.balance - amount
end

.]
myaccount.deposit(100); // Deposit $100
myaccount.withdraw(50); // Withdraw $50



WebL - A Programming Language for the Web 31

Value Equality

As can be seen, the only difference from the previous program is the use of the
meth keyword, and a convenient way of invoking methods. In fact, the internal
implementation of methods is equivalent to the bank account object programmed
only with functions.

Types Page, Piece, PieceSet and Tag

Value types page, piece, pieceset and tag are an essential part of the WebL markup
algebra. We will not go into details yet about these value types — they are dis-
cussed in more detail in Chapter 4.

Value Equality

Values of types nil, boolean, int, real, char, string, fun, meth, set, list, and tag are
immutable. This means that once a particular value is calculated or declared in a
constant, the value cannot change. For example, appending a character to a string
creates a new string; inserting an element into a set creates a new set, and so on.

In contrast, objects and special objects are mutable by the fact that their field values
can be modified, and new fields can be added.

Two immutable values are equal if their contents:

• are both nil.

• have the same boolean value (true or false).

• have the same numerical value (by converting ints to reals if necessary).

• have the same character or string.

• have identical sets or lists.

• have the same function or method with identical dynamic outer context.

Two objects are regarded equal when the internal reference to the object data stuc-
ture is equal (i.e. reference equality).

It is important to note that even though sets and lists are immutable in WebL, oper-
ating on these value types does not necessarily mean that the internal data structures
are copied for each operation. WebL uses an efficient internal implementation that
makes the following operations possible in constant time and space:



The Language Core

32 WebL - A Programming Language for the Web

• Concatenating two lists,

• Applying the First and Rest functions on a list,

• Adding or removing an element from a set.

In some cases, for example when printing a list or indexing into it, a cost propor-
tional to the number of elements is paid once, after which the cost becomes con-
stant again. 

Operators

Table 12 lists the operatorsof the WebL core language. To illustrate how operators
are overloaded, we use a functional notation even though the operators are written
in infix, prefix, or right-bracket fix. For example,

op(x: T, y: S): U

denotes that an infix operator op takes a first operand of x of type T and a second
operand y of type S, and returns a value of type U. Unary operators have only a sin-
gle argument to specify.

Two special operators are not contained in the operator table, since they have spe-
cial constraints on when they can be used and hence cannot be specified in the syn-
tax just introduced. The two operators are assignment ("=") and field definition
(":="). 

The left-hand side of an assignment must denote a variable or an object and field
name combination. The left-hand side of a field definition must denote an object
and field name combination, eg. obj[field] or obj.field. The value of an assignment
or field definition is always the right-hand side of the operator. These two operators
also differ in another way from the remainder of the operators, in that they have
side-effects, namely the setting of the value of a variable or field of an object to the
right-hand side of the operator.



WebL - A Programming Language for the Web 33

Operators

TABLE 12. WebL Core Operators

Operator Description

+(x: int, y: int): int
+(x: int, y: real): real
+(x: real, y: int): real
+(x: real, y: real): real

Numeric addition x + y.

+(x: char, y: string): string
+(x: char, y: char): string
+(x: string, y: string): string
+(x: string, y: char): string

String and character concatenation.

+(x: set, y: set): set Set union.

+(x: list, y: list): list List concatenation.

-(x: int, y: int): int
-(x: int, y: real): real
-(x: real, y: int): real
-(x: real, y: real): real

Numeric substraction.

-(x: int): int
-(x: real): real

Numeric negation.

-(x: set, y: set): set Set exclusion.

*(x: int, y: int): real
*(x: int, y: real): real
*(x: real, y: int): real
*(x: real, y: real): real

Numeric multiplication.

*(x: set, y: set): set Set intersection.

/(x: int, y: int): int
/(x: int, y: real): real
/(x: real, y: int): real
/(x: real, y: real): real

Numeric division.

div(x: int, y: int): int Whole division.

mod(x: int, y: int): int x mod y.

C(x: int, y: int): bool
C(x: int, y: real): bool
C(x: real, y: int): bool
C(x: real, y: real): bool

Numerical comparison, where C is 
one of <, <=, >, or >=.

C(x: string, y: string): bool
C(x: char, y: char): bool

Lexical comparison, where C is one 
of <, <=, >, or >=.



The Language Core

34 WebL - A Programming Language for the Web

== (x, y): bool Value equality test. See “Value 
Equality” on page 31.

!=(x, y): bool Value in-equality test. See “Value 
Equality” on page 31.

or(x: bool, y: bool): bool
and(x: bool, y: bool): bool

Logical operators (Short-circuit 
evaluation).

!(x: bool): bool Logical negation.

.(x: object, y): any Object field access.

[](x: list, i: int): any
[](x: object, i): any
[](x: string, i: int): char

List, object, and string indexinga. 
Elements in a list and string are 
numbered from 0 to Size-1.

member(x, s: set): bool
member(x, l: list): bool
member(x, o: object): bool

Set, list and objectb membership 
test.

a. Operator is written in the form x[i].

b. Object membership test is based on object field names.

TABLE 12. WebL Core Operators

Operator Description



WebL - A Programming Language for the Web 35

Statements

Statements

Statement Sequences

Statement sequences are separated by semicolons. The value of a statement
sequence is the value of the last expression in the sequence. An optional trailing
semicolon in a statement sequence is ignored by WebL.

If Statement

If statements specify the conditional execution of guarded commands. The boolean
expression preceding an expression is called its guard. The guards are evaluated in
sequence of occurrence until one evaluates to true, whereafter its associated expres-
sion is evaluated. If no guard is satisfied, the statement sequence following the
symbol else is executed, if there is one. The value of an if statement is the value of
the associated expression whose guard evaluated to true.

Syntax:

IfStat = if SS then SS [ ElseStat ] end
ElseStat = else SS | elsif SS then SS [ ElseStat ]

Example:

if ch >= ’a’ and ch <= ’z’ then ReadIdent()
elsif ch >= ’0’ and ch <= ’9’ then ReadNumber()
elsif ch == ’\’’ or ch == ’"’ then ReadString()
else ReadSpecial()
end



The Language Core

36 WebL - A Programming Language for the Web

While Statement

While statements specify the repeated execution of an expression while a boolean
expression (its guard) yields true. The guard is checked before every execution of
the expression. The value of a while statement is nil.

Syntax:

WhileStat = while SS do SS end

Example:

while x > 0 do x = x div 2; k = k + 1 end

Repeat Statement

Repeat statements specify the repeated execution of an expression until a boolean
expression (its guard) yields true. The guard is checked after every execution of the
expression. The value of a repeat statement is nil.

Syntax:

RepeatStat  = repeat SS until SS end

Example:

repeat x = x * 2 until x > k end

Try Statement

Execution of an expression may terminate in a failure or exception. We say that the
expression has thrown an exception. Exceptions are implemented with objects in
WebL. The throw function accepts any object to throw as an exception. The try
expression is used to trap a failed expression, or more commonly said, to catch the
exception object. In case no exception occurs, the try statement simply executes a
statement sequence and returns its value. In the case of an exception occurring in
the statement sequence, a sequence of guarded expressions is evaluated. The guards
are evaluated in sequence until one evaluates to true, whereafter the associated
expression is evaluated and returned as value. In case no guard evaluates to true, the
exception is automatically re-thrown (and may be caught by an enclosing try state-



WebL - A Programming Language for the Web 37

Statements

ment. The exception object is automatically assigned to a programmer-specified
exception variable. (WebL will automatically declare the exception variable in a
fresh context.) 

By definition any WebL object can be thrown as an exception. By convention
though, most exception objects consist of a string-valued field msg that describes
the exception, and a string valued field type that is used for identifying the excep-
tion type. In some cases, the exception object contains fields that give more specific
information on what went wrong, for example the file and line number where it
occurred.

Table 47 on page 183 lists the exceptions thrown by statements, operators and built-
in functions of the WebL language.

Syntax:

CatchStat = try SS catch Ident { on E do SS } end 

Examples:

try
p = GetURL(“http://www.yahoo.com”)

catch E
on E.statuscode == 404 do

PrintLn(“page not found”)
on E.type == “HttpError” do

PrintLn(“connection error”)
on true do

nil // catch everything else
end

Throw ([. type=”OutOfMemory”, msg=”No space left” .])



The Language Core

38 WebL - A Programming Language for the Web

Every Statement

The every statement enumerates the elements of sets, lists, strings, objects and
piece-sets. (Piece-sets will be introduced later.) Set elements are enumerated in an
undefined sequence. List elements are enumerated from left to right. Enumerating a
string gives the individual characters of the string from left to right. Enumerating an
object gives the field names of the objects.

While enumerating, each element is assigned in turn to the loop variable and the
body of the every statement executed. The value of the every statement is nil.

Syntax:

EveryStat = every Ident in E do SS end 

Example:

every x in [1, 2, 3, 4] do
PrintLn(“X has the value “, x)

end

Lock Statement

The lock statement is used to prevent race conditions in muli-threaded programs.
The statement locks an object, executes a statement sequence, and unlocks the
object. The lock on the object can only be held by a single thread at any specific
time. In case a thread tries to aquire a lock on an object held by another thread, the
thread is suspended until the lock is released. 

Syntax:

LockStat = lock SS do SS end

Example:

var counter = [.
val = 0,
inc = meth(s, i)

lock s do
s.val = s.val + 1

end
end

.]



WebL - A Programming Language for the Web 39

Statements

Begin Statement

The begin statement allows the programmer to introduce a new statement sequence
in a sub-expression. This is sometimes useful to open a fresh context in which tem-
porary variables can be declared.

Syntax:

BeginStat = begin SS end

Example:

x + begin var s = a * b; s * s end

Return Statement

The return statement returns the value of a function or method call. The return
token is optionally followed by an expression that evaluates to the value returned
(otherwise nil is returned by default). Note that the return statement can be used to
return a value early. Contrast the WebL convention of the last expression of a func-
tion or method calculating the return value, which allows returning a value only at
the end of the function or method. Also note that it is a runtime exception to exe-
cute a return statement outside of a function or method body.

Syntax:

ReturnStat = return [E]

Example:

var F = fun(s)
if s == nil then

return ““
end;
ToString(s)

end;



The Language Core

40 WebL - A Programming Language for the Web

Built-in Functions

Several functions are built into the WebL programming language (in contrast to
functions written by the programmer). We distinguish between normal built-ins
and special built-ins. Normal built-ins evaluate all their actual arguments before
invoking the function. Special built-ins defer the evaluation of their arguments to
the function being invoked. Examples of special built-ins include Time, Timeout,
and Retry.

Most built-ins accept only a fixed number of arguments. Some built-ins like
PrintLn accept any number of arguments of any value type. Variable length argu-
ment builtins are specified with ellipses (...) in Table 13. An actual argument can be
of any value type if no explicit type is given in the table. The pseudotype any
denotes values of any type.

As a shorthand we sometimes use the notation 

argname: {type1, type2, ... }

to indicate that argname can be of type1 or type2. (See Table 15 on page 64.)



WebL - A Programming Language for the Web 41

Built-in Functions

TABLE 13. Core Built-in Functions

Function Description

Assert(x: bool) Throws an assertion failed exception 
if x is false.

Boolp(x): bool
Charp(x): bool
Funp(x): bool
Intp(x): bool
Listp(x): bool
Methp(x): bool
Objectp(x): bool
Realp(x): bool
Setp(x): bool
Stringp(x): bool
Pagep(x): bool
Piecep(x): bool
Tagp(x): bool
Piecesetp(x): bool

Predicates that check if a value is of 
a specific type.

Call(cmd: string): string Executes a shell command and 
returns the output written to standard 
out while the command is running. 
The command string may contain 
references to variables in lexical 
scope by writing $var or ${var}. The 
value of these referenced variables 
are expanded before the command is 
executed.

Clone(o: object, p: object, ...): object Makes a new object by copying all 
the fields of the objects passed as 
arguments. Fields of p have prece-
dence over fields of o (and so on). 
The field ordering of the resulting 
object is defined by enumerating the 
fields of o, p, and so on in that 
sequence.

Error(x, y, z, ...): nil Prints arguments to standard error 
output.

ErrorLn(x, y, z, ...): nil Prints arguments to standard error 
output followed by end-of-line.

Eval(s: string): any Evaluates the WebL program coded 
in string s.



The Language Core

42 WebL - A Programming Language for the Web

Exec(cmd: string): int Executes a shell command and 
returns the exit code returned by the 
command. The command string may 
contain references to variables in 
lexical scope by writing $var or 
${var}. The value of these refer-
enced variables are expanded before 
the command is executed.

Exit(errorcode: int) Terminates the program with an 
error code.

DeleteField(o: object, fld): nil Removes the field fld from the 
object o.

First(l: list): any Returns the first element in a list.

GC(): nil Explicitly invokes the Java garbage 
collector.

Native(classname: string): fun Loads a WebL functiona imple-
mented in Java.

Print(x, y, z, ...): nil Prints arguments to standard output.

PrintLn(x, y, z, ...): nil Prints arguments to standard output 
followed by end-of-line.

ReadLn(): string Reads a line from standard input 
(throws away the end-of-line charac-
ter).

Rest(l: list): list Returns a list of all list elements 
except the first element.

Retry(x): any Executes expression x and returns its 
value. In case x throws an exception, 
x is re-executed as many times as 
needed until it is successful.

Select(l: list, from: int, to: int): list Extracts a sublist of l starting at ele-
ment number from and ending at ele-
ment number to (exclusive).

Select(s: string, from: int, to: int): 
string

Extracts a substring of starting at 
character number from and ending at 
character number to (exclusive).

TABLE 13. Core Built-in Functions

Function Description



WebL - A Programming Language for the Web 43

Built-in Functions

Select(s: set, f: fun): set
Select(l: list, f: fun): list
Select(p: pieceset: f: fun): pieceset

Maps sets, lists, and piecesets to 
sets, lists, and piecesets respectively 
according to a membership function 
f. Function f must have a single 
argument and must return a boolean 
value indicating whether the actual 
argument is to be included in the set, 
list or pieceset.

Sign(x: int): int
Sign(x: real): int

Returns -1, 0, +1 if x < 0, x = 0, and 
x > 0 respectively.

Size(l: list): int Returns the number of elements in a 
list.

Size(s: set): int Returns the number of elements in a 
set.

Size(s: string): int Returns the number of characters in 
a string.

Sleep(ms: int): nil Suspends thread execution for the 
specified number of milliseconds.

Sort(l: list, f: fun): list Sorts the elements of l according to 
the comparison function f. The func-
tion f needs to take two formal argu-
ments and return -1, 0, or +1 if the 
actual arguments are less, equal, or 
more than each other.

Stall() Program goes to sleep forever.

Throw(o: object) Generates an exception.

Time(x): int Returns the time (in milliseconds) it 
takes to evaluate the expression x.

Timeout(ms: int, x): any Performs the expression x and 
returns its value. If the evaluation 
takes more than the specified 
amount of time (in milliseconds), an 
exception is thrown instead.

ToChar(c: char): char No operation.

ToChar(i: int): char Converts an integer to the equivalent 
Unicode character.

TABLE 13. Core Built-in Functions

Function Description



The Language Core

44 WebL - A Programming Language for the Web

ToInt(c: char): int Returns the Unicode character num-
ber of a char.

ToInt(i: int): int No operation.

ToInt(r: real): int Truncates the real value to an integer 
(rounding towards zero).

ToList(s: set): list
ToList(l: list): list
ToList(s: string): list
ToList(o: object): list
ToList(p: pieceset): list

Enumerates all the elements of the 
argument and returns a list. (See 
“Every Statement” on page 38.)

ToInt(s: string): int Converts a string to the numeric 
equivalent.

ToReal(c: char): real Same as ToReal(ToInt(c)).

ToReal(i: int): real Converts an integer to a real.

ToReal(r: real): real No operation.

ToReal(s: string): real Converts a string to a real value.

ToSet(s: set): set
ToSet(l: list): set
ToSet(s: string): set
ToSet(o: object): set
ToSet(p: pieceset): set

Enumerates all the elements of the 
argument and returns a set. (See 
“Every Statement” on page 38.)

ToString(x): string Converts a value to its string repre-
sentation.

Trap(x):object Executes x and returns the exception 
object that was caught. In case no 
exception is thrown in x, nil is 
returned. In addition, the exception 
object contains a field trace that has 
extra information why the exception 
occurred. This information is useful 
for logging unexpected exception 
events in your WebL programs.

Type(x): string Returns the type of x (nil, int, real, 
bool, char, string, meth, fun, set, list, 
object, page, piece, pieceset, tag).

TABLE 13. Core Built-in Functions

Function Description



WebL - A Programming Language for the Web 45

Built-in Functions

a. The class indicated must be a subclass of webl.lang.expr.AbstractFun-
Expr



The Language Core

46 WebL - A Programming Language for the Web

Modules

To facilitate the reuse of code, WebL allows you to package commonly used rou-
tines in a module. An example module might be routines to process pages from a
specific web server. Client programs can access the routines by importing the mod-
ule. This is indicated by the client writing an import statement specifying all the
modules that a program requires. After importing a module, the variables declared
in that module can be accessed. This is done by writing the module name, followed
by an underscore character and the variable name. For example, the following pro-
gram imports module A, accesses a variable and calls a function in that module:

import
A;

PrintLn(“The value of x in A is “, A_x);
A_Doit()

The import statement may occur only at the beginning of a program. Imported vari-
able references must always be explicitly qualified by the module name and an
underscore. Note the choice of the underscore character allows us to separate the
variable name space and module name space (i.e. a module and a variable might
have the same name).

One of the side-effects of importing a module is the loading of the module into
memory. WebL keeps track of all loaded modules in a global module list. Before
importing a module, the module list is checked to see whether the module has been
loaded before — if so, the previously loaded module is reused. Thus a module can
be loaded only once. There is no operation to unload a module.

A module is nothing more than a statement sequence stored in a file with the exten-
sion “.webl”. Loading a module involves executing this statement sequence (once).
The language allows the programmer to export declared variables from the module.
The exported variables are visible to clients of the module. Unexported variables
cannot be accessed from clients. Exported variables are only allowed in the top
level context. For example, in the following implementation of module A (which
must be stored in the file “A.webl”) the variable y is hidden from clients:

// Implementation of module A
export var x = 42;
var y = 10;

export var Doit = fun() PrintLn(“ok.”) end



WebL - A Programming Language for the Web 47

Service Combinators

Modules may import other modules. This allows the construction of a module hier-
archy in the form of an import graph. Note that the graph is directed and a-cyclic
— recursive module imports are not allowed and will cause a runtime error.

Service Combinators

We can imagine that many things can go wrong with a computation on such a large
distributed scale as the World Wide Web. For example, part of a WebL computa-
tion might fail because of a failed web server or missing web page. Thus the unpre-
dictable nature of the web causes many more exceptions than in a non-distributed
environment. To counteract this problem, WebL provides a few convenient ways to
handle exceptions. The exception handling mechanism is based on a formalism
called service combinators. In this formalism we talk about services — computa-
tions that depend on remote web servers — that complete successfully or fail (throw
an exception).

The service combinators allow several services to be combined in ways that can
make a computation more reliable and in some cases even improve its speed. Note
that by service we mean any WebL computation. WebL supports several service
combinators: sequential execution, concurrent execution, time-out, repetition and
non-termination.

One of the most basic services involves fetching a page from the Web. To make the
examples that follow more realistic, we are going to use two of these built-in func-
tions. More details about the exact behavior of these functions can be found in
“Retrieving Page Objects” on page 59. Note that any WebL computation can be
regarded as a service.

Services

GetURL(url, [. param1=val1, param2=val2, ... .])
PostURL(url, [. param1=val1, param2=val2, ... .])

The GetURL function fetches with the HTTP GET protocol the resource associated
with the URL. It returns a page object that encapsulates the resource. The function
fails if the fetch fails. The second argument to GetURL provides the server with



The Language Core

48 WebL - A Programming Language for the Web

query arguments. A similar function called PostURL uses the HTTP POST proto-
col, used to fill in Web-based input forms.

// This program simply attempts to fetch the named URL. 
page = GetURL("http://www.digital.com") 

// This program looks up the word "java" on the 
// AltaVista search engine. 
page = GetURL(

"http://www.altavista.digital.com/cgi-bin/query", 
[. pg="q", what="web", q="java" .])

Sequential execution S ? T 

The "?" combinator allows a secondary service to be consulted in case the primary
service fails for some reason. Thus, the service S ? T acts like the service S except
that if S fails then it executes the service T.

// This program first attempts to connect to AltaVista
// in California, and in the case of failure, 
// attempts to connect to a mirror in Australia. 
page = GetURL("http://www.altavista.digital.com") ? 

GetURL("http://www.altavista.yellowpages.com.au")

Concurrent execution S | T 

The "|" combinator allows two services to be executed concurrently. The service S |
T starts both services S and T at the same time and returns the result of whichever
succeeds first. If both S and T fail, then the combined service also fails. Should one
service complete before the other, the slower service is stopped. Stopping the
slower service is performed in a controlled manner, to ensure the run-time remains
in a consistent state. Typical checkpoints at which WebL will stop a service is at
function or method call boundaries, and at the beginning or end of programmed
loops.

// This program attempts to fetch a page from one 
// of the two alternate sites. Both sites are
// attempted concurrently, and the 
// result is that from whichever site 
// successfully completes first. 
page = GetURL("http://www.altavista.digital.com") | 

GetURL("http://www.altavista.yellowpages.com.au")



WebL - A Programming Language for the Web 49

Service Combinators

Time-out timeout(t, S) 

The time-out combinator allows a time limit to be placed on a service. The service
Timeout(t, S) acts like S except that it fails after t milliseconds if S has not com-
pleted within that time. S will be stopped in controlled manner when it times-out
(see the concurrent execution description above for details on how services are
stopped).

// This program attempts to connect to 
// alternative AltaVista mirror sites, 
// but gives a limit of 10 seconds to succeed. 
page = Timeout(10000, 

GetURL("http://www.altavista.digital.com") | 
GetURL("http://www.altavista.yellowpages.com.au "))

Repetition Retry(S) 

The repetition combinator provides a way to repeatedly invoke a service until it
succeeds. The service Retry(S) acts like S, except that if S fails then S starts again.
The loop can be terminated by writing Timeout(t, Retry(S)).

// This program makes repeated attempts in the 
// case of failure, alternating between two services. 
page = Retry(

GetURL("http://www.x.com") ? 
GetURL("http://www.y.com"))

Non-termination Stall() 

The stall combinator never completes or fails.

// This program repeatedly tries to fetch the URL, but 
// waits 10 seconds between attempts. 
page = Retry(getpage("http://www.digital.com") ? 

Timeout(10000, Stall())



The Language Core

50 WebL - A Programming Language for the Web



WebL - A Programming Language for the Web 51

CHAPTER 3 Pages

To set the stage for the next chapter on markup algebra, we must introduce fetching
a page from the Web and mapping the page into structures compatible with the
WebL language. Although we cannot give a thorough overview of the Web proto-
cols and formats involved in this process, we present a short tutorial to introduce
the particular vocabulary used in WebL. Thus the most of this chapter is a review of
things that might be known to many readers. However, the chapter does contain
important information and definitions that will be required in the following chap-
ters.

Basic Protocol Terminology

The World Wide Web (WWW) consists of a large number of Web sites, domains or
servers that provide services to clients over the Internet. The typical clients of these
services are users who retrieve web pages with a software application called a Web
browser. In contrast, WebL is a client that fetches pages in an automated manner
under the control of a program. The purpose of this section is to show how this
works. 

Uniform resource locators. Pages are identified by a uniform resource locator or
URL. A URL identifies the web site, the location of the page on the web site, the



Pages

52 WebL - A Programming Language for the Web

filename of the page, and the Internet transmission protocol required to fetch the
page. Much simplified, URLs have the following form:

http://hostname/path/filename.html

Here http refers to the protocol being used, hostname the web site or machine iden-
tification, and path the directory on that machine where the page called file-
name.html is stored.

HTTP. The Hypertext Transfer Protocol transfers the page over the Internet. The
basic steps are:

• Establish a communications link from client to the web server identified by host 
name.

• The client sends an HTTP request to the server. The request consists of the loca-
tion or filename of the page to retrieve (/path/filename.html), headers, and 
optional parameters.

• The server answers with an HTTP response. The response consists of a status 
code (indicating success or failure), a status message, headers, and the page 
data itself (contents of /path/filename.html on the server).

• The connection is closed.

Request parameters provide additional information to a web server about the
requested data. This information is often used to access a special service on the
server that generates appropriate responses dynamically, for example by looking up
data in a database. Each parameter consists of a parameter name and a value.
Parameters are included in the HTTP request in one of two methods:

• The HTTP GET request appends the parameters (encoded in a special way) to 
the URL,

• The HTTP POST request appends the parameters to the end of the request.

GET requests issued with parameters are recognized by a question mark (?) fol-
lowed by the parameters (name value pairs) appended to the URL. In contrast,
parameters of a POST request are hidden and not visible from the URL.

POST requests are the preferred method for transmitting the contents of an HTML
fill-in form to a web server. Their main advantage is that larger amounts of data can
be submitted than with the GET method. Note however that the GET method is also
applicable to fill-in forms, and is typically used when parameters are few and rela-
tively short. The GET method is also the default when no parameters are passed.



WebL - A Programming Language for the Web 53

Basic Protocol Terminology

WebL supports both the GET and POST methods as built-in functions. These func-
tions accept the request parameters in a WebL object and perform the correct
encoding and packing in the HTTP request (either in the URL or at the end of the
request). 

