
Generating Arguments for Ontology Matching

Paulo Maio

GECAD – ISEP - IPP

School of Engineering

Polytechnic of Porto

Porto, Portugal

pam@isep.ipp.pt

Nuno Silva

GECAD – ISEP - IPP

School of Engineering

Polytechnic of Porto

Porto, Portugal

nps@isep.ipp.pt

José Cardoso

University of Trás-os-Montes

 and Alto Douro

Vila Real, Portugal

jcardoso@utad.pt

Abstract

Agents embedded on open, dynamic and decentralized

environments adopt different ontologies to describe their

domain of discourse. Yet, agents have no prior knowledge

of the other agents with whom they will interact. Therefore,

a consistent and compatible communication relies on the

agents’ ability to reconcile in run-time the vocabulary used

in their ontologies whose result is a set of correspondences.

Since each party might have its own perspective about what

are the best correspondences, conflicts arise. To address

such conflicts, it is envisaged as a suitable approach that

agents adopt the generic argument-based negotiation

process presented in [1]. A critical issue of that process

concerns the arguments generation process according to

the argumentation framework that it relies on. In this paper

it is proposed an automatic process to generate arguments

regarding the ontologies reconciliation through semantic

interpretations of third party generated correspondences.

1. Introduction

The FIPA agent communication model [2] relies on the

assumption that two agents, wishing to converse, share a

common ontology for the domain of discourse, i.e. the

agents assign the same meaning to the symbols used in the

messages [2]. Such assumption may be acceptable in

applications scenarios running on controlled environments,

but agents embedded in open, dynamic and decentralized

environments such assumption is not feasible because

different parties (i.e. people and agents) adopt different

ontologies for their descriptions, making heterogeneity

problems arise between communication partners. Agents

operating in an open, ill-specified environment, often have

no prior knowledge of the other agents with whom they

will interact, compelling the agents to decide at run-time

about each and all correspondences they will adopt in the

conversation. Therefore, the ability to reconcile ontologies

is a corner stone for agents’ interoperability. In the

literature this reconciliation problem is usually called

Ontology Matching [3]. This reconciliation relies on

establishing a set of correspondences (i.e. an alignment)

between the agents’ ontologies which are further exploited

to interpret or translate exchanged messages and their

content.

Research initiatives in ontology matching have

developed many algorithms and systems able to generate

(semi-) automatic correspondences between two different

but overlapping ontologies [3]. However, different systems

have contradictory and inconsistent perspectives about

candidate correspondences. Additionally, agents pursuing

their own goals might have different preferences and

interests due, for instance, to the subjective nature of

ontologies, the context and the alignment requirements.

Consequently, conflicts arise between agents about which

are the best correspondences.

Approaches relying on an argument-based negotiation

such as [4], [5] were proposed to allow agents to reach a

consensus about the correspondences that must be part of

the alignment enabling them to communicate and mutually

understand each other. However, on those approaches the

correspondences are provided by a single Ontology

Alignment Service (OAS) that is common to all agents.

This constraint somehow implies that agents had previously

agreed on which OAS to use. Moreover, since all agents are

using the same OAS and therefore implying agents’ ability

to understand all provided data, it also means that the main

difference between agents’ individual knowledge with

respect to the ontology alignment domain rely exclusively

on the preferred audience [6] . Given that, argumentation

outcome basically corresponds to the intersection of the

alignments proposed by each agent. In that sense, agents do

not have the chance to exploit existing differences between

agents’ knowledge in order to persuade opponent agents.

To overcome these and others (e.g. lack of quantitative

or opinion factors) limitations it is envisaged as a suitable

approach that agents adopt the generic and domain-

independent argument-based negotiation process presented

in [1], which relies on the Extensible Argumentation

Framework (EAF) [1], [7], to address conflicts about

correspondences. For that, the EAF Instantiation phase

which concerns the arguments generation is seen as a

critical issue. In that sense, this paper proposes an

automatic process to generate arguments according to the

EAF structure for the ontology matching domain through

semantic interpretations of third party generated

correspondences.

The rest of this paper is organized as follows: the next

section describes the main structures and concepts of the

EAF on which the argument-based negotiation process to

be adopted by communicating agents rely on. Section 3

describes the proposed arguments generation process for

the ontology matching domain concerning the EAF

instantiation phase of the negotiation process. Finally,

section 4 draws conclusions and comments on future work.

2. EAF

This section describes briefly and informally the main

features of the Extensible Argumentation Framework

(EAF) [1], [7]. The EAF comprehends three modeling

layers as depicted in Figure 1.

The Meta-model layer defines the core argumentation

concepts