Parameter encoding. For each parameter with name N and value V, we construct
a string "N=V". All parameter strings are then concatenated (separated by a & sym-
bols), and a question mark is prepended. The URL of a GET request with parame-
ters will thus have the general form:

http://domainname/path/filename.hml?N1=V1&N2=V2&N3=V3

Names consist of alpha-numeric characters. Values may contain any character
except those that are reserved for URLs. To encode the latter characters, we replace
them with a percentage sign (%) followed by a two-digit hexadecimal number spec-
ifying the ASCII code of the character. In addition, spaces are replaced by plus (+)
signs.

Request and response headers. HTTP request headers give the web server more
information about the request itself, the browser that is being used, etc. HTTP
response headers give the browser more information about the page that is
returned. In contrast to parameters that can be freely picked, headers are pre-
defined by the HTTP protocol. A header consists of a name and a value. Although
WebL can add request headers and read response headers, scripts seldom need to
exercise this control. The main uses of this feature include mimicking a specific
web browser model, and retrieving and setting cookies. 

MIME types. One of the important pieces of information returned by an HTTP
response is the type of the data that is being retrieved (included in a response
header). The MIME type specifies if the data is an HTML page, an XML page, an
image, a Postscript file etc. WebL supports onlythe MIME types corresponding to
what it can parse: Plain text, HTML and XML. Attempting to process anything else
in WebL causes an exception. A common MIME type is the one that identifies
HTML documents, typically written in one of the following forms:

text/html
text/html; charset=”us-ascii”
text/html; charset=ISO-8859-1

The charset parameter is optional — it indicates the character encoding (or content
encoding) the document is encoded in. WebL uses the charset parameter (or makes



Pages

54 WebL - A Programming Language for the Web

an educated guess as to its value when missing) to determine how pages are con-
verted into an internal Unicode format.

Unfortunately, many web servers do not return the correct MIME type information
for certain documents, which makes it impossible for WebL to parse the document.
To prevent this from occuring, it is possible to override the MIME type of a docu-
ment explicitly when using the GetURL and PostURL builtin functions.

Cookies.  Many web servers today use “cookies” to store client-side state. For
example, a typical application of cookies is to unique identify customers at a web
store front. At startup time WebL knows about no cookies (i.e. the cookie database
is empty). As cookies are set by servers during HTTP requests, the cookie database
will fill up. Each WebL HTTP request is checked against the cookie database, and
if necessary, WebL will return the appropriate cookies to the server. A special
WebL module called Cookies allow you to save the cookie database to a file, and
reload it at a later time.

Page parsing. Once an HTTP request is completed, WebL parses the page data
into an internal format that makes it easy to query and manipulate the page.

WebL programmers should have high-level understanding of how HTML and
XML are handled — to this end the following section gives an overview of basic
markup concepts and how they relate to WebL. This background material is a pre-
requisite for the following chapter on the search algebra and page manipulation fea-
tures.

Markup

The Hypertext Markup Language (HTML) and Extensible Markup Language
(XML) are both instances of the Standard Generalized Markup Language (SGML).
SGML was conceived in the middle 1980's as a text markup notation for exchang-
ing hierarchically organized electronic documents. SGML consists of two parts,
namely the document markup in the form of tags, and a meta-description of a docu-
ment class called a Document Type Definition (DTD).

DTD's are typically designed for special purposes, and define the tag names, tag
structures, and hierarchical organization of documents that conform to the DTD.



WebL - A Programming Language for the Web 55

Markup

HTML, as an instance of SGML, consists of a DTD that defines the exact version
of HTML being used, and a set of conventions followed by web browsers for ren-
dering the markup on a computer display. Most of the HTML involves how markup
should be presented, for example what fonts are used and in what size, colors, spac-
ing, line breaks, and so on. The main clients of HTML are real people viewing the
pages marked up in this manner.

In contrast, XML is an instance of SGML for the exchange of content or applica-
tion specific data over the web. The idea is that if two or more people can agree on
a common DTD (that is the markup and structure of a document), they can
exchange documents and other information. In a simplistic way XML can be
regarded as a variant of HTML where you may define your own markup. The main
clients of XML are programs that process the content of web pages — although
XML can be viewed in a browser, it has nothing to do with presentation.

XML documents are typically grouped according to the DTD that is used. For
example, XML documents using the Content Definition Format (CDF) DTD are
used in push media, and XML documents using the Chemical Markup Language
(CML) DTD are used to exchange molecular structures.

Tags. At the simplest level, pages consist of sequences of characters (called parsed
character data or PCDATA) and markup symbols called tags. Tags consist of char-
acters enclosed between less than (<) and greater than (>) symbols. The tag con-
tents specify a tag name and optionally any number of attributes. Tag names are
predefined in HTML (for example, H1, H2, P, FONT, TITLE, etc) whereas XML
tags are defined according to a DTD. Attributes consist of (name, value) pairs. 

The general tag style is as follows:

<name A="abc" B="123">

Here the tag name name is followed by attribute values A and B, having the values
abc and 123 respectively. Values are always quoted by single or double quotes in
XML; HTML values have a more flexible syntax allowing certain values to be
unquoted. HTML also allows attributes to have no value, for example:

<name A B>



Pages

56 WebL - A Programming Language for the Web

Elements. A hierarchical structure is imposed on a page by collecting tags and
parsed character data into elements. We distinguish between comment elements,
(non-empty) elements, empty elements, processing instruction elements, and
SGML directive elements. 

Note that in this manual we diverge from SGML terminology so as to explain the
unified view WebL presents to the programmer by mapping names and attributes of
elements to piece objects (introduced later) and object fields. The name of a piece is
derived from the start tag of the element.

Comments. Comment elements specify text to be ignored during document pars-
ing. Comments consist of a single tag in the following style:

<!-- this is the comment text -->

The name of a comment element is "!--". In WebL, the comment element has a field
called comment, which has as value the text occuring between the “--” tokens.

Non-empty Elements. These consist of a start tag, any number of nested elements
or PCDATAs, and a matching end tag. Everything between the start tag and end tag
is said to be inside or contained in the element. The general format is as follows:

<tagname A="abc" B="123"> ... </tagname>

The names of the start tag and end tag must match. Note how the end tag starts with
a forward slash character. Only the start tag may have attributes. The name and
attributes of non-empty elements are those of the start tag.

In the case of attributes with no value, the attribute of the element is set to the
empty string. 

Empty elements. Empty elements do not have any content, and thus do not require
an end tag. They have the format:

<tagname A="abc" B="123" />

Note the forward slash that ends the tag. The element name and attributes are those
of the tag. 

Empty elements appear only in XML documents. HTML has something similar to
an empty element but it cannot be distinguished from a start tag. For example, the



WebL - A Programming Language for the Web 57

Markup

HTML markup <br> does not have a corresponding end tag, and thus is equivalent
to an empty tag. WebL knows about these anomalies by virtue of the HTML DTD.

Processing Instructions. Processing instruction elements give instructions to the
page parser to perform special handling of its contents. They are used only in XML,
and consist of a single tag:

<?tagname ... ?>

Here the ellipses take the place of the processing instructions. Similar to comment
elements, "?tagname" is defined as the name of the element. The processing
instructions (between the question marks) are mapped onto the content field of the
element).

SGML Directives. SGML directives provide information about the DTD of the
page being parsed. They have the form:

<!tagname ... >

Here the ellipses take the place of the directive. As before, "!tagname" is defined as
the name of the element, and the element has an attribute called content that stores
the directive. The most commonly occurring SGML directive is !DOCTYPE, which
specifies the name of the DTD to be used to parse the remainder of the document.

Optional tags. Parsing of HTML is made complicated by an SGML feature called
optional tags (a feature that has explicitly been left out of XML). The idea is that
the DTD often gives enough contextual information to infer that a start or end tag
must be present at a certain position in the document. For several HTML elements,
either start or end tags are declared to be optional, and should be inserted automati-
cally by the parser. For example, the paragraph <P> element is in fact a non-empty
element that has a corresponding </P> end tag. However, most HTML documents
do not contain these optional end tags, in which case the HTML parser has to infer
where paragraphs end. WebL knows the HTML DTD, and can thus insert optional
tags when needed. In general, WebL attempts to make a faithful internal representa-
tion of the documents it parses (including spaces and new lines), except for the fact
that it inserts optional tags when appropriate. Conversion from the internal format
to external format might thus result in slightly different (but equivalent) pages.

Character Entities. Inserted in the PCDATA stream we often find character enti-
ties of the form &...; (where ... stands for a number or an alphanumeric name)
denoting special symbols. For example, &lt; and &gt; denotes the less than and



Pages

58 WebL - A Programming Language for the Web

greater than symbols. This encoding is used both to embed special symbols that
might be confused with markup, and to provide a human-readable way to represent
all Unicode characters. WebL does not perform any translation of character entities
by default when fetching a page, but does provide a built-in called ExpandCharEn-
tities to process them afterwards, and an retrieval option that switches on expansion
(Table 16 on page 65).

Case-sensitivity. XML is case-sensitive and HTML is case-insensitive. In the case
of XML, WebL keeps all element names and attributes in their original case. In the
case of HTML, WebL converts all element names and attribute names to lower-
case.

URL resolution. Many elements have attributes that specify URLs of other docu-
ments on the Web. Most of these URLs are specified relative to the document itself.
WebL simplifies handling of these URL attributes by resolving them to an absolute
URL when the document is fetched. To determine which attributes refer to URLs,
WebL uses slightly modified HTML DTDs internally that explicitly denote which
attributes of elements contain URLs. No URL resolution is performed for XML
documents. HTML URL resolution can be switched off with a page retrieval option
(Table 16 on page 65).

Bad HTML. A surprisingly large number of pages on the web contain errors.
Some of the typical errors encountered include:

• Forgotten end or start tags,

• Illegal nesting of elements forbidden by the DTD,

• Non-hierarchical markup where elements overlap instead of nest,

• The DTD specified by the DOCTYPE SGML directive does not match the 
markup the document contains,

• Tags with illegal names, etc.

WebL tries to take all these problems into account. In SGML terms, WebL is a non-
validating processor. WebL only uses DTDs to correct simple mistakes and to add
optional tags where needed. WebL also corrects overlapping tags in HTML to
ensure that we have a hierarchically structured document. In general, we try to
make as few changes as possible to the page with the guidance of the DTD. It is
thus important to realize that when bad HTML or XML is parsed, the internal rep-
resentation might not be what you expect from viewing the page source. To give
users an idea of what WebL sees, a pretty printing function called Pretty is included
in WebL that displays a representation of the parsed web page in a nicely formatted



WebL - A Programming Language for the Web 59

Retrieving Page Objects

way. We recommend using this tool as it often illustrates the badly formatted
markup found on the web.

Badly encoded scripts. A growing number of web pages contain code written in
scripting languages like JavaScript and VBScript. WebL attempts to skip over the
contents of these parts of a page, so that the HTML parser does not get confused
when seeing things that look like markup that are encoded in scripts. Typically this
is not a problem, since authors are expected to always place scripts inside HTML
comments <!-- ... > between the tags <script> and </script>. Unfortunately this
advice is sometimes ignored, and the script code is left uncommented, which can
confuse the page parser. For this reason, WebL does not parse enything at all
between <script> and </script> tags in HTML pages. The whole stretch of text
between the two tags remains a single unparsed text segment.

Retrieving Page Objects

WebL’s internal representation of a web resource is a page object. The built-in
functions GetURL and PostURL fetch a page from the Web, and return a page
object. In the next chapter we will introduce functions that will turn a page object
into a string value and back, search and manipulate markup in interesting ways, etc.

The GetURL and PostURL functions take a variable number of arguments that
specify the URL to be fetched, request parameters, additional headers, and options.
(See Table 15 on page 64.)

WebL’s ability to process different URL protocols like http, file, and ftp is inherited
from the underlying Java implementation (i.e. WebL does not provide support for
any additional protocols). The most common URL used in WebL is the one corre-
sponding to the HTTP protocol. Note that page redirects and cookies are handled
transparently by WebL, but this default behavior can be overridden if required.

The request parameters passed to the functions are in the form of objects. For
example, the URL of a typical AltaVista request has the following form:

http://www.altavista.digital.com/cgi-bin/
query?pg=q&what=web&kl=XX&q=%22Hannes+Marais%22

This can be converted into a call to the GetURL function in the following manner:



Pages

60 WebL - A Programming Language for the Web

GetURL(
“http://www.altavista.digital.com/cgi-bin/query”,
[. pq=”q”, what=”web”, kl=”XX”,
q=”\”Hannes Marais\”” .])

Parameters. WebL will automatically take care of packing request parameters in
the correct way as required by the GET and POST protocol variants. In the case of
a PostURL request, the correct construction of the parameter object needs to be
deduced by the programmer from the Web form where the request originates from.
(This is beyond the scope of this manual.) 

Note that the HTTP specification requires that the POST parameters be submitted
in the order they appear in the form on the page. It is thus important to list the
param object fields in the same order as the fields in the form (recall that object
fields are ordered according to definition sequence).

There are two tricks that are sometimes needed when submitting form data. The
first trick involves posting multiple parameters that have the same name. An
HTML form might allow the user to pick several options from a list (for example to
indicate his or her favorite programming language). This can be specified as fol-
lows:

PostURL("http://...", 
[. gender="male",
language=["WebL", "Java"] .])

Note the use of a field of type list to indicate the multiple values. For those readers
familiar with the HTTP specification, the data that will be posted as follows in the
body of the HTTP request:

gender=male&language=WebL&language=Java

Note how the parameter language appears twice in the submitted data.

The second trick is a work-around for the case when the submitted parameters do
not match well with the WebL object type. This might for example be the case
when the server does not conform to the HTTP specification, and allows the post-
ing of data in any format. To handle this case, you may pass a string type instead of
an object type to the param argument of PostURL. Of course, in such a case you
have to take care yourself of encoding the parameters correctly (and for this “Mod-
ule Url” on page 138 is useful). Keeping with our example above, this would be
coded as:



WebL - A Programming Language for the Web 61

Retrieving Page Objects

PostURL("http://...", 
"gender=male&language=WebL&language=Java")

Also note that the GetURL, Files_GetURL, and Files_PostURL functions also
accept a string argument instead of an object for parameters (Also see “Module
Files” on page 121). In the case of the Get variants of the functions, the parameter
string is simply appended to the URL itself (with WebL adding the usual "?" in
between).

Headers. The GetURL and PostURL functions add extra HTTP header fields to a
request in case the optional header object is used as an argument. Headers that
might need to be added in this way can be the client identification, cookies, etc. The
response headers of a request (with names converted to lowercase) become part of
the page object returned by the functions. For example, the program:

var p = GetURL("http://www.digital.com");
PrintLn(p);

prints the page fields:

[. "server" = "Apache/1.2.4",
"connection" = "close",
"date" = "Fri, 01 May 1998 19:45:47 GMT",
"content-type" = "text/html", 
"URL" = "http://www.digital.com/" .]

Some HTTP response headers, like for example Set-Cookie, might be repeated sev-
eral times. In such a case, the value of the header field will be list of string values,
in the order of occurrence in the HTTP response. The page fields of an HTTP
response with multiple headers of the same name might thus look as follows:

[. 
"content-type" = "text/html", 
"URL" = "http://www.digital.com/",
"Set-Cookie" = ["id=123", "pw=abc" ]
.]

The same idea is applied when submitting multiple headers with the same name in a

request1:

1. Although WebL supports multiple request headers, the underlying Java implementation 
does not.



Pages

62 WebL - A Programming Language for the Web

GetURL(url, nil, [. 
HeaderA ="xyz", 
HeaderB = ["id=123", "pw=abc"]
.] );



WebL - A Programming Language for the Web 63

Retrieving Page Objects

Overrides. Unfortunately, many servers return the incorrect MIME type for a page.
This incorrect MIME type can be overridden by passing a mimetype field in the
options object argument of GetURL and PostURL. The mimetype field of the
options object must be of type string, and the value must be taken from Table 14. In
case the content encoding is known, an optional charset MIME type parameter can
be specified (See “MIME types” on page 53.). For example, we can write the fol-
lowing to override the MIME type of page X to be of type plain text:

GetURL(X, nil, nil, [. mimetype=”text/plain” .])

A related problem that we often face when processing HTML pages, is that the
author of the page either gives no indication which version of HTML is being used,
or gives an incorrect indication. The HTML version information is part of the
DOCTYPE tag, and identifies the HTML DTD to be used to parse the page. WebL
relies on this information to parse an HTML correctly. In case of an incorrectly
authored page, the DTD can be explicitly overridden by the WebL programmer by
adding a dtd field to the options object argument. The value of the parameter should
be the officially assigned named of the DTD. For example, the following option
values identify HTML 4.0, 3.2, and 2.0:

[. dtd=”-//W3C//DTD HTML 4.0//EN” .]
[. dtd="-//W3C//DTD HTML 3.2//EN" .]
[. dtd="-//IETF//DTD HTML//EN" .]

The fields of the option argument to GetURL and PostURL are summarized in
Table 16 on page 65.

TABLE 14. Supported MIME Types

MIME Type Parser Used

text/plain Plain text

text/html HTML

text/xml XML

application/xml XML



Pages

64 WebL - A Programming Language for the Web

TABLE 15. Functions to Retrieve Web Pages

Function Description

GetURL(url: string): page Uses the HTTP GET protocol to 
fetch the resource identified by the 
URL.

GetURL(url: string, params: 
{object,string}): page

The params object/string contains 
the parameters of a GET that 
includes a query.

GetURL(url: string, params: 
{object,string}, headers: object): 
page

The headers object specifies the 
additional headers to include in the 
GET request.

GetURL(url: string, params: 
{object,string}, headers: object. 
options: object): page

The options object allows, amongst 
other functions, the overridng of the 
MIME type and DTD to be used for 
parsing the page. 

PostURL(url: string): page Uses the HTTP POST protocol to 
fetch the resource identified by the 
URL.

PostURL(url: string, params: 
{object,string}): page

The params object/string contains 
the parameters of a POST to fill in a 
web form.

PostURL(url: string, params: 
{object,string}, headers: object): 
page

The headers object specifies the 
additional headers to include in the 
POST request.

PostURL(url: string, params: 
{object,string}, headers: object. 
options: object): page

The options object allows, amongst 
other functions, the overridng of the 
MIME type and DTD to be used for 
parsing the page. 

HeadURL(url: string): page Uses the HTTP HEAD protocol to 
fetch the resource headers identified 
by the URL.

HeadURL(url: string, params: 
{object,string}): page

The params object contains the 
parameters of the HEAD request.

HeadURL(url: string, params: 
{object,string}, headers: object): 
page

The headers object specifies the 
additional headers to include in the 
HEAD request.



WebL - A Programming Language for the Web 65

Retrieving Page Objects

TABLE 16. Fields of the option object

Field Description

autoredirect Controls whether moved pages (for 
example HTTP status code 302) get 
automatically fetched from their 
new locations. The default value is 
true.

charset Overrides the character set used to 
parse the document. Typical values 
are “ISO-8859-1”, “UTF8”, etc.

dtd Overrides the DTD to be used when 
parsing the page. The value of this 
field must be string with the official 
DTD name as defined in the SGML 
catalog.

emptyparagaphs When this flag is set to true, the 
HTML parser will regard paragraphs 
(i.e. <p> tags) as empty markup ele-
ments instead of the usual <p>...</
p> pairs. (The <br> is an example of 
another empty markup element). 
This option is sometimes useful 
when confronted with pages where 
<p> is used without regard for the 
HTML specification (for example, 
the incorrect use of <p> inside 
<font>, and so on). The default 
value of this flag is false.

expandentities When this flag is set to true, charac-
ter entities like "&quot;" etc are 
expanded as the page is parsed. The 
expansion is onlye performed on 
HTML pages, and between markup 
tags (i.e. not inside attributes). The 
default value of this flag is false.



Pages

66 WebL - A Programming Language for the Web

fixhtml When this flag is set to true, the 
HTML parser attempts to correct 
incorrectly nested HTML elements 
in a page (for example, putting a H2 
inside a H1). This has the effect of 
regularizing badly formatted 
HTML, at the cost of sometimes 
unintutive parses. The default value 
of this flag is false.

mimetype Overrides the mime type to be used 
when parsing the page. See Table 14 
on page 63 for typical string values 
this field may assume.

noncompliantPOSTredirect When this flag is set to true, HTTP 
POST requests that are redirected by 
a web server to another URL, are  
automatically changed into a subse-
quent HTTP GET request to that 
URL (a behavior which non-compli-
ant with section 9.3 of the HTTP 1.0 
specification and section 10.3 of the 
HTTP 1.1 specification). Note that 
all POST request parameters are 
ignored for the subsequent HTTP 
request. The default value of this 
flag is true, as many web browsers 
do not follow the specifications cor-
rectly in this regard.

resolveurls When this flag is set to false, the 
URLs in the page are not resolved to 
absolute form. The default is true.

cookiedb A string value specifying which 
cookie database to use for the 
request. See “Mutiple Cookie Data-
bases” on page 117.

TABLE 16. Fields of the option object

Field Description



WebL - A Programming Language for the Web 67

CHAPTER 4 The Markup Algebra

The WebL markup algebra is used for manipulating web pages and extracting data
from them. Extracting information may range from simple operations like iterating
all the links in a page to more complex operations that fill in Web forms and pro-
cess the results returned from a server. Manipulating Web pages might involve
rewriting parts of a page (for example highlighting words) or creating a new page
from parts of several other ones.

The markup algebra consists of several operators and functions that operate on
pages, tags, pieces and piece sets. There are operators and functions to create or
build piece sets from pages or from other piece sets, convert pieces to their string
representation, modify the content of a page, and so on.

Pages, Tags, Pieces, and Piece Sets

After a page is retrieved from the Web and parsed according to its MIME type, the
page and its content is accessible for further computation in WebL. The computa-
tion that can be performed on a page is determined by the WebL markup algebra.



The Markup Algebra

68 WebL - A Programming Language for the Web

The markup algebra is based on three concepts: tags, pieces and piece sets. In sim-
ple terms, a tag corresponds to a markup tag, a piece identifies a contiguous sub-
region of a page, and a piece set is a collection of pieces.

Tags

The first step in parsing a Web page is to identify of all the markup tags in the page
(enclosed between ‘<’ and ‘>’ characters). Each of the tags is converted into a tag
(a WebL value of type tag). Conceptually the page then consists of a list of tag
objects and text segments (or character data). We can use a simple train-like picto-
rial representation of a page to illustrate the conversion (Figure 1). In the figure,
each box represents either a tag or a piece of text.

The WebL model also supports unnamed tags, the purpose of which will become
clearer soon. The equivalent HTML or XML for an unnamed tag is ‘<>’ (which of
course does not occur in practice). WebL uses unnamed tags as place markers in a
page. As their name suggests, unnamed tags do not have a name or attributes.

Pieces

A piece is a WebL value type that denotes a region of page. Each piece refers to
two tags: the begin tag that denotes the start of the region, and the end tag that
denotes the end of the region. The region includes both the begin and end tag, and
everything between them in the page. Note that the begin and end tag can also be
the same. Another important fact is that pieces never point to text segments.

The most common types of pieces are those that correspond to elements in a page.
We extend the box diagram notation to include triangles to denote pieces, and lines

FIGURE 1. Converting Markup into Tag and PCData Sequences

<ul> <li> Modula-3

<ul><li>Modula-3</li><li>Pascal</li></ul>

</li> <li> Pascal </li> </ul>



WebL - A Programming Language for the Web 69

Pages, Tags, Pieces, and Piece Sets

from pieces to tags to denote begin and end tags (Figure 2). To allow the program-
mer to access element attributes, the attributes of an element’s begin tag are copied
into field variables of each piece. Thus, a piece is very similar to the object value
type in that it looks and behaves in many ways like an object. Furthermore, we
associate the appropriate name with each piece (in this case the names are the
strings "!--", "ul", "li", and "li" written above the triangles). 

Note how the begin and end tag of the comment piece refer to the same tag object.
In accordance with our previous definition, a piece that refers to unnamed begin
and end tags is called an unnamed piece (which correspondingly has the empty
string as name).

 

Piece Sets

As its name indicates, a piece set is a collection of pieces belonging to the same
page. It is a set in the sense that a piece can belong only once to a piece set (but a
piece can be a member of several piece sets). A piece set is also a list because
pieces in a piece set are ordered. The piece ordering in a piece set is based on the
begin and end tag positions of a piece in a page. We order pieces according to the
left-to-right order of the begin tags. 

Piece sets play a very important part in WebL. They form the basis of many of the
operations that extract data from web pages. 

FIGURE 2. Piece Notation

<ul> <li> Modula-3 </li> <li> Pascal </li> </ul><!--Test-->

!-- ul li li



The Markup Algebra

70 WebL - A Programming Language for the Web

Searching Functions

There are several ways in which piece sets can be created:

• Searching for markup elements by explicitly naming interesting elements (for 
example all the ‘a’ or ‘li’ elements). 

• Searching for character patterns that match a regular expression. 

• Searching for text segments.

• Searching for stylized sequences of markup patterns.

• Searching for segments delimited by explicitly named markup elements (i.e. 
paragraph extraction).

Element search

The Elem function returns a piece set of all elements that match a specific name.
The function also allows the search scope to be restricted to a page or piece. Thus, a
piece is constructed for each matching begin and end tag pair of a markup element
with the indicated name in the indicated scope, and the resulting pieces are col-
lected into a piece set result. For example, the following program fetches a page,
calculates a piece set with all the img (image) elements of the page, and proceeds to
print out the src attribute of each of those images:

var P = GetURL(“http://www.nowhere.com”);
var images = Elem(P, "img");
every image in images do

PrintLn(image.src)
end

As can be seen from the example, the every statement also allows the iteration over
the elements (the pieces) of a piece set.



WebL - A Programming Language for the Web 71

Searching Functions

Pattern search

The Pat function searches a page for character patterns that match a regular expres-
sion. The Pat function ignores the tag objects in a page — only the pure text stream
is searched. For each occurrence of the pattern, a new piece is created. This
involves inserting new unnamed tags just in front of and just after each pattern
occurrence to keep track of the location. For example, Figure 3 shows how a page
looks after searching for the word “WebL”. In this figure the unnamed tags are
indicated by the boxes marked “<>” and “</>”.

The unnamed tags created while searching for character patterns are simply pattern
locators — they are ignored by many operators and functions, and are automati-
cally removed from the page when not required any more (in some sense they are
“invisible”). Also, when a page is converted back to string format, the unnamed
tags are removed. It is also important to know that unnamed tags are always
inserted. Thus, searching for the same pattern twice will cause two nested and
unnamed pieces to be inserted into the page. Another way of saying this is that tags
are never shared by more than one piece.

 

Pattern groups. The Pat function also supports Perl5 regular expression groups.
Groups, as indicated with parenthesis in Perl5 regular expressions, identify constit-
uent parts of the pattern to be matched. For example, a regular expression matching
dates might have groups related to the day, month and year of the date. For each
pattern matched in the page, the corresponding piece object of that pattern is attrib-
uted with fields numbered from 1 onwards that contain each of the groups occur-
ring from left to right in the pattern. A field named 0 is also added to the piece
which contains the complete matched pattern. For example, the following code
fragment recognizes dates of the form “day-month-year”:

FIGURE 3. Results of Searching for “WebL”

The WebL<> </> programming language. 



The Markup Algebra

72 WebL - A Programming Language for the Web

Pat(P, ‘(\d\d)-(\w*)-(\d*)‘)

The date pattern contains three groups, one for the two-digit day, one for a word
representing the month, and one for the digits of the year. Given the occurrence of
the string “20-Jan-1998” in a page, the corresponding piece object would look as
follows:

[. 
0 = “20-Jan-1998”,
1 = “20”,
2 = “Jan”,
3 = “1998”

.]

See page 182 for more details on the syntax of Perl5 regular expressions.

Once a piece set has been created with the Elem or Pat functions, we can apply
WebL operators and functions to the result to perform further computation. For
example, by indexing into a piece set with the indexing [] operator, we can extract
the nth element of the piece set. 



WebL - A Programming Language for the Web 73

Searching Functions

PCData search

The PCData function returns a piece set of all text segments that are contained in a
page or piece. The name PCData is derived from the term “parsed character data”,
which denotes the text segments on a page, i.e. what is left over when all markup
tags are removed from a page. The PCData function is thus complementary to the
Elem function, and somewhat related to the Pat function. 

As an example, the following program fetches a page and prints out all the text seg-
ments occuring on the page (as delimited by markup tags):

var P = GetURL(“http://www.nowhere.com”);
every t in PCData(P) do

PrintLn(Text(t))
end

(The Text function used above will be introduced a little later; it “prints” out the
textual content of a piece.) Running this program will typically print a lot of white
space; this is because the PCData function regards the empty regions between tags,
for example, the area between br and br in the markup 

some text<br>  <br>some text

as a distinct text segments. The following program shows how to get rid of these
empty regions:

import Str;

var P = GetURL(“http://www.nowhere.com”);
every t in PCData(P) do

var txt = Text(t);
if Str_Trim(txt) != ““ then

PrintLn(txt)
end

end

Note that the PCData function inserts new unnamed tags just in front of and just
after each text segment to keep track of their location. This means that for the
markup above, the piece identifying the empty region consists of an unnamed begin
tag just after the first br, and an unnamed end tag just before the the second br.



The Markup Algebra

74 WebL - A Programming Language for the Web

Sequence search

HTML generated on-the-fly by web servers often contains highly stylized markup
patterns without hierarchical structure. The markup might be a linear sequence of
elements following each other. For example, we might expect an H1 element, fol-
lowed by a sequence of characters, followed by a BR element. We will be using this
as our example in the following discussion.

Given a page and a string describing such a sequence (called a sequence pattern),
the Seq function will return a piece set with all the occurrences of the sequence in
the page. That is, each piece refers to an unnamed tag just before and after the first
and last element of the sequence.

A sequence pattern is a list of element names separated by space characters. The
intention is to match exactly that sequence of elements on the same element nesting
level. It is important to note that sequence patterns do not match nested elements.
For example, in our example, whether the H1 element contains other elements is
irrelevant.

To match sequences of characters, we use the # symbol. The # symbol will match
the longest sequence of characters or unnamed tags at that position in the page.
(Unnamed tags are ignored.)

The following will match all the H1, text, BR sequences in our example:

Seq(P, “h1 # br”)

The H1, text, and BR pieces matched in each of the sequences are accessible by
indexing the returned pieces (one for each sequence in the page) with integers from
0 onwards. For example, the following code fragment prints details of the matched
sequences:

var S = Seq(P, “h1 # br”);
every p in S do

PrintLn(“Heading=”, p[0]);
PrintLn(“Text=”, p[1])

end



WebL - A Programming Language for the Web 75

Searching Functions

Paragraph search

Paragraph search is one of the more complicated WebL page searching techniques;
it is rather seldom used, but still performs a useful function that is sometimes
required. The purpose of this searching technique is to break up a page or piece into
logical paragraphs. Paragraphs, in the WebL world, are longer regions of a page
that logically belong together. Paragraphs in WebL should not be confused with
HTML paragraphs (marked up with <p> ... </p> elements). Example paragraphs
in WebL might be sequences of markup each terminated with a br tag, or the
regions between a set of images. WebL allows the programmer to define his or own
meaning of the term paragraph.

To allow the WebL programmer to define an own notion of paragraph, we intro-
duce the notion of a paragraph terminator. A paragraph terminator is a tag which
denotes the end of a paragraph. For example, the br tag might be denoted as a para-
graph terminator. It is important to note that identifying a non-empty HTML ele-
ment such as font as a terminator, signifies that both the begin tag <font> and end
tag </font> are to regarded as paragraph terminators. Typically sets of terminators
are used to break a page into paragraphs. For example, we can specify that all br
and p tags are regarded as paragraph terminators, or that all tags except i, b, font,
and tt are regarded as paragraph terminators.

Breaking a page into paragraphs with a specific set of paragraph terminators then
proceeds as follows:

• Identify all the paragraph terminators on the page.

• Build a result piece set of paragraphs, namely all the regions that appear 
between successive terminators on the page (bounding terminator tags 
excluded). This involves the insertion of unnamed tags as placeholders.

• Remove from the result piece set all those pieces p that consist of white space 
only, i.e. applying Markup(p)  returns a string containing only ‘ ‘, \n, \r, \t, and 
character 160 (character code of “&nbsp;”).

The paragraph search function Para expects a piece or page as first argument, and a
specification of the paragraph terminators as the second argument. The function
returns the pieceset of paragraphs. The paragraph terminator specification is in the
form or a string of tag names, delimited by white space. For example:

var p = Para(page, “br p table li”)



The Markup Algebra

76 WebL - A Programming Language for the Web

indicates the br, p, table, and li elements should be regarded as paragraph termina-
tors.

Sometimes it is more convenient to specify the tags that should not be regarded as
paragraph terminators. This is done by making the first element name in the para-
graph terminator specification a “-”:

var p = Para(page, “- font a b i tt img”)

This indicates that all tags except for font, a, b, i, tt, and img should be regarded as
paragraph terminators. 

The last example illustrates a very useful application of the Para function. HTML
distinguishes between inline elements and block elements. Block elements typically
start and end on a fresh line in the displayed web page. Inline elements flow in the
text stream and do not typically start or end a fresh line. Sometimes it is necessary
to extract the blocks of inline elements, that make up the paragraphs of a Web page.
As the number of inline HTML 4.0 elements are relatively small, we can accom-
plish this with the following WebL statement:

Para(page, “- tt i b u s strike big small em string 
 dfn code samp kbd var cite acronym a img applet 
 object font basefont script map q sub sup span 
 bdo iframe input select textarea label button”)

In a similar vein, the Para function can also play a role when extracting text from a
Web page. This addresses a problem of the Text function when retrieving the text of
a page. For example, applying the Text function to the following page

<li>word A</li><li>word B</li>

results in the text string “word Aword B”, where two words unexpectedly flow
together. To insert an extra space at the word boundary is dependent on whether a
breaking tag is present or not. The problem can be solved with a script of the fol-
lowing form:



WebL - A Programming Language for the Web 77

Searching Functions

var P = Para(page, 
“- tt i b u s strike big small em string 
dfn code samp kbd var cite acronym a img applet 
object font basefont script map q sub sup span 
bdo iframe input select textarea label button”);

var R = ““;
every p in P do 

R = R + Text(p) + “ “;
end

In conclusion, note that 

Para(page, “-”)

is nearly equivalent to 

PCData(page)

except for the fact that pieces with no content are filtered out.



The Markup Algebra

78 WebL - A Programming Language for the Web

Filtering Pieces

Even though the piece searching functions introduced so far already provide power-
ful ways of extracting pieces from a web page, it might still not be enough. Suppose
it is necessary to restrict the contents of a piece set to those elements whose
attributes match some criteria. For example, we might be interested in all HTML
anchors that point to a specific site. Exactly for this purpose the builtin Select func-
tion allows you to filter the contents of a piece set according to a selection function.
(The Select function also supports filtering of sets and lists in a similar manner.).
The following code fragment illustrates how the select function might be used in
this case:

import Str;

var A = Select(
Elem(P, “a”), 
fun(a) Str_StartsWith(a, “http://site.com”) end

)

Note how the selection function is passed as the second argument to Select. The
Select function iterates over the elements of its first argument, repeatedly invoking
the selection function to determine if that element should be included in the result
piece set. The selection function must have a single formal argument and must
return a boolean value that indicates whether its argument should be included in the
result piece set or not. You are free to specify any selection criteria as long is the
result of the function is of type boolean. 



WebL - A Programming Language for the Web 79

Searching Functions

TABLE 17. Piece Set Searching Functions

Function Description

Elem(p: page): pieceset Returns all the elements in a page.

Elem(p: page, name: string): 
pieceset

Returns all the elements in page p 
with a specific name.

Elem(q: piece): pieceset Returns all the elements that are 
contained (nested) in piece q.

Elem(q: piece, name: string): 
pieceset

Returns all the elements with a spe-
cific name contained in piece q.

Para(p: page, paraspec: string): 
pieceset

Extracts the paragraphs in p accord-
ing to the paragraph terminator spec-
ification paraspec.

Para(p: piece, paraspec: string): 
pieceset

Extracts the paragraphs in p accord-
ing to the paragraph terminator spec-
ification paraspec.

Pat(p: page, regexp: string): pieceset Returns all the occurrences of a reg-
ular expression pattern in page p.

Pat(q: piece, regexp: string): 
pieceset

Returns all the occurrences of a reg-
ular expression pattern located 
inside the piece q.

PCData(p: page): pieceset Returns the “parsed character data” 
of the page. This corresponds to the 
individual seqences of text on the 
page, as delimited by markup tags.

PCData(p: piece): pieceset Returns the “parsed character data” 
of the piece. This corresponds to the 
individual seqences of text inside the 
piece, as delimited by markup tags.

Seq(p: page, pattern: string): 
pieceset

Matches all the occurrences of a 
sequence of elements identified by 
pattern. See “PCData search” on 
page 73.

Seq(p: piece, pattern: string): 
pieceset

Matches all the occurrences of a 
sequence of elements identified by 
pattern inside the piece p. See 
“PCData search” on page 73.



The Markup Algebra

80 WebL - A Programming Language for the Web

Miscellaneous Functions

The markup algebra includes several miscellaneous functions for converting
between different value types, for example turning a string into a page and back,
accessing the begin and end tags of a piece (See Table 18). To give a feeling for
how these functions are used, we first define a new page containing a heading and
2-by-2 table:

var P = NewPage(“<html><body>
<h1>Test Page</h1>
<table>

<tr>
<td align=center>A</td><td>100</td>

</tr>
<tr>

<td align=center>B</td><td>230</td>
</tr>

</table>
</body></html>”, “text/html”);

Note that the second argument to NewPage defines the parser to be used to parse
the string into a page. For the definition above, the following WebL expressions
evaluate in the following manner:

Markup(P) // Returns “<html><body> ...
// ... </html>” as above.

var H = Elem(P, “h1”)[0] // Returns the first H1.
Markup(H) // Returns “<h1>Test Page</h1>.”

Text(P) // Returns “Test Page A 100 B 230”
// (including white space).

Text(H) // Returns “Test Page”.

Name(H) // Returns “h1”.

var T = Elem(P, “td”) // Returns all the TD elements.
Markup(T[0]) // Returns

// “<td align=”center”>A</td>”.
Markup(T[1]) // Returns “<td>100</td>”.
Text(T[0]) // Returns “A”.
Text(T[1]) // Returns “100”.
Name(T[0]) // Returns “td”.



WebL - A Programming Language for the Web 81

Miscellaneous Functions

T[0].align // Returns “center”.

var x = BeginTag(H), y = EndTag(H);

Page(H) == P // Returns true.
Page(x) == P // Returns true.
Page(y) == P // Returns true

The Pretty function is similar to the Markup function except that it pretty-prints the
markup by indenting elements according to their nesting level. This is useful to
study the structure of badly formatted HTML and XML pages. Note that pretty-
printing a page involves a reformatting of white spaces and new lines, so the result-
ing string might differ dramatically from the original page source (sometimes

enough to break scripts that worked correctly on the “ugly” page)1.



The Markup Algebra

82 WebL - A Programming Language for the Web

1. WebL tries to ensure that the pretty-printed page still renders in the browser in the same 
manner as the original page by using some limited inbuilt knowledge about markup. For 
example, HTML preformatted elements (PRE) are not changed.

TABLE 18. Miscellaneous Functions

Function Description

BeginTag(q: piece): tag Returns the begin tag of a piece.

EndTag(q: piece): tag Returns the end tag of a piece.

ExpandCharEntities(p: page, 
s: string): string

Expands the character entities (eg. 
&lt;,  &amp;) in s to their Unicode 
character equivalents. The DTD of 
page p is used for the lookups. 

ExpandCharEntities(s: string): string Expands the character entities (eg. 
&lt;, &amp;) in s to their Unicode 
character equivalents. The HTML 
4.0  DTD is used for the lookups. 

Markup(p: page): string Turns a page object back into a 
string.

Markup(q: piece): string Turns a piece object back into a 
string.

Name(q: piece): string Returns the name of a piece, or the 
empty string in the case of q being 
unnamed.

NewPage(s: string, mimetype: 
string): page

Parses the string s with the mime-
type indicated markup parser and 
returns a page object.

NewPiece(s: string, 
mimetype: string): piece

Equivalent to Content(NewPage(s, 
mimetype)).

NewPieceSet(s: set): pieceset Converts a set of pieces into a piece 
set. Thows an EmptySet exception 
should s be empty.

NewPieceSet(p: page): pieceset Returns an empty pieceset associ-
ated with with page p.

Page(q: piece): page Returns the page a piece belongs to.

Page(t: tag): page Returns the page a tag belongs to.

Pretty(p: page): string Returns a pretty-printed version of 
the page.



WebL - A Programming Language for the Web 83

Piece Comparison

Piece Comparison

Pieces can be compared for equality, containment, position relative to each other,
and so on. These tests play a very important role in the piece set operators intro-
duced in the following section.

Without regard to unnamed pieces, the comparison of (named) pieces is quite
straightforward — for example, piece x is equal to piece y if the following is true:

BeginTag(x) == BeginTag(y) and EndTag(x) == EndTag(y)

Unfortunately, the situation is more complicated when unnamed pieces are
involved. (So far we have only seen unnamed pieces being created as a side-effect
of the Pat function — following sections will illustrate that many other functions
have a similar effect.) The problem is that two different pieces (according to our
definition above) might have equivalent markup, which confuses the difference
between the two pieces. This is a side effect of an unnamed tag becoming “invisi-
ble” when the piece is converted to markup. 

For example, in Figure 4, piece B is nested inside piece A. Applying the Markup
function to A and B strips away the unnamed pieces to return the string “WebL”
(without any markup). Because of our handling of unnamed pieces as invisible enti-
ties (the place holders for patterns), piece A and B should be equal to each other
from the programmer’s point of view, but is not according to our earlier definition.

Pretty(q: piece): string Returns a pretty-printed version of a 
piece.

Size(p: pieceset):int Returns the number of pieces 
belonging to p.

Text(p: page): string Returns the text (sans tags) of a 
page.

Text(q: piece): string Returns the text (sans tags) of a 
piece. 

TABLE 18. Miscellaneous Functions

Function Description



The Markup Algebra

84 WebL - A Programming Language for the Web

The first intuition is that WebL should merge neigbouring unnamed tags, so that the
equality problem goes away. Unfortunately, experience has shown that merging of
unnamed tags is a bad idea. Without going into too much detail, merging of
unnamed tags complicates the programmer’s mental understanding of the current
“shape” of the page, as merging might happen at unexpected situations. This often
causes problems when a page is subsequently modified. To give a flavor of the
problems that might occur, suppose piece A of the figure was created by thread A,
and piece B of the figure was created by an independent thread B. Now let’s sup-
pose thread A inserts a character ‘x’ directly after the begin tag of A. In the case of
separate (i.e. non-merged) unnamed tags, the resulting situation is easy to visualize.
However, with merged unnamed tags, thread A will insert the character inside the
piece B created by thread B, which might be unexpected by thread B. These type of
problems caused us to reject unnamed tag merging.

Instead, to ensure that A and B are equal, WebL introduces the concept of posi-
tions. The position of a tag is a numerical rank of the tag in a page. We number tags
from 0 onwards in the order of occurrence in the page, all the while ensuring that

sequences of unnamed tags have the same number1. Figure 5 shows the position
numbering for a more complicated page consisting of named and unnamed tags.
Comparisons of pieces is then made according to the positions of the begin and end
tags of the pieces. For example, our definition of piece equality of x and y

becomes2:

FIGURE 4. Nested Unnamed Pieces

1. Readers concerned about inefficient renumbering of tag positions after inserting or delet-
ing tags should be aware that behind the scene, WebL uses an efficient encoding that pre-
vents renumbering positions for large parts of the page after a modification is performed.

The WebL<> </> programming language. <> </>

A

B



WebL - A Programming Language for the Web 85

Piece Comparison

pos(BeginTag(x)) == pos(BeginTag(y)) and
pos(EndTag(x)) == pos(EndTag(y))

Using the notion of positions, we can thus define equality, containment, etc. as in
Table 19. In this table we use the notation beg to indicate the position of the begin
tag of a piece, and end to indicate the position of the end tag of a piece. Note that
the piece comparison operators equal, inside, after, etc. are not defined in the WebL
language itself — the following section will introduce new language operators
based on these definitions.

2. We introduce here a fictitious WebL function called pos that returns the numerical posi-
tion of a tag value.

FIGURE 5. Example of Position Numbering

abc def<> </> ghij<> </> <i> </i></b> klmn

0 1 1 2 2 3 4



The Markup Algebra

86 WebL - A Programming Language for the Web

TABLE 19. Comparing Pieces x and y

Relationship between x 
and y Definition

x equal y beg(x) = beg(y) ∧ end(x) = end(y)

x inside y beg(y) ≤ beg(x) ∧ end(x) ≤ end(y) ∧ 
¬(beg(x) = beg(y) ∧ end(x) = end(y))

x contain y beg(x) ≤ beg(y) ∧ end(y) ≤ end(x) ∧ 
¬(beg(x) = beg(y) ∧ end(x) = end(y))

x after y end(y) < beg(x)

x before y end(x) < beg(y)

x overlap y beg(x) ≤ end(y) ∧ beg(y) ≤ end(x) ∧ 
¬(beg(x) = beg(y) ∧ end(x) = end(y))



WebL - A Programming Language for the Web 87

Piece Set Operators and Functions

Piece Set Operators and Functions

All the piece set operators are summarized in Table 20 on page 101. Note that all
piece set operators accept both pieces and piece sets as operands. Piece operands
are converted automatically to a piece set with the operand as the only element.
Most of the operators have a formal definition as defined in Table 22 on page 105.
The remainder of this section attempts to give an intuitive explanation of the opera-
tors with the help of examples. In our examples X will denote a page, P and Q will
denote piece sets, and p and q will denote elements of P and Q respectively.



The Markup Algebra

88 WebL - A Programming Language for the Web

I.  Basic Operators

Basic piece set manipulation includes the set union, intersection, and exclusion
operators.

Set Union (P + Q). The set union operator + merges two piece sets into a single
piece set, and eliminates duplicate pieces from the result. Example:

// Retrieve level 1 and two headings from a page
Elem(X, “h1”) + Elem(X, “h2”)

Set Exclusion (P - Q). The set exclusion operator "-" removes all pieces from the
left operand that are elements of the right operand. Example:

// Retrieve all level 1 headings except for those
// that contain the word “Figure”.
Elem(X, “h1”) - 
(Elem(X, “h1”) contain Pat(X, “Figure”))

Set Intersection (P * Q). The set intersection * computes the intersection between
its operands. Example:

// Retrieve all the occurrences of the word “WebL”
// written in bold and in italic.
(Pat(X, “WebL”) inside Elem(X, “b”)) * 
(Pat(X, “WebL”) inside Elem(X, “i”))



WebL - A Programming Language for the Web 89

Piece Set Operators and Functions

II.  Positional Operators

Positional operators express relationships between pieces according to their order
in a page. Most positional operators have a negated or inverted version that is indi-
cated by an operator symbol written with an exclamation point (!). 

Indexing P[i]. The index operator [] extracts the nth element of a piece set P.
Pieces are numbered from 0 to Size(P) - 1. Examples:

// Extract the 4’th table from a page.
Elem(X, “table”) [4]

// Extract the 2’nd row of the 3’rd table.
Elem(Elem(X, “table”)[3], “tr”)[2]

// Extract the 2’nd row of the table containing the 
// word WebL
var t = Elem(X, “table”) contain Pat(X, “Webl”);
(Elem(X, “tr”) inside t)[2]

P before/!before Q. The before operator returns all the elements of P that are
before (or not before) any element of Q. Note that this is equivalent to all the ele-
ments of P that are before (or not before) the last element of Q. Consequently, we
often need to index into Q to reduce it to a single piece. Examples:

// Retrieve all the H2’s before the appendix
// (assuming only a single appendix is present).
Elem(X, “h2”) before
(Elem(X, “h1”) contain Pat(X, “Appendix”))

// Retrieve all the headings from Chapter 4 onwards.
Elem(X, “h1”) !before
(Elem(X, “h1”) contain Pat(X, “Chapter 4”))

// Retrieve all the italic elements except the last.
Elem(X, “i”) before Elem(X, “i”)

// Retrieve the last italic element.
Elem(X, “i”) !before Elem(X, “i”)



The Markup Algebra

90 WebL - A Programming Language for the Web

P directlybefore/!directlybefore Q. The directlybefore operator returns the pieces
of P that are directly before (or not directly before) any element of Q. A piece p of
P is directly before a piece q of Q if no other piece in P appears between p and q.
For example, given page X contains (excluding the line numbers on the left):

1 <h1>A</h1>
2     <i>a</i>
3     <i>b</i>
4     <b>c</b>
5 <h1>B</h1>
6     <i>d</i>
7     <i>e</i>
8 <h1>C</h1>
9     <i>f</i>
10     <i>g</i>
11 <h1>D</h1>
12     <i>h</i>
13     <i>i</i>
14 <h1>E</h1>

we can compute the following:

// Retrieve the italics directly before H1’s, 
// i.e. lines 3, 7, 10, 13.
Elem(X, “i”) directlybefore Elem(X, “h1”)

// Retrieve the italics not directly before H1’s,
// i.e. lines 2, 6, 9, 12.
Elem(X, “i”) !directlybefore Elem(X, “h1”)

// Retrieve all elements directly before H1’s,
// i.e. lines 4, 7, 10, 13.
Elem(X) directlybefore Elem(X, “h1”)

// Retrieve the second element directly before H1’s,
// i.e. lines 3, 6, 9, 12.
Elem(X) directlybefore 
(Elem(X) directlybefore Elem(X, “h1”))



WebL - A Programming Language for the Web 91

Piece Set Operators and Functions

P after/!after Q. The after operator returns all the elements of P that are after (or
not after) any element of Q. Note that this is equivalent to all the elements of P that
are after (or not after) the first element of Q. Consequently, we often need to index
into Q to reduce it to a single piece. Examples:

// Retrieve all the H2’s after the appendix
// (assuming only a single appendix is present).
Elem(X, “h2”) after 
(Elem(X, “h1”) contain Pat(X, “Appendix”))

// Retrieve all the headings before Chapter 4 
// inclusive.
Elem(X, “h1”) !after
(Elem(X, “h1”) contain Pat(X, “Chapter 4”))

// Retrieve all the italic elements except the last.
Elem(X, “i”) before Elem(X, “i”)

// Retrieve the last italic element.
Elem(X, “i”) !before Elem(X, “i”)

P directlyafter/!directlyafter Q. The directlyafter operator returns the pieces of P
that are directly after (or not directly after) any element of Q. A piece p of P is
directly after a piece q of Q if no other piece in P appears between p and q. Exam-
ples (based on the previous page object X):

// Retrieve the italics directly after H1’s, 
// i.e. lines 2, 6, 9, 12.
Elem(X, “i”) directlyafter Elem(X, “h1”)

// Retrieve the italics not directly after H1’s,
// i.e. lines 3, 4, 7, 10, 12.
Elem(X, “i”) !directlyafter Elem(X, “h1”)

// Retrieve all elements directly after H1’s,
// i.e. lines 2, 6, 9, 12.
Elem(X) directlyafter Elem(X, “h1”)

// Retrieve the second element directly after H1’s,
// i.e. lines 3, 7, 10, 13.
Elem(X) directlyafter 
(Elem(X) directlyafter Elem(X, “h1”))



The Markup Algebra

92 WebL - A Programming Language for the Web

P overlap/!overlap Q. The overlap operator returns the pieces of P that overlap (or
do not overlap) any element of Q. Example:

// Find all the occurrences of words that are
// italic or partially consists of italic text.
Pat(X, ‘\w+‘) overlap Elem(X, “i”)



WebL - A Programming Language for the Web 93

Piece Set Operators and Functions

III.  Hierarchical Operators

The hierarchical operators express relationships between pieces involving their
hierarchical nesting in the element parse tree. 

P inside/!inside Q. The inside operator returns the pieces of P that are nested
inside (or not nested inside) any piece of Q. Examples:

// Retrieve all the rows in the third table.
Elem(X, “tr”) inside Elem(X, “table”)[3]

// Retrieve all the italic elements not in a table.
Elem(X, “i”) !inside Elem(X, “table”)

P contain/!contain Q. The contain operator returns the pieces of P that contain (or
do not contain) any piece of Q. Examples:

// Retrieve all the level 2 headings with 
// italic characters.
Elem(X, “h2”) contain Elem(X, “i”)

// Retrieve all the tables that mention “program”.
Elem(X, “table”) contain Pat(X, “program”)

P directlyinside/!directlyinside Q. The directlyinside operator returns all the ele-
ments of P that are inside (or not inside) any element of Q, and in addition are not
inside another element of P. Intuitively this retrieves the “outermost” element of all
nested elements. Given a page of the following form:

1 <UL>
2 <LI>First Section</LI>
3 <LI>Second Section</LI>
4 <LI>Third Section
5 <UL>
6 <LI>First Subsection</LI>
7 <LI>Second Subsection</LI>
8 </UL>
9 </LI>
10 <LI>Fourth Section</LI>
11 </UL>

we can calculate the following:



The Markup Algebra

94 WebL - A Programming Language for the Web

// All the list items in lists,
// i.e. lines 2, 3, 4, 6, 7, 9.
Elem(X, “li”) inside Elem(X, “ul”)

// All the list items in the first list,
// i.e. the elements on lines 2, 3, 4-9, 6, 7, 10.
Elem(X, “li”) inside Elem(X, “ul”)[0]

// All the items directly in the first list,
// i.e. lines 2, 3, 4-9, 10.
Elem(X, “li”) directlyinside Elem(X, “ul”)[0]

// Outermost items in the first list,
// i.e. lines 2, 3, 4-9, 10.
var x = Elem(X, “li”) inside Elem(X, “ul”)[0];
x !inside x

P directlycontain/!directlycontain Q. The directlycontain operator returns all the
elements of P that contain (or do not contain) any element of Q, and in addition do
not contain another element of P. Intuitively this retrieves the “innermost” element
of all nested elements. Given the page defined previously, we can calculate:

// The lists that contain the first subsection,
// i.e. elements on lines 1-11, 5-8.
Elem(X, “ul”) contain Pat(X, “First Subsection”)

// The list that directly contains the first subsection
// i.e. element in lines 5-8.
Elem(X, “ul”) directlycontain 
Pat(X, “First Subsection”)

// Innermost list that containsthe first subsection,
// i.e. element in lines 5-8.
var x = Elem(X, “ul”) contain 

Pat(X, “First Subsection”);
x !contain x



WebL - A Programming Language for the Web 95

Piece Set Operators and Functions

IV.  Regional Operators

The regional operators construct new pieces to identify parts of a page. (Many other
operators return pieces that existed only before the operator was applied.)

P without Q. The without operator returns the pieces of P where parts of Q that
overlap with a piece in P are “cut” away. This might involve creating several new
pieces from a piece of P and inserting new unnamed tags as necessary. Figure 6
gives an example where the word WebL is removed from a sentence. Note how
unnamed tags are inserted to the left and right of piece A. Examples:

// “Cut” up the second table into its 
// constituent lines.
Elem(X, “table”)[1] without Pat(X, ‘\n‘)

// Remove all the bold text from
// the first paragraph.
Elem(X, “p”)[0] without Elem(X, “b”)



The Markup Algebra

96 WebL - A Programming Language for the Web

FIGURE 6. Operation of P without Q

... WebL<> </> programming language. <> </>

A

B

...The

... WebL<> </> programming language. <> </> ...The </></></><>

B

A

DC

{A} without {B}
 =
{C, D}



WebL - A Programming Language for the Web 97

Piece Set Operators and Functions

P intersect Q. The intersect operator intersects each element of P with all the over-
lapping pieces of Q. The resulting piece set contains all the parts of P that are in
common with pieces of Q. As parts of pieces of P are cut away by the intersection,
new pieces need to be created, and thus new unnamed tags are inserted into the
page. Another way of thinking about the operator is that it calculates the overlap
between pieces. Figure 7 shows how this is done. 

Example:

// The parts of a page that is both italic and bold.
Elem(X, “i”) intersect Elem(X, “b”)

FIGURE 7. Operation of P intersect Q

... defg<> </> hijkl<> </>

A B

...abc

C

{A} intersect {B}
 =
{C}

... defg<> </> hijkl<> </>

A B

...abc <> </>



The Markup Algebra

98 WebL - A Programming Language for the Web

V.  Miscellaneous Functions

Children(p). The Children function returns all the children pieces of piece p. The
children of a piece include all the elements directly contained in the piece and all
the text segments directly contained in the piece. Markup elements that are only
parially inside p because of overlap, are not regarded as children of p. For example,
the children of the following TD element consisting of nested I and B elements:

<td>abc<i><b>def</b></i>ghi<b>jkl</b>mno</td>

are the pieces represented by:

"abc", "<i><b>def</b></i>",
"ghi", "<b>jkl</b>", "mno"

Examples:

// Everything inside the first table.
Children(Elem(X, "table")[0])

// Program to walk recursively through a page.
var walk = fun(x)

if Name(x) != "" then // Named piece
every p in Children(x) do

walk(p)
end

else
PrintLn(Text(x), " parent=", Name(Parent(x)))

end
end;
var P = NewPage("<td>abc<i><b>def</b></i>

ghi<b>jkl</b>mno</td>", "text/xml");
walk(Elem(X, "td")[0])



WebL - A Programming Language for the Web 99

Piece Set Operators and Functions

Parent(p). The Parent function returns the direct parent (enclosing) element of
piece p. It is implemented by looking at named tags t from right to left starting just
before the left tag of p, identifying the piece q that tag t belongs to, and determining
if the corresponding end tag of q follows the end tag of p. Example:

// Locate the Parent element of the second table.
Parent(Elem(P, "table")[1])

Flatten(P). The Flatten function returns the union of all elements of P. Intuitively
two overlapping pieces p and q of P are replaced repeatedly by a single “joined”
piece that covers the union of the regions p and q covered. This also has the effect
of removing nested elements of P. New unnamed pieces are inserted into the page
to create these new pieces. Figure 8 shows how two overlapping pieces are flat-
tened.

FIGURE 8. Flattening a Piece Set

... defg<> </> hijkl<> </>

A B

...abc

C

Flatten({A, B})
 =
{C}

... defg<> </> hijkl<> </>

A B

...abc<> </>



The Markup Algebra

100 WebL - A Programming Language for the Web

Content(p). The Content function returns the content of piece p. The content of a
piece is the part of the page between the begin and end tag of p (exclusive). The
Content function can also be applied to a page object, in which case a piece is
returned that starts at the beginning of the page and ends at the end of the page. In
both cases, new unnamed tags are inserted into the page (Figure 9). For example,
given a page:

<td>abc<i>def</i></td>

we can calculate the following:

// Content of the TD element,
// i.e. “abc<i>def</i>”.
Content(Elem(P, “td”)[0])

// Content of the whole page,
// i.e. “<td>abc<i>def</i></td>”.
Content(P)

FIGURE 9. Application of the Content Function

... defg<> </> hijkl<> </>

A B

...abc

C

Content({A})
 =
{C}

... defg<> </> hijkl<> </>

A B

...abc<> </>



WebL - A Programming Language for the Web 101

Piece Set Operators and Functions

TABLE 20. Piece and Piece Set Operators

Function Description

+(q1: piece, q2: piece): pieceset
+(q: piece, s: pieceset): pieceset
+(s: pieceset, q: piece): pieceset
+(s1: pieceset, s2: pieceset): pieceset

Piece set union.

-(q1: piece, q2: piece): pieceset
-(q: piece, s: pieceset): pieceset
-(s: pieceset, q: piece): pieceset
-(s1: pieceset, s2: pieceset): pieceset

Piece set difference.

*(q1: piece, q2: piece): pieceset
*(q: piece, s: pieceset): pieceset
*(s: pieceset, q: piece): pieceset
*(s1: pieceset, s2: pieceset): pieceset

Piece set intersection.

[](s: pieceset, i: int): piece Indexing into a piece set. Pieces 
are numbered 0 to Size - 1.

inside(p: piece, q: piece): pieceset
inside(p: pieceset, q: piece): pieceset
inside(p: piece, q: pieceset): pieceset
inside(p: pieceset, q: pieceset): pieceset

All the elements of p that are 
located inside any element of q.

!inside(p: piece, q: piece): pieceset
!inside(p: pieceset, q: piece): pieceset
!inside(p: piece, q: pieceset): pieceset
!inside(p: pieceset, q: pieceset): pieceset

All the elements of p that are not 
located inside any element of q.

directlyinside(p: piece, q: piece): pieceset
directlyinside(p: pieceset, q: piece): pieceset
directlyinside(p: piece, q: pieceset): pieceset
directlyinside(p: pieceset, q: pieceset): pieceset

All the elements of p that are 
directly inside any element of q.

!directlyinside(p: piece, q: piece): pieceset
!directlyinside(p: pieceset, q: piece): pieceset
!directlyinside(p: piece, q: pieceset): pieceset
!directlyinside(p: pieceset, p: pieceset): pieceset

All the elements of p that are not 
directly inside any element of q.

contain(p: piece, q: piece): pieceset
contain(p: pieceset, q: piece): pieceset
contain(p: piece, q: pieceset): pieceset
contain(p: pieceset, q: pieceset): pieceset

All the elements of p that contain 
any element of q.

!contain(p: piece, q: piece): pieceset
!contain(p: pieceset, q: piece): pieceset
!contain(p: piece, q: pieceset): pieceset
!contain(p: pieceset, q: pieceset): pieceset

All the elements of p that do not 
contain any element of q.



The Markup Algebra

102 WebL - A Programming Language for the Web

directlycontain(p: piece, q: piece): pieceset
directlycontain(p: pieceset, q: piece): pieceset
directlycontain(p: piece, p: pieceset): pieceset
directlycontain(p: pieceset, q: pieceset): 
pieceset

All the elements of p that directly 
contain any element of q.

!directlycontain(p: piece, q: piece): pieceset
!directlycontain(p: pieceset, q: piece): pieceset
!directlycontain(p: piece, q: pieceset): pieceset
!directlycontain(p: pieceset, q: pieceset): 
pieceset

All the elements of p that do not 
directly contain any element of q.

after(p: piece, q: piece): pieceset
after(p: pieceset, q: piece): pieceset
after(p: piece, q: pieceset): pieceset
after(p: pieceset, q: pieceset): pieceset

All the elements of p that are after 
any element of q.

!after(p: piece, q: piece): pieceset
!after(p: pieceset, q: piece): pieceset
!after(p: piece, q: pieceset): pieceset
!after(p: pieceset, q: pieceset): pieceset

All the elements of p that are not 
after any element of q.

directlyafter(p: piece, q: piece): pieceset
directlyafter(p: pieceset, q: piece): pieceset
directlyafter(p: piece, q: pieceset): pieceset
directlyafter(p: pieceset, q: pieceset): pieceset

All the elements of p that follow 
directly after any element of q.

!directlyafter(p: piece, q: piece): pieceset
!directlyafter(p: pieceset, q: piece): pieceset
!directlyafter(p: piece, q: pieceset): pieceset
!directlyafter(p: pieceset, q: pieceset): pieceset

All the elements of p that do not 
follow directly after any element 
of q.

before(p: piece, q: piece): pieceset
before(p: pieceset, q: piece): pieceset
before(p: piece, q: pieceset): pieceset
before(p: pieceset, q: pieceset): pieceset

All the elements of p that precede 
any element of q.

!before(p: piece, q: piece): pieceset
!before(p: pieceset, q: piece): pieceset
!before(p: piece, q: pieceset): pieceset
!before(p: pieceset, q: pieceset): pieceset

All the elements of p that do not 
precede any element of q.

directlybefore(p: piece, q: piece): pieceset
directlybefore(p: pieceset, q: piece): pieceset
directlybefore(p: piece, q: pieceset): pieceset
directlybefore(p: pieceset, q: pieceset): pieceset

All the elements of p that are 
directly before any element of q.

TABLE 20. Piece and Piece Set Operators

Function Description



WebL - A Programming Language for the Web 103

Piece Set Operators and Functions

!directlybefore(p: piece, q: piece): pieceset
!directlybefore(p: pieceset, q: piece): pieceset
!directlybefore(p: piece, q: pieceset): pieceset
!directlybefore(p: pieceset, q: pieceset): 
pieceset

All the elements of p that are not 
directly before any element of q.

overlap(p: piece, q: piece): pieceset
overlap(p: pieceset, q: piece): pieceset
overlap(p: piece, q: pieceset): pieceset
overlap(p: pieceset, p: pieceset): pieceset

All the elements of p that overlap 
any element in q.

!overlap(p: piece, q: piece): pieceset
!overlap(p: pieceset, q: piece): pieceset
!overlap(p: piece, q: pieceset): pieceset
!overlap(p: pieceset, q: pieceset): pieceset

All the elements of p that do not 
overlap any element in q.

without(p: piece, q: piece): pieceset
without(p: pieceset, q: piece): pieceset
without(p: piece, q: pieceset): pieceset
without(p: pieceset, q: pieceset): pieceset

All the elements of p where over-
lap with any element of q has been 
removed.

intersect(p: piece, q: piece): pieceset
intersect(p: pieceset, q: piece): pieceset
intersect(p: piece, q: pieceset): pieceset
intersect(q: pieceset, p: pieceset): pieceset

All the elements of p that overlap 
an element in q, each of them 
repeatedly intersected with all 
overlapping elements in q.

TABLE 20. Piece and Piece Set Operators

Function Description



The Markup Algebra

104 WebL - A Programming Language for the Web

TABLE 21. Piece and Piece Set Functions

Function Description

Children(q: piece): pieceset Returns a piece set consisting of all 
the direct children elements of q in 
the markup parse tree, unioned with 
pieces representing all the text seg-
ments in q (without all the nested 
text segments).

Parent(q: piece): piece Returns the element in which q is 
nested (direct parent in the parse 
tree).

Flatten(s: pieceset): pieceset Returns a “flattened” piece set 
(without any overlappings) of all the 
parts of the page that piece set s cov-
ers.

Content(p: page): piece Returns a piece that encompasses 
the whole page p.

Content(q: piece): piece Returns a piece inside q, represent-
ing everything that is inside q 
excluding the begin tag and end tag 
of q.



WebL - A Programming Language for the Web 105

Piece Set Operators and Functions

TABLE 22. Formal Definitions of Piece Set Operators

Operator Definition

P + Q P ∪ { q ∈Q | ¬∃p p ∈ P ∧ p equal q }

P - Q { p ∈ P | ¬∃q q ∈ Q ∧ p equal q }

P * Q { p ∈ P | ∃q q ∈ Q ∧ p equal q }

P inside Q { p ∈ P | ∃q q ∈ Q ∧ p inside q }

P !inside Q { p ∈ P | ¬∃q q ∈ Q ∧ p inside q }

P directlyinside Q { p ∈ P | ∃q q ∈ Q ∧ p inside q ∧ 
(¬∃r r ∈ P ∧ r inside q ∧ p inside r) }

P !directlyinside Q { p ∈ P | ¬∃q q ∈ Q ∧ p inside q ∧ 
(¬∃r r ∈ P ∧ r inside q ∧ p inside r) }

P contain Q { p ∈ P | ∃q q ∈ Q ∧ p contain q }

P !contain Q { p ∈ P | ¬∃q q ∈ Q ∧ p contain q }

P directlycontain Q { p ∈ P | ∃q q ∈ Q ∧ p contain q ∧ 
(¬∃r r ∈ P ∧ r contain q ∧ p contain r) }

P !directlycontain Q { p ∈ P | ¬∃q q ∈ Q ∧ p contain q ∧ 
(¬∃r r ∈ P ∧ r contain q ∧ p contain r) }

P after Q { p ∈ P | ∃q q ∈ Q ∧ p after q }

P !after Q { p ∈ P | ¬∃q q ∈ Q ∧ p after q }

P directlyafter Q { p ∈ P | ∃q q ∈ Q ∧ p after q ∧ 
(¬∃r r ∈ P ∧ r after q ∧ p after r) }

P !directlyafter Q { p ∈ P | ¬∃q q ∈ Q ∧ p after q ∧ 
(¬∃r r ∈ P ∧ r after q ∧ p after r)}

P before Q { p ∈ P | ∃q q ∈ Q ∧ p before q }

P !before Q { p ∈ P | ¬∃q q ∈ Q ∧ p before q }

P directlybefore Q { p ∈ P | ∃q q ∈ Q ∧ p before q ∧ 
(¬∃r r ∈ P ∧ r before q ∧ p before r) }

P !directlybefore Q { p ∈ P | ¬∃q q ∈ Q ∧ p before q ∧ 
(¬∃r r ∈ P ∧ r before q ∧ p before r) }

P overlap Q { p ∈ P | ¬∃q q ∈ Q ∧ p overlap q }

P !overlap Q { p ∈ P | ¬∃q q ∈ Q ∧ p overlap q }



The Markup Algebra

106 WebL - A Programming Language for the Web

Page Modification

Page modification is an important part of the WebL markup algebra. As we have
seen already, the attributes of markup elements can be elegantly modified by
accessing the fields of pieces. This section will focus on how to insert pieces into a
page, delete pieces from a piece, and replace pieces of a page.

Creating Pieces

There are several ways to create new pieces (See Table 23). After a new piece has
been created, it can be inserted into a page at a specific position. We already intro-
duced the NewPage function which takes a string and a mimetype as argument, and
returns a page object. We also know that then applying the Content function to a
page returns a piece covering the whole page. In fact, the code to create a piece in
this manner:

Content(NewPage(“<html> ... </html>”, “text/html”))

occurs so often that we also use the following short-hand:

NewPiece(“<html> ... </html>”, “text/html”)

Another way of creating a new piece is to pass the begin tag and end tag of two
arbitrary pieces to the NewPiece function (Figure 10). The function returns a new
unnamed piece with new unnamed tags inserted just before and after the begin tag
and end tag respectively (to “wrap” its contents). The NewPiece function will also

wrap a piece argument in the same manner1.

The NewNamedPiece function works in a similar manner as NewPiece, except that
a new piece with the indicated name is created. Seeing that any begin and end tag
pair (not belonging to the same piece) can be passed to this function, programmers
should be aware that invalid HTML or XML can be created where elements do not
nest properly. As WebL uses a flexible internal page representation, the presence of
overlapping elements does not present any problems.

1. Technically the function does not modify the contents of a page because only unnamed 
tags are inserted into the page.



WebL - A Programming Language for the Web 107

Page Modification

Examples:

// Turn the text from the word “WebL” to the end of
// the sixth paragraph to italic.
var a = Pat(P, “WebL”)[0], b = Elem(P, “p”)[5];
NewNamedPiece(“i”, BeginTag(a), EndTag(b))

// Turn all occurrences of WWW to a hyperlink.
every x in Pat(P, “WWW”) do

var p = NewNamedPiece(“a”, x);
p.href := “http://www.w3.org”

end

FIGURE 10. Application of the NewPiece function

WebL<i> </i> programming language. 

A

The

WebL<i> </i> programming language. The </><>

A

B

NewPiece(A)
 =
B



The Markup Algebra

108 WebL - A Programming Language for the Web

Inserting Pieces

The functions InsertBefore and InsertAfter insert a piece into a page either before or
after a specified tag. Inserting a piece p involves copying the contents of the piece
and inserting the copied tags and text segments one after another at the destination
point according to the following rules:

• All the text segments contained in p are copied.

• All the named tags contained in p are copied (also includes the named tags of p 
itself). Also suppose there exists a piece q that is either inside p or overlaps with 
p. In case q is inside p, both the begin tag  and end tag of q will be copied to the 
destination. Otherwise, if q overlaps with p (and is not inside p), we will, 
according to our definition, only copy either the begin tag or end tag of q. To 
prevent this unfortunate situation with dangling pieces, the tag of q outside of p 
is also copied. In case of many dangling tags outside of p, we copy all of them, 
making sure that their relative ordering is preserved.

• Unnamed tags contained in p are not copied.

Figure 11 shows how copying piece B with an overlapping piece C after the begin
tag of A, results in the copies B’ and C’ in the page. Note that the source page on the
right top corner of the figure remains unchanged.

In case a piece set (instead of a piece) is passed to these two functions, each of the
elements of the argument will be copied in sequence to the destination insertion
point. Note that when the piece set contains nested elements, the nested elements
will be inserted twice or more times, possibly one after another in the destination
page. 

Example:

// Insert an image at the beginning of each h1 tag.
var p = NewPiece(“<img scr=a.gif>”, “text/html”);
every x in Elem(P, “h1”) do

InsertAfter(BeginTag(x), p)
end



WebL - A Programming Language for the Web 109

Page Modification

Deleting Pieces

The Delete function deletes a piece from a page. In case the function is passed a
piece set argument, each of the elements of the argument piece is deleted. 

One of the problems we face with deletion is that some program variables might
still refer to pieces that were previously deleted. Accordingly, accessing these
deleted pieces through these variables might cause some problems. To simplify the
problem, we define the following sematics for deletion of a piece q:

• All the text segments contained in piece q are physically removed from the 
page. (This is not a problem seeing that we cannot refer to text segments in the 
WebL markup algebra.)

• Unnamed tags inside q are left untouched.

• The tags of named pieces completely inside p are converted to unnamed tags. 
They still can be referred to but essentially become invisible.

• If q is named, then its tags are converted to unnamed tags.

• The tags of named pieces that overlap q (but are not inside q) are left untouched.

FIGURE 11. Copying Pieces during Inserts

... defg<b> </i> hijkl<i> </b>

B C

abc

B’

InsertAfter(BeginTag(A),B)
A

C’

abc<i>

</i><i> xyz

A

defg<b> </b> </i><i> </i> xyz



The Markup Algebra

110 WebL - A Programming Language for the Web

Figure 12 illustrates the situation when overlaps occur during deletions. Note how
piece C remains named because its end tag is located outside and to the right of B.
Of course, as we simply leave tags where they are in the page, we can imagine situ-
ations where the page fills up with unused tags after several deletions. To counter
this problem, a scrubber process is periodically invoked to remove unused tags
from a page (i.e. tags that are not accessible to the programmer as detected by the
Java garbage collector).

Examples:

// Delete all occurrences of the word “cool”.
Delete(Pat(P, “cool “))

// Remove all H1 and H2 headings.
Delete(Elem(P, “h1”) + Elem(P, “h2”))

FIGURE 12. Deleting Pieces

... defg<b> </i> hijkl<i> </b>

B C

abc

Delete(B)

... <b> </> hijkl<> </b>

B C



WebL - A Programming Language for the Web 111

Page Modification

Replacing Pieces

The Replace function deletes each piece in the first argument and inserts copies of
the pieces of the second argument at that position. The function can be coded using
Delete and InsertAfter in the following manner:

var Replace = fun(A, B)
every a in A do

Delete(a);
InsertAfter(BeginTag(a), B)

end

Note that this encoding is only possible because the Delete function does not
remove any tags from the page, and thus we can apply the BeginTag function to a
deleted tag without causing an exception.

Examples:

// Make all links bold.
links = Elem(P, “a”);
every L in links do

Replace(L, NewPiece(“<b>” + Markup(L) + “</b>”))
end

// Replace all links with the word “censored”.
Replace(Elem(P, “a”), NewPiece(“<i>censored<i>”))



The Markup Algebra

112 WebL - A Programming Language for the Web

TABLE 23. Page Modification Functions

Function Description

Delete(s: pieceset): nil
Delete(q: piece): nil

Deletes s or q from the page by 
removing all the pieces from the 
page data structure.

InsertBefore(t: tag, q: piece): nil
InsertBefore(t: tag, s: pieceset): nil

Inserts a copy of q before the tag t. 
Inserts copies of the elements of s 
before the tag t.

InsertAfter(t: tag, q: piece): nil
InsertAfter(t: tag, s: pieceset): nil

Inserts a copy of q after the tag t. 
Inserts copies of the elements of s 
after the tag t.

NewPiece(t1: tag, t2: tag): piece Returns a new unnamed piece start-
ing before t1 and ending after t2.

NewPiece(q: piece): piece Equivalent to NewPiece(Begin-
Tag(q), EndTag(q))

NewNamedPiece(name: string, t1: 
tag, t2: tag): piece

Returns a new named piece starting 
before t1 and ending after t2.

NewNamedPiece(name: string, q: 
piece): piece

Equivalent to NewNamed-
Piece(name, BeginTag(q), End-
Tag(q)).

Replace(a: pieceset, b: pieceset): nil Replaces each piece set of a with 
copies of all the elements of b.



WebL - A Programming Language for the Web 113

CHAPTER 5 Modules

WebL includes a number of standard modules for the convenient reuse of often
required functionality. The purpose of this chapter is to introduce the more com-
mon modules shipped with the WebL installation (Table 24). To use most of these
modules, a programmer must import the module and refer to the exported variables
of the module. See “Modules” on page 46.

TABLE 24. Standard WebL Modules

Module Function

Base64 Encodes and decodes base 64 strings used for user 
authentication at many web sites.

Browser Provides access to the web browser for displaying web 
pages. (Page 116)

Cookies Provides functionality to save and load the HTTP cookie 
database. (Page 117)

Farm Introduces a technique for programming and controlling 
several concurrently executing threads. (Page 119)

Files Functions to process local files and download pages to 
files. (Page 121)

Java WebL-Java integration support. (Page 124)

Servlet Java Servlet support. (Page 131)



Modules

114 WebL - A Programming Language for the Web

Str General string related functions. (Page 136)

Url Url manipulation functions. (Page 138)

WebCrawler An extensible web crawler object. (Page 141)

WebServer Implementation of a simple web server. (Page 143)

TABLE 24. Standard WebL Modules

Module Function



WebL - A Programming Language for the Web 115

Module Base64

Module Base64

Base 64 encoding of strings is typically used to “scramble” transmitted passwords
when accessing web pages that require user authentication. The typical pattern for
basic HTTP authentication is as follows:

import Base64;

var A = "Basic " + Base64_Encode("user:pw");
var P = GetURL("http://...”, 

[..], [. Authorization = A .]);

In the code above user must be set to the user name and pw to the authentication
password. The last object passed to the GetURL function contains the authentica-
tion header to send to the web server.

The Base64 module is also used when authenticating users to Web proxies by add-
ing a Proxy-Authorization header to the HTTP request:

import Base64;

var A = "Basic " + Base64_Encode("user:pw");
var P = GetURL(url, nil, 

[. "Proxy-Authorization" = A .]);

TABLE 25. Module Base64

Function Description

Encode(s: string): string Encodes a string in the base64 
encoding.

Decode(s: string): string Decodes a string in base64 encod-
ing.



Modules

116 WebL - A Programming Language for the Web

Module Browser

The Browser module provides a way to display markup in your web browser. On
the Windows platform, the default installed browser will be started up to display
the page. On UNIX platforms, WebL tries to communicate with an already running
copy of Netscape. Note that to implement this functionality, WebL has to write the
markup to a temporary file in the specified character encoding.

On the Windows platform only, module Browser also provides rudimentary sup-
port for inquiring and controlling a running copy of a Netscape browser with
Dynamic Data Exchange (DDE). Specifically it is possible to detect what web page
is being viewed in the browser, and to request Netscape to navigate to a specific
URL. Both the support for viewing markup and the DDE functionality is bundled in
a Windows platform-specific DLL called weblwin32.dll. The readme.txt file that is
part of the WebL distribution contains instructions how to install this DLL on a
Windows machine.

TABLE 26. Module Browser

Function Description

GetCurrentPage(): object (Windows only)
Returns information about the cur-
rently viewed page in a running 
copy of Netscape. The object 
returned has string fields url and title 
that specifies the viewed URL and 
title of the viewed page respectively.

GotoURL(url: string): nil (Windows only)
Sends a request to a running copy of 
Netscape to navigate to this url.

ShowPage(s: string): nil Displays the markup contained in s 
in a web browser (uses the default 
locale for externalizing the string).

ShowPage(s: string, charset: string): 
nil

As above, but ensuring that the 
string is externalized in the indicated 
character set. Values for charset 
might be “iso-8859-1”, “Unicode”, 
“UTF8”, etc.



WebL - A Programming Language for the Web 117

Module Cookies

Module Cookies

Module Cookies allows the programmer to perform some basic operations on the
HTTP cookie database. The cookie database contain client-side state that web serv-
ers have requested WebL to store for them. By default the cookie database starts
out empty with each WebL run, and fills up as cookies are set. At the end of the run,
the cookie database is discarded. This is the default WebL behavior, and no pro-
grammer action is required.

The contents of the cookie database can be overriden by specifying a non-nil
"Cookie" header field as part of the GetURL and PostURL functions. Furthermore,
the Save and Load functions of the Cookie module can be used to save the database
to a file, and later load it again. These functions are required if the cookie database
is to transcend a single WebL session.

The external file format of the cookie database is a line per cookie, where each
cookie is stored in the same format as received in the "Set-cookie" HTTP header.
More details about the HTTP Set-cookie header can be found in the cookie specifi-
cation from Netscape.

Mutiple Cookie Databases. By default, the cookie database is shared by all
threads and web requests of the WebL process. However, it is sometimes useful to
have groups of requests using logically separate cookie databases. WebL allows
you to specify which cookie database to use for each web request (and if no data-
base is specified, the default shared cookie database is used). Cookie databases
have programmer defined names (strings), and are automatically allocated when-
ever they are first used. In particular, the "cookiedb" field of the options parameter
to GetURL and PostURL functions, specify which cookie database is to be used for
that requests. For example, the following web request reads (and also writes) cook-
ies from and to a database called "DB1".

GetURL("http://www.abc.com", nil, nil, 
[. cookiedb="DB1" .])

The default cookie database is used when no "cookiedb" option is specified or the
database name is the empty string.  Note that, as explained before, all cookie data-
bases are discarded after the WebL program ends i.e. the databases are not stored
to disk. If you need this functionality, the Load and Save functions of the Cookie
module allows you to read and write cookie databases from and to file storage.



Modules

118 WebL - A Programming Language for the Web

TABLE 27. Module Cookies

Function Description

Load(filename: string): nil Adds the cookies in filename to the 
default cookie database.

Save(filename: string): nil Saves the default cookie database to 
filename.

Load(filename: string, database: 
string): nil

Adds the cookies in filename to the 
cookie database named database.

Save(filename: string, database: 
string): nil

Saves the cookie database named 
database to filename.



WebL - A Programming Language for the Web 119

Module Farm

Module Farm

Module Farm introduces the concept of a farm object (an object with a hidden
implementation). A farm consists of a number of workers that process jobs. The
Perform method of a farm object allows the programmer to insert a job into the job
queue of the farm. Idle workers (those that are not doing something) periodically
pick a job from the queue to perform. When the job queue is empty and no workers
are working, we say that the farm is idle.

It is important to note that the workers are simple-minded in the sense that should
an exception occur while performing a job, the job is terminated without any indi-
cation to the programmer, and the worker becomes idle again. It is thus advisable to
include exception handling code in the job itself.

The Perform method of a farm uses a special calling convention. The argument of
this method must be an expression denoting a function application. For example,
say we would like to turn a function invocation of F with two arguments into a job,
we must write:

var frm = Farm_NewFarm(10);
frm.Perform(F(a, b))

It is important to know that the arguments to the function application are evaluated
before the job is started. A typical application of a farm object is the following stu-
pid web crawler program with 10 parallel workers:

import Farm;

var F = Farm_NewFarm(10);
var ProcessPage = fun(url)

var page = GetURL(url);
every a in Elem(page, “a”) do

F.Perform(ProcessPage(a.href))
end

end;

F.Perform(ProcessPage(“http://www.nowhere.com”));
while !F.Idle() do

Sleep(10000)
end



Modules

120 WebL - A Programming Language for the Web

TABLE 28. Module Farm

Function Description

NewFarm(nofworkers: int): object Creates a farm object with the speci-
fied number of workers.

TABLE 29. Methods of Farm Objects

Method Description

Perform(e): nil Adds a task or job to the farm queue. 
An idle worker will eventually 
remove the job from the queue. Note 
that e must be an expression where a 
function  is applied.

Idle(): bool Returns true if the job queue is 
empty and all workers are idle.

Stop(): nil Kills off all the jobs, and stops all of 
the workers. Adding jobs to the 
queue after this operation will have 
no effect.



WebL - A Programming Language for the Web 121

Module Files

Module Files

The Files module provides rudimentary functions for testing the existence of a file,
saving and loading pages and strings to and from files, and downloading web con-
tent to a file. The filename argument to each of the functions in Table 30 is a file-
name in the syntax supported by the file system underlying WebL.

The combination of the SaveToFile and Eval functions allows some limited persis-
tant storage for WebL. For example, the following program writes a set out to disk
and reads it back in again to the variable T:

import Files;

var S = {1, 2, 4, 6};
Files_SaveToFile(“test.tmp”, ToString(S));
var T = Files_Eval(“test.tmp”)

Note that this technique can be used only for externalizing non-recursive values
that do not contain functions or methods — the external format of those structures
are not legal WebL programs.

TABLE 30. Module Files

Function Description

AppendToFile(filename: string, val: 
string): nil

Appends val to the end of the file.

AppendToFile(filename: string, val: 
string, charset: string): nil

As above, but sets the character 
encoding to use. Typical encodings 
are “iso-8859-1”, “UTF8”, etc.

Exists(filename: string): bool Determines if a file with the speci-
fied name exists.

LoadFromFile(filename: string, 
mimetype: string): page

Loads a page object from a file.

LoadStringFromFile(filename: 
string): string

Loads a file as a string object, using 
the default character encoding.



Modules

122 WebL - A Programming Language for the Web

LoadStringFromFile(filename: 
string, charset: string): string

Loads a file as a string object, using 
the character encoding specified by 
charset. Typical values for charset 
are "UTF8", "Unicode", "iso-8859-
1", etc.

SaveToFile(filename: string, val: 
string): nil

Saves the string val to the specified 
file.

SaveToFile(filename: string, val: 
string, charset: string): nil

As above, but overrides the default 
character encoding of the saved file. 
Typical encodings are “iso-8859-1”, 
“UTF8”, etc.

GetURL(url: string, filename: 
string): page
GetURL(url: string, filename: string, 
param: {object,string}): page
GetURL(url: string, filename: string, 
param: {object,string}, header: 
object): page
GetURL(url: string, filename: string, 
param: {object,string}, header: 
object, options: object): page

Similar to the built-in GetURL func-
tion except that the retrieved docu-
ment is saved to the indicated file. 
The url, param, header and option 
arguments are the same as the built-
in GetURL function.

PostURL(url: string, filename: 
string): page
PostURL(url: string, filename: 
string, param: {object,string}): page
PostURL(url: string, filename: 
string, param: {object,string}, 
header: object): page
PostURL(url: string, filename: 
string, param: {object,string}, 
header: object, options: object): 
page

Similar to the built-in PostURL 
function except that the retrieved 
document is saved to the indicated 
file. The url, param, header and 
options arguments are the same as 
the built-in PostURL function.

Eval(filename: string): any The cotnets of filename is evaluated 
as a WebL program. The result 
returned is the value of the last state-
ment in the program.

List(dirname: string): list Returns the file names and directory 
names contained in directory 
dirname. 

TABLE 30. Module Files

Function Description



WebL - A Programming Language for the Web 123

Module Files

IsDir(name: string): bool Checks whether name is a valid 
directory name or not.

IsFile(name: string): bool Checks whether name is a valid file 
name or not.

Mkdir(name: string): bool Attempts to create a new directory 
called name, and returns success or 
failure.

Delete(name: string): bool Attempts to delete the file called 
name, and returns success or failure.

Size(name: string): int Returns the size in bytes of the file 
called name.

TABLE 30. Module Files

Function Description



Modules

124 WebL - A Programming Language for the Web

Module Java

The Java module allows you to access Java classes, objects, and arrays directly
from the WebL programming language. This functionality provides practically
transparent access to any functionality provided by Java class library, at the extra
run-time cost of translating between WebL and Java data types. The direction of
access is purely from WebL to Java; transparent Java to WebL access is not possi-
ble without changes in the Java virtual machine. Note that using module Java
requires a knowledge of Java itself and some knowledge about the WebL imple-
mentation,  which is beyond the scope of this user manual.

The WebL-to-Java integration works by automatically "wrapping" Java objects,
classes, and arrays with special WebL types, and performing transparent translation
of WebL data types to Java data types and vice-versa. The Java module introduces
two new WebL data types for this purpose. The WebL "j-object" type is a special
object type that wraps Java objects and Java classes. The WebL "j-array" type
wraps Java arrays.

Type j-object. Wrapping a Java object in a WebL j-object is transparent to the
WebL programmer. From the WebL programmer’s perspective, the object behaves
exactly the same as a normal WebL object. That is, the fields and methods of a Java
object is directly accessible from the WebL j-object. For example, the following
WebL code creates a Java Date object, and calls some of its methods to print out
some of the details of the data object:

import Java;

var D = Java_New("java.util.Date");

PrintLn("Today’s date is ", D.toString());
PrintLn("Today is ", D.getMonth());
PrintLn(D);

Notice how the last line prints out the Java object itself. The console output from
this statement might look as follows, which illustrates that the methods and fields
of the Java date object are reflected 1-to-1 inside the WebL j-object:

[. "setYear" = < setYear(int): void>,
"getSeconds" = < getSeconds(): int>,
"parse" = < parse(java.lang.String): long>,
"setTime" = < setTime(long): void>,
"getDay" = < getDay(): int>,



WebL - A Programming Language for the Web 125

Module Java

"setHours" = < setHours(int): void>,
"setMonth" = < setMonth(int): void>,
"notifyAll" = < notifyAll(): void>,
"after" = < after(java.util.Date): boolean>,
"setDate" = < setDate(int): void>,
"getHours" = < getHours(): int>,
"setSeconds" = < setSeconds(int): void>,
"wait" = < wait(long): void 

wait(long,int): void wait(): void>,
"getMonth" = < getMonth(): int>,
"toString" = < toString(): java.lang.String>,
"UTC" = < UTC(int,int,int,int,int,int): long>,
"notify" = < notify(): void>,
"getYear" = < getYear(): int>,
"before" = < before(java.util.Date): boolean>,
"equals" = < equals(java.lang.Object): boolean>,
"getTime" = < getTime(): long>,
"getTimezoneOffset" = < getTimezoneOffset(): int>,
"getMinutes" = < getMinutes(): int>,
"hashCode" = < hashCode(): int>,
"getClass" = < getClass(): java.lang.Class>,
"getDate" = < getDate(): int>,
"setMinutes" = < setMinutes(int): void>,
"toGMTString" = < toGMTString(): java.lang.String>,
"toLocaleString" = < toLocaleString():

java.lang.String>
.]

WebL-Java type conversion. Furthermore, automatic translation between WebL
and Java data types is done when calling methods and constructors, or assigning
values to object fields. Table 33, “Conversion of WebL types into Java types,” on
page 130, shows with what Java types a specific WebL type is compatible with.
Refer to this table when calling a Java method or constructor. Refer to Table 32,
“Conversion of Java types into WebL types,” on page 129, to see how values
returned from methods and field accesses are converted back into WebL types.
Studying these two tables will show that the type conversion is mostly restricted to
converting between primitive Java and WebL types. That means for example that
WebL objects can only be passed to methods that accept the implementation type of
WebL objects (webl.lang.expr.ObjectExpr). This is not restrictive as it might
sound; many methods in the JDK accept java.lang.Object’s as arguments, which is
of course a superclass of webl.lang.expr.ObjectExpr. For example, it becomes pos-
sible to insert WebL objects into Java hash tables.



Modules

126 WebL - A Programming Language for the Web

Here is a more complicated example which reads and numbers the lines of a file
called "test.txt":

import Java;

var System = Java_Class("java.lang.System");

var F = Java_New("java.io.File", "test.txt");
var R = Java_New("java.io.BufferedReader",

Java_New("java.io.FileReader", F));

var c = 1;
var L = R.readLine();
while L != nil do

System.out.print(c);
System.out.println(" " + L);
c = c + 1;
L = R.readLine();

end;

After each occurrence of R.readLine, the resulting line is converted into a WebL
string type. When System.out.print(ln) is called, the WebL types are converted back
into the appropriate Java type.

Statics. The above example also illustrates how to access a static field (namely Sys-
tem.out): The Java_Class function wraps the class into a WebL object, from where
the field can be accessed directly. In addition, the example also shows how to use
constructors with arguments.

Overloading. WebL programmers should be aware that constructors and methods
are often overloaded in Java. In this case, WebL will attempt to match the best con-
structor or method by comparing the actual arguments (provided in WebL) with the
formal arguments of the constructors and methods in question. This might lead to
problems when the matching involves numeric types. Suppose a Java method
named X is overloaded three times, with single formal arguments of type int, short,
and byte respectively. Which instance of X will be called when a formal argument
of type int is used in a call the function? WebL’s approach is to prefer the "widest"
type, which in this case would be X with the formal of type int. Programmers
should be aware that this simple heuristic might cause the "wrong" instance of the
overloaded method to be invoked. There is no support for enforcing calls to a spe-
cific overloaded method in WebL.



WebL - A Programming Language for the Web 127

Module Java

Type j-array. In addition to the j-object type, the Java module also provides a new
type called j-array that wraps Java arrays. The reasoning behind providing a sepa-
rate array type instead of using an established data type such type list, is that Java
arrays are fundamentally different from WebL data types. Java arrays are mutable
(i.e. elements can be overwritten), whereas WebL types (except for type object) are
immutable. Thus passing a WebL list to a method that expects a Java array begs the
question want would happen if the method mutates the array.

The Java array support in module Java includes functions to allocate an array of a
specific type and size (Java_NewArray), retrieve an element at a specific index
(Java_Get), and overwritting an element at a specific index (Java_Set).

The following program allocates, writes and reads the elements of an array:

import Java;

var A = Java_NewArray("int", 10);
Java_Set(A, 0, 42);
PrintLn(Java_Get(A, 0));
Java_Set(A, 1, "hello");// -> Type mismatch exception

Java Classpath. The Java CLASSPATH environment variable must be set correctly
to access the Java classes that are external to the classes in WebL.jar. Programmers
should be aware that when using the -jar option of the Java runtime, classes are
only searched for in WebL.jar.  It is thus better to run WebL with the -cp Java runt-
ime option, where the CLASSPATH must be specified explicitly.



Modules

128 WebL - A Programming Language for the Web

TABLE 31. Module Java

Function Description

New(classname: string, ...): j-object Allocates a Java object using the 
specified class name, and optional 
constructor arguments. Valid class-
names are Java primitive types 
("int", "char", "short", etc.) or fully 
specified Java class names 
("java.lang.String", "java.util.Vec-
tor", etc.). 

Class(classname: string): j-object Maps the specified class into a 
WebL object, allowing the static 
fields of the class to be accessed.

NewArray(classname: string, size: 
int): j-array

Allocates a Java array of the speci-
fied type and size.

Get(A: j-array, i: int): any Retrieves index i of array A.

Set(A: j-array, i: int, v: any):any Sets index i of array A to value v.

Length(A: j-array): int Returns the length of the Java array.



WebL - A Programming Language for the Web 129

Module Java

TABLE 32. Conversion of Java types into WebL types

Java Type/class/value
Corresponding WebL 
type

null nil

boolean bool

char char

java.lang.String string

long int

int int

short int

byte int

float real

double real

Any array type j-array

webl.lang.expr.ObjectExpr object

webl.lang.expr.ListExpr list

webl.lang.expr.SetExpr set

webl.lang.expr.AbstractFunExpr fun

webl.lang.expr.AbstractMethExpr meth

webl.page.Page page

webl.page.Piece piece

webl.page.PieceSet pieceset

webl.page.TagExpr tag

Any Java array j-array

Any other class no listed above j-object



Modules

130 WebL - A Programming Language for the Web

TABLE 33. Conversion of WebL types into Java types

WebL Type Compatible Java type/class/value

nil null

bool boolean

char char, string

string java.lang.String (and superclasses)

int int, long, short, byte, float, double

real float, double

object webl.lang.expr.ObjectExpr (and superclasses)

list webl.lang.expr.ListExpr (and superclasses)

set webl.lang.expr.SetExpr (and superclasses)

fun webl.lang.expr.AbstractFunExpr (and superclasses)

meth webl.lang.expr.AbstractMethExpr (and superclasses)

page webl.page.Page (and superclasses)

piece webl.page.Piece (and superclasses)

pieceset webl.page.PieceSet (and superclasses)

tag webl.page.TagExpr (and superclasses)

j-object Corresponding type of wrapped Java object.

j-array Corresponding type of wrapped Java array type.



WebL - A Programming Language for the Web 131

Module Servlet

Module Servlet

Many web servers today support the Java Servlet standard from JavaSoft. This
standard allows the efficient execution of server-side actions. In addition to the
built-in Web server support (see module WebServer), WebL also supports the serv-
let standard directly and transparently. In fact, the WebL Servlet integration is so
transparent that no new functions need to be introduced. The description how to use
servlets provided below assumes a fair knowledge about Java and servlets; it is thus
advisable to study the servlet documention before continuing.

Servlet access. The class weblx.servlet.Servlet implements the WebL servlet. By
placing this class (or the jar file it is in, namely WebL.jar) on a servlet enabled web-
server, it becomes possible to execute WebL code directly on the server. Web surf-
ers may access your WebL servlet by accessing a URL of (typically) the following
form:

http://www.host.com/servlet/weblx.servlet.Servlet/
modulename_variablename?arguments

In case your web server supports aliases, you can alias "weblx.servlet.Servlet" as
"webl", which allows access from the following URL:

http://www.host.com/servlet/webl/
modulename_variablename?arguments

In both cases, modulename identifies the WebL module that contains the WebL
servlet script, and variablename identifies an exported variable in that module. The
value type of this variable must be a function with two formal arguments. The mod-
ule will be loaded automatically the first time the URL is accessed (this happens
only once; afterwards the module is cached).

Table 34 and Table 35 show the format of the two arguments of the function. The
first is the request object, and the second is the response object. The explanation for
the field names and values is found in the Java servlet specification available from
Javasoft.

You may modify your WebL servlets while being used. WebL checks before each
servlet access whether the WebL module has changed or not (using the file last-
modified date). If the modified date is different from the modified date when the
module was loaded first, the module is auotmatically reloaded.



Modules

132 WebL - A Programming Language for the Web

Examples. The following WebL servlet shows how to set and retrieve a variable on
your Web server.    

// File: Example1.webl

var theval = nil; // the variable

// To set the variable to "hello",  access:
//   http://www.host.com/servlet
//     /webl/Example1_SetVal?x=hello

export var SetVal = fun(req, res)
theval = req.param.x;
res.mimetype = "text/plain";
res.result = "Set val to " + theval;

end;

// To retrieve the value, access:
//   http://www.host.com/servlet/webl/Example1_GetVal

export var GetVal = fun(req, res)
res.mimetype = "text/plain";
res.result = "Val is " + theval;

end;
    

Note how the x parameter in the URL is accessed with req.param.x. Note, that in
the case of multiple parameters with the same name, the particular parameter field
will have a list of strings as value. Programmers should thus be aware of the fact
that the value type of parameters is either a string, or a list of strings, depending on
the number of parameters.

Often during servlet development you will need to snoop the servlet request head-
ers. The following example shows how this is done with a WebL servlet:

// File: Example2.webl
    
var Decode = fun(req)

var s = "Header snoop:\n\n";
every field in req do

s = s + ToString(field) + ": " 
+ ToString(req[field]) + "\n";

end;
s;

end;



WebL - A Programming Language for the Web 133

Module Servlet

// Access the following URL:
//   http://www.host.com/servlet/webl/Example2_Snoop
//
export var Snoop = fun(req, res)

res.mimetype = "text/plain";
res.result = Decode(req);

end;    

Servlets typically use HTTP cookies to keep track of client state. The following
WebL servlet maintains a visit counter inside the client’s cookie:

// File: Example3.webl

// Access the counter with:
//   http://www.host.com/servlet/webl/Example3_Count

export var Count = fun(req, res)
res.result = "Cookie test\n";

// Retrieve the cookie named "cc"
var count = ToInt(req.cookies.cc) ?

begin // executed if no such cookie exists
res.result = res.result + "No cookie\n";
0

end;

res.result = res.result + "Count = " + count;
res.mimetype = "text/plain";

// set the new cookie
res.cookies = [.

cc = [. domain="www.myhost.com", path="/", 
value=count + 1, comment="",
maxage=-1, version=0 .]

    .]
end;



Modules

134 WebL - A Programming Language for the Web

Server setup. Servlet setup can be complicated. First make sure that you can
access the demo servlets that come with your web server. Only then continue with
this checklist:

1. Put WebL.jar is the CLASSPATH of your web server (server dependent).

2. Add a configuration parameter for the WebL servlet to your Web server (server 
dependent):
Parameter name: webl.path    
Parameter value: (directory search path for WebL scripts)

3. Restart your web server for changes to take affect.

4. Place WebL scripts in the directory of the search path, as indicated by 2.

        

TABLE 34. Format of the Servlet request parameter object

[.
method: string,
requestURI: string,
servletpath: string,
pathinfo: string,
pathtranslated: string,
querystring: string,
remoteuser: string,
authtype: string,
        
remoteaddr: string,
remotehost: string,
scheme: string,
servername: string,
serverport: string,
protocol: string,
contenttype: string,

header: object,
param: object,
cookies: object]
.]



WebL - A Programming Language for the Web 135

Module Servlet

    

TABLE 35. Format of the Servlet response parameter object

[.
statuscode: int,
statusmsg: string,
result: string,
mimetype: string
header: [. name=val, name=val, ... .],
cookies : [. 
  cookiename = [. 
      comment: string, 
      domain: string, 
      maxage: int, 
      path: string, 
      secure: bool, 
      value: string, 
      version: int
    .],
  cookiename = ...,
  cookiename = ...,
  ...
  .]
.]



Modules

136 WebL - A Programming Language for the Web

Module Str

The Str module provides several useful operations on string values.

TABLE 36. Module Str

Function Description

Compare(a: string, b: string): int Returns -1, 0, +1 if a is less than, 
equal, or greater than b.

EndsWith(s: string, regexp: string): 
bool

Tests if a string ends with a particu-
lar pattern.

EqualsIgnoreCase(a: string, b: 
string): bool

Tests if a and b are equal in a case-
insensitive manner.

IndexOf(pat: string, s: string): int Returns the first position where pat 
occurs in s, otherwise -1.

LastIndexOf(pat: string, s: string): 
int

Returns the last position where pat 
occurs in s, otherwise -1.

Match(s: string, regexp: string): 
object

Tests whether s matches the regular 
expression regexp. If so, an object is 
returned where the fields of the 
object are integers numbered from 1 
onwards, each of them having a 
value corresponding to the Perl5 
groups (as indicated by the parenthe-
sis sub-expressions in regexp) that 
has been matched. Nil is returned 
otherwise.

Replace(s: string, from: char, to: 
char): string

Replaces each occurrence of from 
with char in s.

Search(s: string, regexp: string): list Searches for all the occurrences of 
the regular expression regexp in s, 
and returns a list of objects for each 
of them. The fields of the objects are 
similar to those returned by the 
Match function. Note that object 
field 0 is the complete matched char-
acter string.



WebL - A Programming Language for the Web 137

Module Str

Split(s: string, chars: string): list Splits the string s at positions where 
any of the characters of chars 
appear. The function returns a list of 
strings.

StartsWith(s: string, regexp: string): 
bool

Tests if a string starts with a particu-
lar pattern.

ToLowerCase(s: string): string Turns s into lowercase.

ToUpperCase(s: string): string Turns s into uppercase.

Trim(s: string): string Remove white space characters like 
new lines, carriage returns, tabs, etc. 
from the beginning and end of the 
argument string.

TABLE 36. Module Str

Function Description



Modules

138 WebL - A Programming Language for the Web

Module Url

The Url module performs a number of useful operations on URL strings. For exam-
ple, it is sometimes useful to break up a URL into its constituent parts, modify
some of them, and glue the parts back together again. In the same manner, query
strings (the part of a URL that follows the question mark) also need to be manipu-
lated. 

For example, given the URL (a typical AltaVista query)

http://www.altavista.digital.com/cgi-bin/query
?pg=q&kl=XX&q=%2Bjava+%2Bcoffee

the Split function will return an object as follows:

[. 
query = "?pg=q&kl=XX&q=%2Bjava+%2Bcoffee", 
path = "/cgi-bin/query", 
host = "www.altavista.digital.com", 
ref = "", 
scheme = "http" 

.]

Applying the SplitQuery function to the query field of this object will return the fol-
lowing object:

[. kl = "XX", pg = "q", q = "+java +coffee" .]

Behind the scenes, decoding the query string involves calls to the Decode function
to remove the character encodings (eg. %@B and so on).

The Glue and GlueQuery functions will glue those objects back together again. The
field names generated by the Split function are summarized in Table 38. Note that
the current implementation can process only the http, ftp, and file protocol schemes.



WebL - A Programming Language for the Web 139

Module Url

TABLE 37. Module Url

Function Description

Decode(s: string): string Decodes a string in the MIME type 
encoding "x-www-form-urlen-
coded". The complementary func-
tion is called Encode.

Encode(s: string): string Encodes a string in the MIME type 
encoding "x-www-form-urlen-
coded" (which is generally used to 
encode input form parameters). The 
complementary function is called 
Decode.

Glue(obj: object): string Takes the constituent parts of a URL 
(as broken up by Split), and glues 
them together to form a URL again.

GlueQuery(obj: object): string Given an object constructed from 
SplitQuery, GlueQuery returns the 
original query string again.

Resolve(base: string, rel: string): 
string

Given the base URL base and the 
relative URL rel, return the resolved 
URL.

Split(url: string): object Splits a URL into its constituent 
parts (like scheme, host, path, query 
etc.). Each part becomes a field of 
the object returned. 

SplitQuery(query: string): object Splits a query string into its constitu-
ent parts. Each part becomes a field 
of the object returned. Query strings 
typically follow the ? in URLs.



Modules

140 WebL - A Programming Language for the Web

TABLE 38. URL constituents

Field name
Used in 
schemes Description

scheme All http, ftp, file, etc.

host http, ftp, file Host name.

port http, ftp TCP/IP connection port.

path http, ftp, file Full path name of the 
addressed resource.

query http Query string (after ’?’ in 
URL)

ref http, file Anchor reference string 
(after ’#’ in URL).

user ftp Login user name.

password ftp Login password.

type ftp File transfer type ’a’, ’i’, ’d’.

url Unknown 
schemes

Contains the complete URL 
because no constituents 
could be extracted (because 
the scheme is unknown).



WebL - A Programming Language for the Web 141

Module WebCrawler

Module WebCrawler

Module WebCrawler exports a single object called Crawler that implements a low-
performance multi-threaded web crawler. To use the web crawler, the methods
Visit and ShouldVisit must be overridden by the programmer. The Visit method is
called by the crawler each time a page is visited, and the ShouldVisit method
returns true when a specific URL must be crawled. The crawler is activated by the
Start method which takes as argument an integer specifying how many threads
should perform the crawl. At this point the crawler has no pages to crawl yet. Pages
are inserted into the crawler queue with the Enqueue method. As each page in the
queue is processed, the crawler will extract all the anchor (“<A>”) tags in that page,
and call the ShouldVisit method to determine if the page referred to by the anchor
should be crawled or not. The Abort() method can be called at any time to terminate
the crawl.

The following example implements a web crawler that prints the URL and title of
all pages visited. The crawl is restricted to pages on the pa.dec.com domain that
have a URL that ends in a “/”, “.htm” or “.html”. The queue is initially seeded with
two pages from where the crawl will progress in a breadth-first fashion. Note that
the program finally goes to sleep while the crawl is in progress.

import Str, WebCrawler;

var MyCrawler = Clone(WebCrawler_Crawler,
    [.

Visit = meth(s, page)
var title = Text(Elem(page, "title")[0]) ? 

"This page has no title";
PrintLn(page.URL, " title=", title)

end,

ShouldVisit = meth(s, url)
Str_StartsWith(url, 

‘http://www-\w*[.]pa[.]dec[.]com‘)
and
Str_EndsWith(url, "(/)|([.]html?)")

end,
.]);

MyCrawler.Start(2);// Only two threads are used.
MyCrawler.Enqueue("http://www-src.pa.dec.com/");
MyCrawler.Enqueue("http://www-wrl.pa.dec.com/");



Modules

142 WebL - A Programming Language for the Web

Stall();



WebL - A Programming Language for the Web 143

Module WebServer

Module WebServer

The WebServer module exports an interface to a simple multi-threaded web server.
The Start function allows the programmer to start the web server on a specific port
on the host machine where WebL is running. After starting the web server, HTML
and other files will be served from the fileroot directory indicated when the server
was started. The programmer may publish WebL functions to be executed when
specific URL paths are requested. 

For example, the following program starts the web server on port 90, and publishes
a function called Echo that returns an HTML page. Afterwards, its goes to sleep
while requests are serviced. If a request for the URL /bin/echo is received by the
server, the Echo function is invoked.

import
    WebServer;

WebServer_Start("c:\\InetPub\\wwwroot", 90);

var Echo = fun(req, res)
  res.result = “<html><body>Hello!</body></html>”;
end;

WebServer_Publish("/bin/echo", Echo);

while true do
    Sleep(10000)
end



Modules

144 WebL - A Programming Language for the Web

Functions may be published under any (case-sensitive) name. The web server will
first consult the list of exported functions when a request is received, by comparing
the path of the URL requested to each of the given names of the published func-
tions. Should no published name match the URL path requested, the web server
attempts to serve a file in the directory rooted by fileroot.

The formal arguments req and res represent respectively the request the web server
received and the response the web server has to return. The idea is that the invoked
function looks at the object req to figure out what to do, and modifies the object res
to tell the server what to do (i.e. what data to return, etc.). For example, given the
following request to the web server (running on a machine called ck.pa.dec.com):

http://ck.pa.dec.com:90/bin/echo?x=3&y=abc+def

the Echo function could be invoked with the following req object:

[. 
contents = "", 
protocol = "HTTP/1.0", 
method = "GET", 
uri = "/bin/echo?x=3&y=abc+def",
path = “/bin/echo",
query = "x=3&y=abc+def", 
param = [. y ="abc def", x = "3" .],
header = [. 

"Accept-Charset" = "iso-8859-1,*,utf-8", 
Connection = "Keep-Alive",
“User-Agent" = "Mozilla/4.04[en] (WinNT; I)",
Accept = "image/gif, image/x-xbitmap, 

image/jpeg, image/pjpeg, image/png, */*", 
“Accept-Language” = "en",
Host = "ck.pa.dec.com:90"

.] 
.]

and the following res object:

[. 
result = nil,
header = [. 

Server = "WebL",
Date = "Thu May 14 15:59:01 PDT 1998", 



WebL - A Programming Language for the Web 145

Module WebServer

Content-Type" = "text/html" 
.],
statuscode = 200, 
statusmsg = "OK"

.]

The invoked function can now look at the fields of req to determine how to handle
the request, and modify the fields of res to indicate the result to be returned (note
that many of the fields are filled in to sensible values when the function is invoked).
The meaning of the individual fields of the request and response object are listed in
Table 40 and Table 41 respectively (note that all fields except statuscode are of
value type string or object). The most commonly used field is param, which indi-
cates the request parameters received. 

TABLE 39. Module WebServer

Function Description

Start(fileroot: string, port: int): nil Starts the web server on the indi-
cated port, and prepares to server up 
files located at fileroot in the file 
system.

Stop(): nil Stops the web server.

Publish(name: string, f: fun): nil Publishes the function f under a 
name on the server. The name indi-
cates the URL that will invoke func-
tion f. Function f has to be a function 
with two formal arguments (see dis-
cussion above).



Modules

146 WebL - A Programming Language for the Web

TABLE 40. Fields of the Request Object

Field Description

method HTTP method GET, POST, etc.

protocol The HTTP protocol version.

uri The URL of the complete request.

query The query part of the request.

path The path of the script requested.

contents The contents of the request message 
(typically only has a value for POST 
methods).

param Object with fields submitted in 
either a GET or POST method. In 
case a particular parameter is 
repeated in the request, the appropri-
ate field of the the param object will 
be set to a list of strings, correspond-
ing to the individual parameter val-
ues.

header Header fields the browser sent with 
the HTTP request. In case a particu-
lar header field is repeated in the 
request, the appropriate field of the 
the header object will be set to a list 
of strings, corresponding to the indi-
vidual header field values.



WebL - A Programming Language for the Web 147

Module WebServer

TABLE 41. Fields of the Response Object

Field Description

statuscode Integer status code to be returned. 
The semantics of the codes are listed 
in the HTTP specification.

statusmsg Status message that matches this sta-
tus code.

result The page that is to be returned to the 
client.

header The header fields the server will 
return to the client.



Modules

148 WebL - A Programming Language for the Web



WebL - A Programming Language for the Web 149

CHAPTER 6 Examples

The purpose of this chapter is to give a feeling for how WebL can be used in real-
world programs. It contains three case studies:

• Calculating statistics on newspaper articles,

• The implementation of a simple multi-threaded web crawler class,

• The implementation of a highlight proxy.

Reading Grades

The following program calculates the Kincaid score of a set of headline newspaper
articles found on the www.news.com web server, and outputs a sorted table of those
article titles to the file “kincaid.txt”. The Kincaid scoring function is used to judge
reading ease of an English document based on its sentence and word characteris-
tics. The function’s output ranges from 5.5 to 16.5 in reading grade level. 

Note that this implementation does not calculate the correct Kincaid reading grade
as it takes some shortcuts in calculating the number of sentences and syllables in a
page. Also, web pages tend to contain a lot of headings and so on, which are not
identified correctly as sentences. Web pages differ enough from the Navy manuals



Examples

150 WebL - A Programming Language for the Web

(on which the scoring function is based) to let us conclude that we are only calculat-
ing a relative score between similar pages in a corpus.

1 import Str, Files;
2
3 var Scores = fun(page)
4 var txt = Text(page);
5 var letters = Size(Str_Search(txt, "[A-Za-z]"));
6 var words = Size(Str_Search(txt, "[0-9a-zA-Z’]+"));
7 var syllables = Size(Str_Search(txt, "[aeiouy]+"));
8
9 var exceptions = Pat(page, "[ ]([A-Z0-9][.])+");
10 Replace(exceptions, NewPiece(" X ", "text/plain"));
11 var sentences = Size(Pat(page, "[.]"));
12
13 [.
14 Sentences = sentences,
15 Words = words,
16 Syllables = syllables,
17
18 ARI = 4.71 * (letters / words) + 
19 0.5 * (words /sentences) - 21.43,
20 Kincaid = 11.8 * (syllables / words) + 
21 0.39 * (words / sentences) - 15.59,
22 CLF = 5.89 * (letters / words) - 
23 0.3 * (sentences / (words / 100)) - 15.8,
24 Flesch = 206.835 - 84.6 * (syllables / words) 
25 - 1.015 * (words / sentences)
26 .]
27 end;
28
29 var ScorePageList = fun(L)
30 var res = [];
31 var count = 1;
32 every s in L do
33 try
34 PrintLn(count, " scoring ", s);
35 count = count + 1;
36 var page = GetURL(s);
37 var sc = Scores(page);
38 sc.URL := s;
39 sc.Title := Text(Elem(page, "title")[0]);
40 res = res + [sc];
41 catch e         // just report errors
42 on true do PrintLn(e.msg)



WebL - A Programming Language for the Web 151

Reading Grades

43 end;
44 end;
45 res
46 end;
47
48 var FollowLink = fun(page, anchortext)
49 var dest = (Elem(page, "a") contain 
50 Pat(page, anchortext))[0];
51 GetURL(dest.href)
52 end;
53
54 var GetStories = fun()
55 var res = [];
56 var P = GetURL("http://www.news.com");
57 var H = FollowLink(P, "(?i)all the headlines");
58 var A = (Elem(H, "a") directlyafter Pat(H, "&#149")) 
59 !inside Elem(H, "strong");
60 every a in A do
61 res = res + [a.href];
62 end;
63 PrintLn(Size(res), " articles found.");
64 res
65 end;
66
67 var pages = GetStories();
68 var res = ScorePageList(pages);
69
70 res = Sort(res,
71 fun(a, b)
72 var diff = a.Kincaid - b.Kincaid;
73 if diff > 0.0 then 1
74 elsif diff == 0.0 then 0
75 else -1
76 end
77 end);
78
79 var s = "";
80 every x in res do
81 PrintLn(x.Kincaid, " ", x.Title);
82 s = s + x.Kincaid + " " + x.Title + "\r\n";
83 end;
84 Files_SaveToFile("kincaid.txt", s);



Examples

152 WebL - A Programming Language for the Web

Lines 3-24 implement the core of the scoring function. After extracting the text of
the page (line 4), we proceed to calculate the number of letters (line 5), words (line
6), and syllables (line 7) on the page, using a few simple regular expressions. Lines
9-11 take care of removing any initials that might appear in the page. This is neces-
sary as the number of periods in the page is used as a measure of how many sen-
tences are present, and initials containing periods will skew that count. Finally lines
13-26 calculate a few common reading scores, and return a "score" object with the
results to the caller.

Lines 29-46 calculate reading scores for a list of URLs. Lines 36-37 fetch the indi-
vidual pages and calculate the score. In lines 38-39 we extend the score object with
fields to identify the URL and title of the page. The ScorePageList function returns
a list of these score objects.

The purpose of the GetStories function (lines 54-65) is to retrieve a list of URLs
representing newspaper articles. After fetching the root page from news.com (line
56), we follow the link called "All the headlines" to a page that contains all the sto-
ries of the day (line 57). Lines 58-59 perform the extraction of the story URLs. We
locate all the anchors appearing after a bullet symbol (identified by the "&#149";
character entity) that are not written in the strong font. Lines 60-62 construct a list
object of all the URLs found.

The main program starts at line 67. First we fetch the stories, and then score them.
Lines 70-77 take care of sorting the stories according to score.

Finally, lines 79-84 take care of printing the result and writing it to a file.



WebL - A Programming Language for the Web 153

WebCrawler

WebCrawler

In this example, we illustrate how to build a simple web crawler framework that
can easily be customized. The basic idea is to define a generic Crawler object of
which methods can be overridden to customize its behavior. By the way, our
crawler implementation is provided as standard in WebL in a module called Web-
Crawler.

First we define the generic Crawler object as follows:

1 import Str, Farm;
2
3 export var Crawler =
4 [.
5 // Pages visited so far (and removed from queue)
6 // and pages waiting in the queue.
7 enqueued = [. .], 
8
9 // Will contain the farm after the start method is
10 // called.
11 farm = nil, 
12
13 // Method that should be overridden.
14 Visit = meth(s, page) PrintLn(page.URL) end,
15 ShouldVisit = meth(s, url) true end,
16
17 Enqueue = meth(s, url)
18 // First remove everything following #
19 var pos = Str_IndexOf("#", url);
20 if pos != -1 then
21 url = Select(url, 0, pos)
22 end;
23 lock s do
24 var present = s.enqueued[url] ? false;
25 if !present and s.ShouldVisit(url) then
26 s.enqueued[url] := true;
27 s.farm.Perform(s.ProcessPage(s, url))
28 end
29  end
30 end,
31
32 ProcessPage = fun(s, url)
33 try
34 var page = GetURL(url); // fetch the page



Examples

154 WebL - A Programming Language for the Web

35 s.Visit(page);
36
37 // Process all the links from this page.
38 every a in Elem(page, "a") do
39 s.Enqueue(a.href) ? nil
40 end
41 catch E
42 on true do PrintLn(url, " err: ", E.msg)
43 end;
44 end,
45
46 Start = meth(s, noworkers)
47 s.farm = Farm_NewFarm(noworkers);
48 end,
49
50 Abort = meth(s) s.Stop() end
51 .];

First we need to keep track of all pages visited so far with an associative array (aka
a WebL object) where the fields are the visited URLs, and the value is either true or
false (line 7). Note that an alternative implementation could use a set instead of an
object without any performance penalty.

Lines 14 and 15 define the two methods that need to be overridden to customize the
crawler. The Visit method is called each time a new page is visited, and the Should-
Visit method indicates whether a specific URL should be crawled or not.

The Enqueue method (lines 17-30) adds a URL to the queue of pages to be fetched.
The first task is to strip off any references from the URL (lines 19-22). Line 24 then
checks if we visited the page already. Note the use of the ? service combinator to
catch the exception should the URL not be in the visited array. If the URL is not
present, and we should visit this page (line 25), we remember that we have seen the
page (line 26), and then pass the job of retrieving the page to a farm object (line 27).

Eventually when a worker on the farm reaches a new job, the ProcessPage function
is invoked (lines 32-44). After the page is fetched (line 34), we call the method Visit
to let the crawler process the page (line 35). Lines 38-40 take care of enqueing all
the anchors found on the page.

A custom crawler. Now we look at how we can create a custom crawler using the
generic crawler above. To override the Visit and ShouldVisit methods, we use the



WebL - A Programming Language for the Web 155

WebCrawler

Clone builtin applied to the generic crawler and our own object that contains the
modifications to the generic crawler we would like to make (lines 3-16).

1 import Str, WebCrawler;
2
3 var MyCrawler = Clone(WebCrawler_Crawler,
4 [.
5 Visit = meth(s, page)
6 var title = Text(Elem(page, "title")[0]) ? "N/A";
7 PrintLn(page.URL, " title=", title);
8 end,
9
10 ShouldVisit = meth(s, url)
11 Str_StartsWith(url, 
12 ‘http://www-\w*\.pa\.dec\.com‘)
13 and
14 Str_EndsWith(url, "(/)|(.html?)")
15 end,
16 .]);
17
18 MyCrawler.Start(2);
19 MyCrawler.Enqueue("http://www-src.pa.dec.com/");
20 MyCrawler.Enqueue("http://www-wrl.pa.dec.com/");
21 while !MyCrawler.Idle() do Sleep(10000) end

Our particular implementation of the Visit method extracts and prints the URL and
title of the page (lines 5-8). The ShouldVisit method (lines 10-15) restricts crawling
to host names of the form "www-*.pa.dec.com" and URLs that end either in "/" or
".html".

Lines 18-20 start up the crawler with two workers and enqueue two starting point
URLs. Line 21 goes in a loop that checks every 10 seconds whether the workers
have become idle, in which case the crawler terminates.



Examples

156 WebL - A Programming Language for the Web

Highlight Proxy

In this example we illustrate how to perform transformations on viewed pages in a
proxy like fashion. In particular, we would like to build a highlight proxy that high-
lights all occurences of a particular word on the Web in red. The highlight proxy is
contacted with

http://www.host.com:9092/bin/highlight?url=X&word=Y

where X denotes the starting point URL on the Web, and Y denotes the word that is
to be highlighted (and of course www.host.com is the machine the proxy server is
run on). Our proxy is written in such a way that all links that are followed from
page X onwards, are redirected to our proxy again. This is accomplished by rewrit-
ting the contents of the page.

1 import Url, WebServer;
2
3 var port = 9092;
4 var where = "/bin/highlight";
5
6 var Highlight = fun(req,res)
7   var url = req.param.url ? "http://www.compaq.com";
8   var word = req.param.word ? "Compaq";
9   var page = GetURL(url);              // fetch the page
10
11   every w in Pat(page,word) !inside Elem(page,"title") do
12 // wrap a font element around it
13     var p = NewNamedPiece("font",w);   
14     p.size := "+1";           // define its size attribute
15     p.color := "red";         // define its color attribute
16   end;
17
18   every a in Elem(page, "a") do        
19     a.href = where +                   
20           "?word=" + Url_Encode(word) +    // word parameter
21           "&url=" + Url_Encode(a.href)     // url parameter
22       ? nil;                    // nothing if no href
23   end;
24   res.result = Markup(page);           // this is the result
25 end;
26
27 WebServer_Publish(where, Highlight);
28 WebServer_Start("/dev/null",port);     



WebL - A Programming Language for the Web 157

Highlight Proxy

29 Stall()                                
30

The highlight proxy consists of single function called Highlight (lines 6-25). This
function is exported with the built-in WebL web server in lines 27 and 28. (More
information about the built-in Web server can be found in the WebServer module
documentation.) On lines 7 and 8 we extract the URL and word parameters passed
to the proxy. Note how we use service combinators to provide sensible defaults in
case no parameters are present.

Lines 11-16 does the actual highlighting of the word on the page. In line 13 a "font"
element is wrapped around the occurrence of the word. In addition, lines 14 and 15
define the size and color attributes of the new font element. Note that we also make
sure in line 11 that we only wrap word occurences outside of the title of the Web
page.

The next step is to rewrite the href attribute of all anchors ("a" elements)  in the
page to work correctly with our proxy. This involves passing the old href attribute
as the URL parameter to our proxy. We use the Url_Encode function to encode
special characters in the URL as dictated by the URL specification. Finally, in line
24 we re-generate the markup of the (now modified) page, and return it back to the
browser by assigning it to the appropriate field of the server response object res.



Examples

158 WebL - A Programming Language for the Web



WebL - A Programming Language for the Web 159

CHAPTER 7 WebL Quick Reference

This chapter is a quick reference to the WebL programming language. It contains
the WebL EBNF syntax, operator precedence table, list of operators and functions,
and the Perl5 regular expression format specification.

Running WebL Programs

Running a WebL program is highly dependent on the host platform. The WebL
classes and resources are bundled in a Java JAR file called WebL.jar. The main
class in this JAR file is called WebL.class. The main method of this class needs to
be executed with the following arguments:

{options} filename [arg1 arg2 ... ]

The options are summarized in Table 42. The filename argument specifies the name
of WebL program to be executed, and arg1, arg2, etc. are the arguments passed to
the program. The latter argument list can be accessed from the variable called
ARGS inside WebL programs. 

The following list gives an indication of how WebL programs can be executed
depending on one of several Java installation scenarios:



WebL Quick Reference

160 WebL - A Programming Language for the Web

Java development kit:
java WebL {options} filename [arg1 arg2 ...]

Java Runtime Environment:
jre -cp WebL.jar WebL {options} filename 

[arg1 arg2 ...]

Java 2 (a.k.a. JDK 1.2) with extension support:
java -jar WebL.jar {options} filename 

[arg1 arg2 ...]

Script search path. By default WebL will search for scripts and modules in the
current working directory and in the /scripts sub-directory inside the WebL.jar file.
The directory search path can be changed by setting a Java system property called
"webl.path" to a set of directories. This can be done on the command line with the
"D" option:

java -Dwebl.path=dir1;dir2;dir3 WebL ...   (Windows)

java -Dwebl.path=dir1:dir2:dir3 WebL ...   (Unix)

Note that setting a "webl.path" shell environment variable won’t do because envi-
ronment variables are not accessible from Java applications. 

Java System Properties. WebL programmers can access the system properties of
the underlying Java implementation through a global WebL object called PROPS.
For example, to access the user name of the person executing the script, you can
write:

PROPS["user.name"]

TABLE 42. WebL Command Line Options

Option Description

-D Emit casual debugging output.

-Llogfile Write casual debugging output to a log file.

-C Print performance counters at end of run.

-P Wait for ENTER when the program finishes.



WebL - A Programming Language for the Web 161

Running WebL Programs

The following PROPS object gives an idea of what information is accessible from
here:

[. 
"path.separator" = ";", 
"ftpNonProxyHosts" = "*.pa.dec.com", 
"http.proxyHost" = "www-proxy1.pa.dec.com", 
"http.nonProxyHosts" = "*.pa.dec.com", 
"http.proxyPort" = "8080", 
"user.language" = "en", 
"ftpProxyHost" = "www-proxy.pa.dec.com",
"user.region" = "US", 
"ftpProxyPort" = "8080", 
"java.vendor" = "Sun Microsystems Inc.",
"file.encoding" = "8859_1", 
"line.separator" = "\n",
"file.encoding.pkg" = "sun.io", 
"os.name" = "Windws NT", 
"user.name" = "marais",
"awt.toolkit" = "sun.awt.windows.WToolkit", 
"java.class.version" = "45.3", 
"file.separator" = "\", 
"http.proxySet" = "true", 
"user.timezone" = "PST", 
"java.home" = "C:\JAVA", 
"java.version" = "11", 
"os.arch" = "x86",
"java.vendor.url" = "http://www.sun.com/", 
"ftpProxySet" = "false",
"os.version" = "4.0",
"user.dir" = "C:\Proj\WebL3.0\java",
"user.home" = "Z:\marais", 
"java.class.path" = "."

.]



WebL Quick Reference

162 WebL - A Programming Language for the Web

WebL EBNF

WebL programs can be written in the Unicode character set (little or big-endian
byte ordering with an initial Unicode byte ordering mark) or the more compact
UTF-8 character set. Note that the first 127 characters of UTF-8 correspond to the
widely used western ISO-8859-1 or Latin 1 character set.

White space and comments are ignored in WebL programs. Comments consist of
either:

• a double forward slash token //, which introduces a comment till the end of the 
line, or

• the token pairs /* and */ with comments in between.

Note that comments of the style /* */ may nest.



WebL - A Programming Language for the Web 163

WebL EBNF

The WebL EBNF is:

Module = { Import } SS
Import = import [ Ident { "," Ident } ] ";"
SS = (Var | E) { ";" (Var | E) } [ ";" ]
Var = [ export ] var IdentInit { "," IdentInit }
IdentInit  = Ident [ "=" E ]
E           =   Value

| ImportRef
| E BinOp E
| UnOp E
| Statement
| "(" E ")"
| E "(" [ E { "," E } ] ")"
| FieldRef
| FieldRef ":=" E                 // define expr

Value = nil | Bool | String | Real | Integer | Character | Object | Set | List
ImportRef = Ident [ "_" Ident ]           
Bool = true | false
Object = "[." [ Field { "," Field } ] ".]"
Field = Ident "=" E
Set = "{" [ E { "," E } ] "}"
List =   "[" [ E { "," E } ] "]" 

| "[|" [ E { "," E } ] "|]"
FieldRef    =   E "[" E "]"

| E "." Ident
BinOp =   "+" | "-" | "*" | "/" | div | mod

| "<" | "<=" | "==" | "!=" | ">" | ">="
| and | or 
| "|" | "?"
| "=" 
| member
| inside | !inside | directlyinside | !directlyinside
| contain | !contain 
| directlycontain | !directlycontain
| after | !after | directlyafter | !directlyafter
| before | !before | !directlybefore | directlybefore
| overlap | !overlap
| without

UnOp = "-" | "+" | "!"
Statement = WhileStat | IfStat | FunStat | MethStat | CatchStat

| EveryStat | LockStat | RepeatStat | BeginStat | ReturnStat
WhileStat = while SS do SS end
IfStat = if SS then SS [ ElseStat ] end
ElseStat = else SS | elsif SS then SS [ ElseStat ]



WebL Quick Reference

164 WebL - A Programming Language for the Web

FunStat = fun "(" [ Ident ( "," Ident } ] ")" SS end
MethStat = meth "(" [ Ident ( "," Ident } ] ")" SS end
CatchStat = try SS catch Ident { on E do SS } end 
// Ident introduced into a new scope
EveryStat = every Ident in E do SS end 
// Ident introduced into a new scope
LockStat = lock SS do SS end
RepeatStat  = repeat SS until SS end
BeginStat = begin SS end
ReturnStat = return [E]

Ident = Letter { Letter | Digit }
Integer = Digit { Digit }
Real = Integer [ Fraction ] [ Exponent ]
Fraction = "." Integer
Exponent = ( "e" | "E" ) [ "+" | "-"] Integer
String = "\"" { Char } "\"" | "‘" { Char } "‘"
Char = "’" Char "’"
Digit = "0" .. "9"
Letter = "a" .. "z" | "A" .. "Z"
Char =  *any unicode character*



WebL - A Programming Language for the Web 165

WebL EBNF

Strings and characters may contain the escapes listed in Table 43. To write the non-
standard escapes that occur in regular expressions (like \w and \d), it is advisable to
use back-quoted strings which ignore the string content completely.

TABLE 43. String and Character Escape Sequences

Escape Description

\b Backspace

\t Horizontal tab

\n Newline

\f Form feed

\r Carriage return

\” Double quote

\’ Single quote

\\ Backslash

\xxx Character of octal value 
xxx

\uxxxx Character of hexadecimal 
value xxxx



WebL Quick Reference

166 WebL - A Programming Language for the Web

Operator Precedence

TABLE 44. Operator Precedence Table

Operator
Precedence 
Level Fix Associativity

[ ] 10 Right bracket

. 10 Infix Left

( ) 10 Right bracket

+ 20 Prefix Right

- 20 Prefix Right

! 20 Prefix Right

* 30 Infix Left

/ 30 Infix Left

div 30 Infix Left

mod 30 Infix Left

+ 40 Infix Left

- 40 Infix Left

member 45 Infix Left

inside 45 Infix Left

!inside 45 Infix Left

directlyinside 45 Infix Left

!directlyinside 45 Infix Left

contain 45 Infix Left

!contain 45 Infix Left

directlycontain 45 Infix Left

!directlycon-
tain

45 Infix Left

after 45 Infix Left

!after 45 Infix Left

directlyafter 45 Infix Left

!directlyafter 45 Infix Left

before 45 Infix Left

!before 45 Infix Left



WebL - A Programming Language for the Web 167

Operator Precedence

Note: Operators with a higher precedence level (smaller numeric values) bind
tighter than those of a lower precedence level. 

directlybefore 45 Infix Left

!directlybefore 45 Infix Left

overlap 45 Infix Left

!overlap 45 Infix Left

intersect 45 Infix Left

without 45 Infix Left

< 60 Infix Left

<= 60 Infix Left

> 60 Infix Left

>= 60 Infix Left

== 70 Infix Left

!= 70 Infix Left

and 80 Infix Right

or 90 Infix Right

= 100 Infix Right

:= 100 Infix Right

| 110 Infix Right

? 110 Infix Right

TABLE 44. Operator Precedence Table

Operator
Precedence 
Level Fix Associativity



WebL Quick Reference

168 WebL - A Programming Language for the Web

Operators

TABLE 45. WebL Operators

Operator Description

!(x: bool): bool Logical negation.

!=(x, y): bool Value in-equality test. See “Value 
Equality” on page 31.

!after(p: piece, q: piece): pieceset
!after(p: pieceset, q: piece): pieceset
!after(p: piece, q: pieceset): pieceset
!after(p: pieceset, q: pieceset): pieceset

All the elements of p that are not 
after any element of q.

!before(p: piece, q: piece): pieceset
!before(p: pieceset, q: piece): pieceset
!before(p: piece, q: pieceset): pieceset
!before(p: pieceset, q: pieceset): pieceset

All the elements of p that do not 
precede any element of q.

!contain(p: piece, q: piece): pieceset
!contain(p: pieceset, q: piece): pieceset
!contain(p: piece, q: pieceset): pieceset
!contain(p: pieceset, q: pieceset): pieceset

All the elements of p that do not 
contain any element of q.

!directlyafter(p: piece, q: piece): pieceset
!directlyafter(p: pieceset, q: piece): pieceset
!directlyafter(p: piece, q: pieceset): pieceset
!directlyafter(p: pieceset, q: pieceset): pieceset

All the elements of p that do not 
follow directly after any element 
of q.

!directlybefore(p: piece, q: piece): pieceset
!directlybefore(p: pieceset, q: piece): pieceset
!directlybefore(p: piece, q: pieceset): pieceset
!directlybefore(p: pieceset, q: pieceset): 
pieceset

All the elements of p that are not 
directly before any element of q.

!directlycontain(p: piece, q: piece): pieceset
!directlycontain(p: pieceset, q: piece): pieceset
!directlycontain(p: piece, q: pieceset): pieceset
!directlycontain(p: pieceset, q: pieceset): 
pieceset

All the elements of p that do not 
directly contain any element of q.

!directlyinside(p: piece, q: piece): pieceset
!directlyinside(p: pieceset, q: piece): pieceset
!directlyinside(p: piece, q: pieceset): pieceset
!directlyinside(p: pieceset, p: pieceset): pieceset

All the elements of p that are not 
directly inside any element of q.



WebL - A Programming Language for the Web 169

Operators

!inside(p: piece, q: piece): pieceset
!inside(p: pieceset, q: piece): pieceset
!inside(p: piece, q: pieceset): pieceset
!inside(p: pieceset, q: pieceset): pieceset

All the elements of p that are not 
located inside any element of q.

!overlap(p: piece, q: piece): pieceset
!overlap(p: pieceset, q: piece): pieceset
!overlap(p: piece, q: pieceset): pieceset
!overlap(p: pieceset, q: pieceset): pieceset

All the elements of p that do not 
overlap any element in q.

*(q1: piece, q2: piece): pieceset
*(q: piece, s: pieceset): pieceset
*(s: pieceset, q: piece): pieceset
*(s1: pieceset, s2: pieceset): pieceset

Piece set intersection.

*(x: int, y: int): int
*(x: int, y: real): real
*(x: real, y: int): real
*(x: real, y: real): real

Numeric multiplication.

*(x: set, y: set): set Set intersection.

+(q1: piece, q2: piece): pieceset
+(q: piece, s: pieceset): pieceset
+(s: pieceset, q: piece): pieceset
+(s1: pieceset, s2: pieceset): pieceset

Piece set union.

+(x: char, y: string): string
+(x: char, y: char): string
+(x: string, y: string): string
+(x: string, y: char): string

String and character concatena-
tion.

+(x: int, y: int): int
+(x: int, y: real): real
+(x: real, y: int): real
+(x: real, y: real): real

Numeric addition x + y.

+(x: list, y: list): list List concatenation.

+(x: set, y: set): set Set union.

-(q1: piece, q2: piece): pieceset
-(q: piece, s: pieceset): pieceset
-(s: pieceset, q: piece): pieceset
-(s1: pieceset, s2: pieceset): pieceset

Piece set difference.

-(x: int): int
-(x: real): real

Numeric negation.

TABLE 45. WebL Operators

Operator Description



WebL Quick Reference

170 WebL - A Programming Language for the Web

-(x: int, y: int): int
-(x: int, y: real): real
-(x: real, y: int): real
-(x: real, y: real): real

Numeric substraction.

-(x: set, y: set): set Set exclusion.

.(x: object, y): any Object field access.

/(x: int, y: int): int
/(x: int, y: real): real
/(x: real, y: int): real
/(x: real, y: real): real

Numeric division.

== (x, y): bool Value equality test. See “Value 
Equality” on page 31.

[](s: pieceset, i: int): piece Indexing into a piece set. Pieces 
are numbered 0 to Size - 1.

[](x: list, i: int): any
[](x: object, i): any
[](x: string, i: int): char

List, object, and string indexinga. 
Elements in a list and string are 
numbered from 0 to Size-1.

after(p: piece, q: piece): pieceset
after(p: pieceset, q: piece): pieceset
after(p: piece, q: pieceset): pieceset
after(p: pieceset, q: pieceset): pieceset

All the elements of p that are after 
any element of q.

before(p: piece, q: piece): pieceset
before(p: pieceset, q: piece): pieceset
before(p: piece, q: pieceset): pieceset
before(p: pieceset, q: pieceset): pieceset

All the elements of p that precede 
any element of q.

C(x: int, y: int): bool
C(x: int, y: real): bool
C(x: real, y: int): bool
C(x: real, y: real): bool

Numerical comparison, where C is 
one of <, <=, >, or >=.

C(x: string, y: string): bool
C(x: char, y: char): bool

Lexical comparison, where C is 
one of <, <=, >, or >=.

contain(p: piece, q: piece): pieceset
contain(p: pieceset, q: piece): pieceset
contain(p: piece, q: pieceset): pieceset
contain(p: pieceset, q: pieceset): pieceset

All the elements of p that contain 
any element of q.

TABLE 45. WebL Operators

Operator Description



WebL - A Programming Language for the Web 171

Operators

directlyafter(p: piece, q: piece): pieceset
directlyafter(p: pieceset, q: piece): pieceset
directlyafter(p: piece, q: pieceset): pieceset
directlyafter(p: pieceset, q: pieceset): pieceset

All the elements of p that follow 
directly after any element of q.

directlybefore(p: piece, q: piece): pieceset
directlybefore(p: pieceset, q: piece): pieceset
directlybefore(p: piece, q: pieceset): pieceset
directlybefore(p: pieceset, q: pieceset): pieceset

All the elements of p that are 
directly before any element of q.

directlycontain(p: piece, q: piece): pieceset
directlycontain(p: pieceset, q: piece): pieceset
directlycontain(p: piece, p: pieceset): pieceset
directlycontain(p: pieceset, q: pieceset): 
pieceset

All the elements of p that directly 
contain any element of q.

directlyinside(p: piece, q: piece): pieceset
directlyinside(p: pieceset, q: piece): pieceset
directlyinside(p: piece, q: pieceset): pieceset
directlyinside(p: pieceset, q: pieceset): pieceset

All the elements of p that are 
directly inside any element of q.

div(x: int, y: int): int Whole division.

inside(p: piece, q: piece): pieceset
inside(p: pieceset, q: piece): pieceset
inside(p: piece, q: pieceset): pieceset
inside(p: pieceset, q: pieceset): pieceset

All the elements of p that are 
located inside any element of q.

intersect(p: piece, q: piece): pieceset
intersect(p: pieceset, q: piece): pieceset
intersect(p: piece, q: pieceset): pieceset
intersect(q: pieceset, p: pieceset): pieceset

All the elements of p that overlap 
an element in q, each of them 
repeatedly intersected with all 
overlapping elements in q.

member(x, s: set): bool
member(x, l: list): bool
member(x, o: object): bool

Set, list and objectb membership 
test.

mod(x: int, y: int): int x mod y.

or(x: bool, y: bool): bool
and(x: bool, y: bool): bool

Logical operators (short-circuit 
evaluation).

TABLE 45. WebL Operators

Operator Description



WebL Quick Reference

172 WebL - A Programming Language for the Web

overlap(p: piece, q: piece): pieceset
overlap(p: pieceset, q: piece): pieceset
overlap(p: piece, q: pieceset): pieceset
overlap(p: pieceset, p: pieceset): pieceset

All the elements of p that overlap 
any element in q.

without(p: piece, q: piece): pieceset
without(p: pieceset, q: piece): pieceset
without(p: piece, q: pieceset): pieceset
without(p: pieceset, q: pieceset): pieceset

All the elements of p where over-
laps with any element of q have 
been removed.

a. Right bracket fix operator of the form x[i].

b. Object membership test is based on object field names.

TABLE 45. WebL Operators

Operator Description



WebL - A Programming Language for the Web 173

Functions

Functions

TABLE 46. Built-in Functions

Function Description

Assert(x: bool) Throws an assertion-failed excep-
tion if x is false.

BeginTag(q: piece): tag Returns the begin tag of a piece.

Boolp(x): bool
Charp(x): bool
Funp(x): bool
Intp(x): bool
Listp(x): bool
Methp(x): bool
Objectp(x): bool
Realp(x): bool
Setp(x): bool
Stringp(x): bool
Pagep(x): bool
Piecep(x): bool
Tagp(x): bool
Piecesetp(x): bool

Predicates that check if a value is of 
a specific type.

Call(cmd: string): string Executes a shell command and 
returns the output written to standard 
out while the command is running. 
The command string may contain 
references to variables in lexical 
scope by writing $var or ${var}. The 
value of these referenced variables 
are expanded before the command is 
executed.

Children(q: piece): pieceset Returns a piece set consisting of all 
the direct children elements of q in 
the markup parse tree, unioned with 
pieces representing all the text seg-
ments in q (excluding all the nested 
text segments).

Clone(o: object, p: object, ...): object Makes a new object by copying all 
the fields of the objects passed as 
arguments. Fields of p have prece-
dence over fields of o (and so on).



WebL Quick Reference

174 WebL - A Programming Language for the Web

Content(p: page): piece Returns a piece that encompasses 
the whole page p.

Content(q: piece): piece Returns a piece inside q, represent-
ing everything that is inside q  
excluding the begin and end tag of q.

Delete(s: pieceset): nil
Delete(q: piece): nil

Deletes s or q from the page by 
removing all the pieces from the 
page data structure.

Elem(p: page): pieceset Returns all the elements in a page.

Elem(p: page, name: string): 
pieceset

Returns all the elements in page p 
with a specific name.

Elem(q: piece): pieceset Returns all the elements contained 
(nested) in piece q.

Elem(q: piece, name: string): 
pieceset

Returns all the elements with a spe-
cific name contained in piece q.

EndTag(q: piece): tag Returns the end tag of a piece.

Error(x, y, z, ...): nil Prints arguments to standard error 
output.

ErrorLn(x, y, z, ...): nil Prints arguments to standard error 
output followed by end-of-line.

Eval(s: string): any Evaluates the WebL program coded 
in string s.

Exec(cmd: string): int Executes a shell command and 
returns the exit code returned by the 
command. The command string may 
contain references to variables in 
lexical scope by writing $var or 
${var}. The value of these refer-
enced variables are expanded before 
the command is executed.

Exit(errorcode: int) Terminates the program with an 
errorcode.

TABLE 46. Built-in Functions

Function Description



WebL - A Programming Language for the Web 175

Functions

ExpandCharEntities(p: page, 
s: string): string

Expands the character entities (eg. 
"&lt;",  "&amp;") in s to their Uni-
code character equivalents. The 
DTD of page p is used for the look-
ups. 

ExpandCharEntities(s: string): string Expands the character entities (eg. 
"&lt;", "&amp;") in s to their Uni-
code character equivalents. The 
HTML 4.0  DTD is used for the 
lookups. 

DeleteField(o: object, fld): nil Removes the field fld from the 
object o. Nothing happens if the 
field fld does not exist,

First(l: list): any Returns the first element in a list.

Flatten(s: pieceset): pieceset Returns a “flattened” piece set 
(without any overlapping) of all the 
parts of the page covered by s.

GC(): nil Explicitly invokes the Java garbage 
collector.

GetURL(url: string): page Uses the HTTP GET protocol to 
fetch the resource identified by the 
URL.

GetURL(url: string, params: 
{object,string}): page

The params object/string contains 
the parameters of a GET that 
includes a query.

GetURL(url: string, params: 
{object,string}, headers: object): 
page

The headers object specifies the 
additional headers to include in the 
GET request.

GetURL(url: string, params: 
{object,string}, headers: object. 
options: object): page

The options object allows, amongst 
other functions, the overridng of the 
MIME type and DTD to be used for 
parsing the page. 

HeadURL(url: string): page Uses the HTTP HEAD protocol to 
fetch the resource headers identified 
by the URL.

HeadURL(url: string, params: 
{object,string}): page

The params object contains the 
parameters of the HEAD request.

TABLE 46. Built-in Functions

Function Description



WebL Quick Reference

176 WebL - A Programming Language for the Web

HeadURL(url: string, params: 
{object,string}, headers: object): 
page

The headers object specifies the 
additional headers to include in the 
HEAD request.

InsertAfter(t: tag, q: piece): nil
InsertAfter(t: tag, s: pieceset): nil

Inserts a copy of q after the tag t. 
Inserts copies of the elements of s 
after the tag t.

InsertBefore(t: tag, q: piece): nil
InsertBefore(t: tag, s: pieceset): nil

Inserts a copy of q before the tag t. 
Inserts copies of the elements of s 
before the tag t.

Markup(p: page): string Turns a page object back into a 
string.

Markup(q: piece): string Turns a piece object back into a 
string.

Name(q: piece): string Returns the name of a piece.

Native(classname: string): fun Loads a WebL functiona imple-
mented in Java.

NewNamedPiece(name: string, q: 
piece): piece

Equivalent to NewNamed-
Piece(name, BeginTag(q), End-
Tag(q)).

NewNamedPiece(name: string, t1: 
tag, t2: tag): piece

Returns a new named piece starting 
before t1 and ending after t2.

NewPage(s: string, mimetype: 
string): page

Parses the string s with the mime-
type indicated markup parser and 
returns a page object.

NewPiece(q: piece): piece Equivalent to NewPiece(Begin-
Tag(q), EndTag(q)).

NewPiece(s: string, mimetype: 
string): piece

Equivalent to Content(NewPage(s, 
mimetype)).

NewPiece(t1: tag, t2: tag): piece Returns a new unnamed piece start-
ing before t1 and ending after t2.

NewPieceSet(s: set): pieceset Converts a set of pieces into a piece 
set. Throws an EmptySet exception 
should s be empty.

NewPieceSet(p: page): pieceset Returns an empty pieceset associ-
ated with with page p.

TABLE 46. Built-in Functions

Function Description



WebL - A Programming Language for the Web 177

Functions

Page(q: piece): page Returns the page a piece belongs to.

Page(t: tag): page Returns the page a tag belongs to.

Para(p: page, paraspec: string): 
pieceset

Extracts the paragraphs in p accord-
ing to the paragraph terminator spec-
ification paraspec. See “Paragraph 
search” on page 75.

Para(p: piece, paraspec: string): 
pieceset

Extracts the paragraphs in p accord-
ing to the paragraph terminator spec-
ification paraspec. See “Paragraph 
search” on page 75.

Parent(q: piece): piece Returns the element in which q is 
nested (direct parent in the parse 
tree).

Pat(p: page, regexp: string): pieceset Returns all the occurrences of a reg-
ular expression pattern in page p.

Pat(q: piece, regexp: string): 
pieceset

Returns all the occurrences of a reg-
ular expression pattern located 
inside the piece q.

PostURL(url: string): page Uses the HTTP POST protocol to 
fetch the resource identified by the 
URL.

PCData(p: page): pieceset Returns the “parsed character data” 
of the page. This corresponds to the 
individual seqences of text on the 
page, as delimited by markup tags.

PCData(p: piece): pieceset Returns the “parsed character data” 
of the piece. This corresponds to the 
individual seqences of text inside the 
piece, as delimited by markup tags.

PostURL(url: string, params: 
{object,string}): page

The params object/string contains 
the parameters of a POST to fill in a 
web form.

PostURL(url: string, params: 
{object,string}, headers: object): 
page

The headers object specifies the 
additional headers to include in the 
POST request.

TABLE 46. Built-in Functions

Function Description



WebL Quick Reference

178 WebL - A Programming Language for the Web

PostURL(url: string, params: 
{object,string}, headers: object. 
options: object): page

The options object allows, amongst 
other functions, the overridng of the 
MIME type and DTD to be used for 
parsing the page. 

Pretty(p: page): string Returns a pretty-printed version of 
the page.

Pretty(q: piece): string Returns a pretty-printed version of a 
piece.

Print(x, y, z, ...): nil Prints arguments to standard output.

PrintLn(x, y, z, ...): nil Prints arguments to standard output 
followed by end-of-line.

ReadLn(): string Reads a line from standard input 
(throws away the end-of-line charac-
ter).

Replace(a: pieceset, b: pieceset): nil Replaces each piece set of a with 
copies of all the elements of b.

Rest(l: list): list Returns a list of all list elements 
except the first element.

Retry(x): any Executes expression x and returns its 
value. In case x throws an exception, 
x is re-executed as many times as 
needed until it is successful.

Select(l: list, from: int, to: int): list Extracts a sublist of l starting at ele-
ment number from and ending at ele-
ment number to (exclusive).

Select(s: set, f: fun): set
Select(l: list, f: fun): list
Select(p: pieceset: f: fun): pieceset

Maps sets, lists, and piecesets to 
sets, lists, and piecesets respectively 
according to a membership function 
f. Function f must have a single 
argument and must return a boolean 
value indicating whether the actual 
argument is to be included in the set, 
list or pieceset.

Select(s: string, from: int, to: int): 
string

Extracts a substring of s starting at 
character number from and ending at 
character number to (exclusive).

TABLE 46. Built-in Functions

Function Description



WebL - A Programming Language for the Web 179

Functions

Seq(p: page, pattern: string): 
pieceset

Matches all the occurrences of a 
sequence of elements identified by 
pattern. See “PCData search” on 
page 73.

Seq(p: piece, pattern: string): 
pieceset

Matches all the occurrences of a 
sequence of elements identified by 
pattern inside the piece p. See 
“PCData search” on page 73.

Sign(x: int): int
Sign(x: real): int

Returns -1, 0, +1 if x < 0, x = 0, and 
x > 0 respectively.

Size(l: list): int Returns the number of elements in a 
list.

Size(s: set): int Returns the number of elements in a 
set.

Size(s: string): int Returns the number of characters in 
a string.

Size(p: pieceset): int Returns the number of pieces 
belonging to p.

Sleep(ms: int): nil Suspends thread execution for the 
specified number of milliseconds.

Sort(l: list, f: fun): list Sorts the elements of l according to 
the comparison function f. The func-
tion f needs to take two formal argu-
ments and return -1, 0, or +1 if the 
actual arguments are less, equal, or 
more than each other.

Stall() Program goes to sleep forever.

Text(p: page): string Returns the text (sans tags) of a 
page.

Text(q: piece): string Returns the text (sans tags) of a 
piece.

TABLE 46. Built-in Functions

Function Description



WebL Quick Reference

180 WebL - A Programming Language for the Web

Text(q: piece, insertspaces: bool-
ean): string

Returns the text (sans tags) of a 
piece. When insertspaces is true, 
each HTML tag is mapped into a 
space and inserted into the result 
string (inline tags like “b”, “i”, 
“em”, etc. are ignored and not 
mapped into spaces). This option is 
useful to correctly identify word 
boundaries, for example to prevent 
words flowing together in a case like 
“<li>wordA</li><li>wordB</li>”.

Throw(o: object) Generates an exception.

Time(x): int Returns the time (in milliseconds) it 
takes to evaluate the expression x.

Timeout(ms: int, x): any Performs the expression x and 
returns its value. If the evaluation 
takes more than the specified 
amount of time (in milliseconds), an 
exception is thrown instead.

ToChar(c: char): char No operation.

ToChar(i: int): char Converts an integer to the equivalent 
Unicode character.

ToInt(c: char): int Returns the Unicode character num-
ber of a char.

ToInt(i: int): int No operation.

ToInt(r: real): int Rounds a real value down to an inte-
ger.

ToInt(s: string): int Converts a string to the numeric 
equivalent.

ToList(s: set): list
ToList(l: list): list
ToList(s: string): list
ToList(o: object): list
ToList(p: pieceset): list

Enumerates all the elements of the 
argument and returns a list. (See 
“Every Statement” on page 38.)

ToReal(c: char): real Same as ToReal(ToInt(c)).

ToReal(i: int): real Converts an integer to a real.

TABLE 46. Built-in Functions

Function Description



WebL - A Programming Language for the Web 181

Functions

ToReal(r: real): real No operation.

ToReal(s: string): real Converts a string to a real value.

ToSet(s: set): set
ToSet(l: list): set
ToSet(s: string): set
ToSet(o: object): set
ToSet(p: pieceset): set

Enumerates all the elements of the 
argument and returns a set. (See 
“Every Statement” on page 38.)

ToString(x): string Converts a value to its string repre-
sentation.

Trap(x):object Executes x and returns the exception 
object that was caught. In case no 
exception is thrown in x, nil is 
returned. In addition, the exception 
object contains a field trace that has 
extra information why the exception 
occurred. This information is useful 
for logging unexpected exception 
events in your WebL programs.

Type(x): string Returns the type of x  (nil, int, real, 
bool, char, string, meth, fun, set, list, 
object, page, piece, pieceset, tag).

a. The class indicated must be a subclass of webl.lang.expr.AbstractFun-
Expr

TABLE 46. Built-in Functions

Function Description



WebL Quick Reference

182 WebL - A Programming Language for the Web

Exceptions

Exceptions typically indicate unexpected situations occuring during program exe-
cution. Exceptions are caught with the try statement (See “Try Statement” on
page 36) and generated with the Throw built-in function. Processing exceptions
require knowledged about the format of exception objects, in particularly the type
of the exception, which allows you to distinguish between the possible situations
that occurred.

Table 47 lists the exceptions thrown by the built-in WebL functions. By conven-
tion, the exception type (eg ArgumentError etc.) is indicated by the type field of the
exception object. Also by convention, the msg field of the exception object gives
information on why the exception occured.

Operators and statements can also generate exceptions, as explained in the follow-
ing paragraphs. 

All operators will throw an OperandMismatch exception in case the operands to the
operator are not of the expected value type.

Function or method application (eg calling a function or method) can throw the following
exceptions:

• NoSuchField - Object does not have such field. 

• NotAFunctionOrMethod - Left-hand side is not callable. 

• NotAnObject - Left hand side is not an object.

• ArgumentError - Number of actual and formal arguments do not match.

Variable assigment with "=" can throw the following exceptions:

• FieldError - Unknown field or illegal field assignment.

• NotAnObject - Left hand side is not an object field.

• NotAVariable  - Left hand side is not a variable.

Field definition with ":=" can throw the following exceptions:

• FieldDefinitionError - Could not define field. 

• NotAnObject  - Left hand side is not an object.

Indexing into a type with "[ ]" or "." can throw the following exceptions:



WebL - A Programming Language for the Web 183

Exceptions

• IndexRangeError - Index is out of range.

• ArgumentError - Index is not of the expected type.

• NoSuchField - Object does not have such field.

• NotAnObject - Left hand side is not an object.

The if, repeat, while and catch statements will throw a GuardError exception if the
guard expression does not return a boolean value type. 

The every statement will throw a NotEnumerable exception if the object does not
have enumerable contents.

The lock statement will throw a NotAnObject exception if an attempt is made to
lock on a non-object value type.

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions

Assert(x: bool): nil ArgumentError - Incorrect or wrong 
number of arguments

AssertFailed - Assertion failed

BeginTag(q: piece): tag ArgumentError - Incorrect or wrong 
number of arguments

Boolp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Exec(cmd: string): int ArgumentError - Incorrect or wrong 
number of arguments



WebL Quick Reference

184 WebL - A Programming Language for the Web

Charp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Children(q: piece): pieceset ArgumentError - Incorrect or wrong 
number of arguments

Clone(o: object, p: object, ...): object ArgumentError - Incorrect or wrong 
number of arguments

Content(p: page): piece
Content(q: piece): piece

NoContent - Page or piece has no 
content

ArgumentError - Incorrect or wrong 
number of arguments

Delete(s: pieceset): nil
Delete(q: piece): nil

ArgumentError - Incorrect or wrong 
number of arguments

Elem(p: page): pieceset
Elem(p: page, name: string): 
pieceset
Elem(q: piece): pieceset
Elem(q: piece, name: string): 
pieceset

ArgumentError - Incorrect or wrong 
number of arguments

EndTag(q: piece): tag ArgumentError - Incorrect or wrong 
number of arguments

Error(x, y, z, ...): nil No exceptions are thrown

ErrorLn(x, y, z, ...): nil No exceptions are thrown

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL - A Programming Language for the Web 185

Exceptions

Eval(s: string): any ArgumentError - Incorrect or wrong 
number of arguments

SyntaxError - Cannot evaluate due 
to syntax error in argument

IOException - An IO exception 
occurred during function execution

ReturnException -  A return state-
ment was executed outside of a 
function or method while executing 
the argument 

Exec(cmd: string): int ArgumentError - Incorrect or wrong 
number of arguments

Exit(errorcode: int): nil ArgumentError - Incorrect or wrong 
number of arguments

ExpandCharEntities(p: page, s: 
string): string
ExpandCharEntities(s: string): string

ArgumentError - Incorrect or wrong 
number of arguments

IOException - An IO exception 
occurred during function execution

First(l: list): any ArgumentError - Incorrect or wrong 
number of arguments

EmptyList - Cannot apply first to an 
empty list

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL Quick Reference

186 WebL - A Programming Language for the Web

Flatten(s: pieceset): pieceset ArgumentError - Incorrect or wrong 
number of arguments

Funp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

GC(): nil ArgumentError - Incorrect or wrong 
number of arguments

GetURL(url: string): page)
GetURL(url: string, params: 
{object, string}): page)
GetURL(url: string, params: 
{object, string}, headers: object): 
page)
GetURL(url: string, params: 
{object, string}, headers: object, 
options: object): page)

ArgumentError - Incorrect or wrong 
number of arguments

NetException -  Fetch failed, "sta-
tuscode" field of the exception 
object indicates the reason 

GetURL(url: string): page)
GetURL(url: string, params: 
{object, string}): page)
GetURL(url: string, params: 
{object, string}, headers: object): 
page)

ArgumentError - Incorrect or wrong 
number of arguments

NetException -  Fetch failed, "sta-
tuscode" field of the exception 
object indicates the reason 

InsertAfter(t: tag; q: piece): nil
InsertAfter(t: tag; s: pieceset): nil

ArgumentError - Incorrect or wrong 
number of arguments

InsertBefore(t: tag; q: piece): nil
InsertBefore(t: tag; s: pieceset): nil

ArgumentError - Incorrect or wrong 
number of arguments

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL - A Programming Language for the Web 187

Exceptions

Intp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Listp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Markup(P: page): string
Markup(q: piece): string

ArgumentError - Incorrect or wrong 
number of arguments

Methp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Name(q: piece): string ArgumentError - Incorrect or wrong 
number of arguments

Native(classname: string): fun ArgumentError - Incorrect or wrong 
number of arguments

NativeCodeImportError -  Class 
instantiation failed, access denied, 
no such method, or not a sub-class 
of built-in 

NewNamedPiece(name: string, t1: 
tag, t2: tag): piece
NewNamedPiece(name: string, q: 
piece): piece

ArgumentError - Incorrect or wrong 
number of arguments

NotSamePage -  The tag arguments 
to the function do not belong to the 
same page 

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL Quick Reference

188 WebL - A Programming Language for the Web

NewPage(s: string, mimetype: 
string): page

ArgumentError - Incorrect or wrong 
number of arguments

NetException -  Fetch failed, "sta-
tuscode" field of the exception 
object indicates the reason 

NewPiece(q: piece): piece
NewPiece(s: string, mimetype: 
string): piece
NewPiece(t1: tag, t2: tag): piece

ArgumentError - Incorrect or wrong 
number of arguments

NotSamePage -  The tag arguments 
to the function do not belong to the 
same page 

NewPieceSet(p: page): pieceset ArgumentError - Incorrect or wrong 
number of arguments

NotAPiece - The set argument to 
NewPieceSet must only contain 
pieces

EmptySet -  The set argument to 
NewPieceSet must only contain 
pieces belonging to the same page 

NotSamePage -  The set argument to 
NewPieceSet must only contain 
pieces belonging to the same page 

Objectp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

PCData(p: page): pieceset
PCData(p: piece): pieceset

ArgumentError - Incorrect or wrong 
number of arguments

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL - A Programming Language for the Web 189

Exceptions

Page(q: piece): page
Page(t: tag): page

ArgumentError - Incorrect or wrong 
number of arguments

Pagep(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Para(p: page, paraspec: string): 
pieceset
Para(q: piece, paraspec: string): 
pieceset

ArgumentError - Incorrect or wrong 
number of arguments

Parent(q: piece): piece ArgumentError - Incorrect or wrong 
number of arguments

Pat(p: page, regexp: string): pieceset
Pat(q: piece, regexp: string): 
pieceset

ArgumentError - Incorrect or wrong 
number of arguments

MalformedPattern - Illegal regular 
expression passed to Pat function

PieceSetp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Piecep(x): bool ArgumentError - Incorrect or wrong 
number of arguments

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL Quick Reference

190 WebL - A Programming Language for the Web

PostURL(url: string): page)
PostURL(url: string, params: 
{object, string}): page)
PostURL(url: string, params: 
{object, string}, headers: object): 
page)
PostURL(url: string, params: 
{object, string}, headers: object, 
options: object): page)

ArgumentError - Incorrect or wrong 
number of arguments

NetException -  Fetch failed, "sta-
tuscode" field of the exception 
object indicates the reason 

IOException - An IO exception 
occurred during function execution

Pretty(p: page): string
Pretty(q: piece): string

ArgumentError - Incorrect or wrong 
number of arguments

Print(x, y, z, ...): nil No exceptions are thrown

PrintLn(x, y, z, ...): nil No exceptions are thrown

ReadLn(): string ArgumentError - Incorrect or wrong 
number of arguments

IOException - An IO exception 
occurred during function execution

Realp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Replace(a: pieceset, b: pieceset): nil ArgumentError - Incorrect or wrong 
number of arguments

Rest(l: list): list ArgumentError - Incorrect or wrong 
number of arguments

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL - A Programming Language for the Web 191

Exceptions

Retry(x): any ArgumentError - Incorrect or wrong 
number of arguments

Select(s: set: f: fun): set
Select(l: list, f: fun): list
Select(p: pieceset, f: fun): pieceset
Select(s: string, from: int, to: int): 
string

ArgumentError - Incorrect or wrong 
number of arguments

Seq(p: page, pattern: string): 
pieceset
Seq(q: piece, pattern: string): 
pieceset

ArgumentError - Incorrect or wrong 
number of arguments

IndexRangeError - Index into list or 
string out of bounds

FunctionReturnTypeNotBoolean -  
Function argument to Select did not 
return a boolean value 

Setp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Sign(x: int): int
Sign(x: real): int

ArgumentError - Incorrect or wrong 
number of arguments

Size(s: set):int
Size(s: string): int
Size(l: list): int

ArgumentError - Incorrect or wrong 
number of arguments

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL Quick Reference

192 WebL - A Programming Language for the Web

Sleep(ms: int): nil ArgumentError - Incorrect or wrong 
number of arguments

Interrupted - Sleep function inter-
rupted

Sort(l: list, f: fun): list ArgumentError - Incorrect or wrong 
number of arguments

FunctionReturnTypeNotInteger -  
Function argument to Sort did not 
return an integer value 

Stall() ArgumentError - Incorrect or wrong 
number of arguments

Stringp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Tagp(x): bool ArgumentError - Incorrect or wrong 
number of arguments

Text(p: page): string
Text(q: piece): string

ArgumentError - Incorrect or wrong 
number of arguments

Throw(o: object) ArgumentError - Incorrect or wrong 
number of arguments

Time(x): int ArgumentError - Incorrect or wrong 
number of arguments

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL - A Programming Language for the Web 193

Exceptions

Timeout(ms: int, x): any ArgumentError - Incorrect or wrong 
number of arguments

Timeout - A time out occurred

ToChar(c: char): char
ToChar(i: int): char

ArgumentError - Incorrect or wrong 
number of arguments

ToInt(c: char): int
ToInt(i: int): int
ToInt(r: real): int
ToInt(s: string): int

ArgumentError - Incorrect or wrong 
number of arguments

ToList(s: set): list
ToList(l: list): list
ToList(s: string): list
ToList(o: object): list
ToList(p: pieceset): list

ArgumentError - Incorrect or wrong 
number of arguments

ToReal(c: char): real
ToReal(i: int): real
ToReal(r: real): real
ToReal(s: string): real

ArgumentError - Incorrect or wrong 
number of arguments

ToSet(s: set): set
ToSet(l: list): set
ToSet(s: string): set
ToSet(o: object): set
ToSet(p: pieceset): set

ArgumentError - Incorrect or wrong 
number of arguments

ToString(x): string ArgumentError - Incorrect or wrong 
number of arguments

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL Quick Reference

194 WebL - A Programming Language for the Web

Trap(x): object ArgumentError - Incorrect or wrong 
number of arguments

ToString(x): string ArgumentError - Incorrect or wrong 
number of arguments

TABLE 47. Exceptions thrown by the built-in functions

Function Exceptions



WebL - A Programming Language for the Web 195

Regular Expressions

Regular Expressions

Here we summarize the syntax of Perl5 regular expressions, all of which are sup-
ported by the WebL. However, for a definitive reference, you should consult the
perlre man page that accompanies the Perl5 distribution and also the book Pro-
gramming Perl, 2nd Edition from O’Reilly & Associates. We need to point out here
that for efficiency reasons the character set operator [...] is limited to work on only
ASCII characters (Unicode characters 0 through 255). Other than this restriction,
all Unicode characters should be useable in the package’s regular expressions. 

Perl5 regular expressions consist of:

• Alternatives separated by | 

• Quantified atoms (Table 48)

• Atoms 

Regular expression within parentheses, character classes (e.g., [abcd]), ranges 
(e.g. [a-z]), and the patterns in Table 50. Special backslashed characters work 
within a character class (except for backreferences and boundaries). \b is back-
space inside a character class. Any other backslashed character matches itself. 
Expressions within parentheses are matched as subpattern groups and saved for 
use by certain methods. 

By default, a quantified subpattern is greedy. In other words, it matches as many
times as possible without causing the rest of the pattern not to match. To change the
quantifiers to match the minimum number of times possible, without causing the
rest of the pattern not to match, you may use a "?" right after the quantifier (Table
49). Perl5 extended regular expressions are fully supported (See Table 51).

TABLE 48. Quantified Atoms

Pattern Description

{n,m} Match at least n but not more than m times. 

{n,} Match at least n times. 

{n} Match exactly n times.

* Match 0 or more times.

+ Match 1 or more times.

? Match 0 or 1 times.



WebL Quick Reference

196 WebL - A Programming Language for the Web

Regular Expression Tips. Combining regular expresions and WebL code might
sometimes be a little confusing. The following tips might help:

• When possible, write WebL regular expressions in single-back quotes e.g. 
‘ab\nc‘. This will switch off escape character expansion, and prevent WebL 
from complaining about illegal escape sequences like "\d".

• When matching URLs, keep in mind that "." and "?" do not have a literal mean-
ing in regular expressions. Use the "[]" character classes to match these sym-
bols, e.g.  write "www[.]xyz[.]com" instead of "www.xyz.com".

TABLE 49. Quantified Atoms with Minimal Matching

Pattern Description

{n,m}? Matches at least n but not more than m times. 

{n,}? Matches at least n times. 

{n}? Matches exactly n times.

*? Matches 0 or more times.

+? Matches 1 or more times.

?? Matches 0 or 1 times.



WebL - A Programming Language for the Web 197

Regular Expressions

TABLE 50. Atoms

Pattern Description

. Matches everything except \n.

^ Null token matching the beginning of a string or line (i.e. 
the position right after a newline or right before the 
beginning of a string). 

$ Null token matching the end of a string or line (i.e. the 
position right before a newline or right after the end of a 
string). 

\b Null token matching a word boundary (\w on one side 
and \W on the other). 

\B Null token matching a boundary that is not a word 
boundary.

\A Matches only at beginning of string.

\Z Matches only at end of string (or before newline at the 
end).

\n Newline.

\r Carriage return.

\t Tab.

\f Formfeed.

\d Digit [0-9].

\D Non-digit [^0-9].

\w Word character [0-9a-zA-Z].

\W Non-word character [^0-9a-zA-Z].

\s A whitespace character [ \t\n\r\f].

\S A non-whitespace character [^ \t\n\r\f].

\xnn Hexadecimal representation of character.

\cD Matches the corresponding control character.

\nn or \nnn Octal representation of character unless a backreference.

\1, \2, \3, etc. Matches whatever the first, second, third, etc. parenthe-
sized group matched. This is called a backreference. If 
there is no corresponding group, the number is inter-
preted as an octal representation of a character.

\0 Matches null character.



WebL Quick Reference

198 WebL - A Programming Language for the Web

TABLE 51. Perl5 Extended Regular Expressions

Extended 
Pattern Description

(?#text) An embedded comment causing text to be ignored.

(?:regexp) Groups things like "()" but does not cause the group 
match to be saved.

(?=regexp) A zero-width positive lookahead assertion. For example, 
\w+(?=\s) matches a word followed by whitespace, with-
out including whitespace in the match result.

(?!regexp) A zero-width negative lookahead assertion. For example 
foo(?!bar) matches any occurrence of "foo" that is not 
followed by "bar". Remember that this is a zero-width 
assertion, which means that a(?!b)d will match ad 
because a is followed by a character that is not b (the d) 
and a d follows the zero-width assertion. 

(?imsx) One or more embedded pattern-match modifiers. i 
enables case insensitivity, m enables multiline treatment 
of the input, s enables single line treatment of the input, 
and x enables extended whitespace comments. 



WebL - A Programming Language for the Web 199

Symbols
33

! 34
- 33, 101
!= 34
!after 102
!before 102
!contain 101
!directlyafter 102
!directlybefore 103
!directlycontain 102
!directlyinside 101
!inside 101
!overlap 103
* 33, 101
+ 33, 101
. 34
/ 33
== 34
> 33
>= 33
? 48
| 48

A
Abstract syntax tree 18
after 86, 91, 102
and 34
AppendToFile 121
Assert 41
assignment 32
Associative arrays 29
Authentication 115

B
before 86, 89, 102
BeginTag 82, 111
Bool 23
boolean 129
Boolp 41
Built-in functions 40
byte 129

C
Call 41
Case-sensitivity 58
Char 24
char 129
Character Entities 57



200 WebL - A Programming Language for the Web

Character entities 82
Charp 41
Children 98, 104
Class 128
Clone 41
Command line options 159
Comments 56, 162
Compare 136
Comparison operators 33
Concurrency 119
Concurrent execution 48
Constants 19
Constructors 22
contain 86, 93, 101
Content 100, 104
Contexts 21
Cookie Databases 117
cookiedb 66
Cookies 54, 61, 117
Crawler 141

D
DDE 116
Decode 115, 138, 139
Delete 109, 111, 112, 123
DeleteField 42
directlyafter 91, 102
directlybefore 90, 102
directlycontain 94, 102
directlyinside 93, 101
Directories 123
div 33
Document Type Definition 54
double 129
DTD 54
Dynamic Data Exchange 116

E
EBNF 162
Elem 70, 79
Elements 56

Empty elements 56
Searching for 70

Encode 115, 139
EndsWith 136
EndTag 82
Equality 31
EqualsIgnoreCase 136
Error 41



WebL - A Programming Language for the Web 201

ErrorLn 41
Escape Sequences 165
Eval 41, 122
Exceptions

Trap function 44
Try statement 36

Exclusion 88
Exec 42
Exists 121
Exit 42
ExpandCharEntities 82
expandentities 65
Expressions 17

F
Farm 119
field definition 32
Fields 29
Files 121
First 42
Flatten 99, 104
float 129
Floating-point 26
Fun 27
Functions 173

Built-ins 40
Funp 41

G
Garbage collection 42
GC 42
Get 128
GetCurrentPage 116
GetURL 47, 59, 61, 64, 122

Overrides 63
Glue 139
GlueQuery 138, 139
GotoURL 116

H
HeadURL 64
Highlight proxy 156
HTML 54

Forms 52
Handling of badly formatted HTML 58
Parsing of 54

HTTP 52
Cookies 54
GET Request 52



202 WebL - A Programming Language for the Web

Headers 52, 53, 61
MIME types 53, 63
Parameters 52, 53, 60
POST Request 52
Request 52
Response 52
Set-cookie header 117
Status 52

I
Idle 120
Import 46
Indexing 34
IndexOf 136
InsertAfter 108, 111, 112
InsertBefore 108, 112
inside 86, 93, 101
Int 25
int 129
intersect 97, 103
Intersection 88
Intp 41
IsDir 123
IsFile 123
ISO-8859-1 162

J
J-array 127
Java 124
java.lang.String 129
Job queues 119
J-objects 124

K
Kincaid reading score 149

L
LastIndexOf 136
Latin 1 162
Length 128
List 26, 122
Listp 41
Load 118
LoadFromFile 121
LoadStringFromFile 121
Locks 38
long 129



WebL - A Programming Language for the Web 203

M
Markup 80, 81, 82
Markup algebra 67
Match 136
member 34
meth 30
Methods 30
Methp 41
Mkdir 123
mod 33
Modules 46

Base64 115
Browser 116
Cookies 117
Farm 119
Files 121
Java 124
Url 138
WebCrawler 141
WebServer 143

Mutual exclusion 38

N
Name 80, 82
Native 42
Netscape 116
New 128
NewArray 128
NewFarm 120
NewNamedPiece 106, 112
NewPage 80, 82
NewPiece 82, 106, 112
NewPieceSet 82
nil 23
Non-termination 49
null 129

O
Object-based programming 30
Objectp 41
Objects 29

Pages 59
Operator precedence 166
Operators 19, 32, 168
Optional tags 57
Options 159
or 34
overlap 86, 92, 103
Overrides 63



204 WebL - A Programming Language for the Web

autoredirect 65
charset 65
dtd 65
emptyparagaphs 65
fixhtml 66
mimetype 66
resolveurls 66

P
Page 81, 82
Pagep 41
Pages 59

Searching functions 70
Para 75, 79
Paragraph search 75
Paragraph terminators 75
Parent 99, 104
Pat 71
Pattern groups 71
Pattern search 71
PCData 73, 79
Perform 120
Perl5 195
PI 57
Piece set

Operators 87
Piece set functions

Children 98
Content 100
Flatten 99
Parent 99

Piece set operators
After 91
Before 89
Contain 93
Directlyafter 91
Directlybefore 90
Directlycontain 94
Directlyinside 93
Indexing 89
Inside 93
Intersect 97
Overlap 92
Set Exclusion 88
Set Intersection 88
Set Union 88
Without 95

Piece sets 69
Piecep 41



WebL - A Programming Language for the Web 205

Pieces 68
Comparison of 83
Creation of 82, 106
Deleting of 109
Filtering of 78
Graphical notation 69
Insertion of 108
Replacing of 111

Piecesetp 41
Positions 84
PostURL 47, 59, 61, 64, 122

Overrides 63
Predicates 41
Pretty 81, 82
Print 42
PrintLn 42
Processing Instructions 57
Properties 160
Proxies 115, 156
Publish 143, 145

R
Reading grades 149
ReadLn 42
Real 26
Realp 41
Regular expressions 71, 165, 195
Repetition 49
Replace 111, 112, 136
Resolve 139
Rest 42
Retry 42
Running WebL programs 159

S
Save 118
SaveToFile 122
Scoping rules 20
Scrubber 110
Search 136
Search path 160
Select 42, 43
Seq 74, 79
Sequence search 74
Sequential execution 48
Service combinators 47
Services 47
Set 27, 128
Setp 41



206 WebL - A Programming Language for the Web

SGML 54
SGML Directives 57
Shell commands 41, 42
short 129
ShouldVisit 141
ShowPage 116
Sign 43
Size 43, 123
Sleep 43
Sort 43
Split 137, 139
SplitQuery 138, 139
Stall 43
Start 143, 145
StartsWith 137
Statements 20, 35

Begin statement 39
Every statement 38
If statement 35
Lock statement 38
Repeat statement 36
Return statement 39
Sequences 35
Try statement 36
While statement 36

statuscode 147
statusmsg 147
Stop 120, 145
String 25
Stringp 41

T
Tagp 41
Tags 55, 68

Begin tags 68
End tags 68
Optional tags 57
Positions of 84
Unnamed tags 68

Terminology 17, 51
Text 80, 83
Text segments 68, 73
Threads 119

Mutual exclusion 38
Throw 43
throw 36
Time 43
Time-out 49
Timeout 43



WebL - A Programming Language for the Web 207

ToChar 43
ToInt 44
ToList 44
ToLowerCase 137
ToReal 44
ToSet 44
ToString 44
ToUpperCase 137
Trap 44
Trim 137
Type 44
Types 18

Bool 23
Char 24
Fun 27
Int 25
j-array 127
J-Object 124
List 26
Meth 30
Nil 23
Object 29
Real 26
Set 27
Special objects 29
String 25

U
Union 88
Unnamed tags 68
URL

Resolution of 58
URLs 51
UTF-8 162

V
Value types 18
Variables 20

Exported variables 46

W
WebCrawler 141, 153
WebL.jar 159
WebL-Java type conversion 125
weblwin32.dll 116
WebServer 143
without 95, 103



208 WebL - A Programming Language for the Web

X
XML 55


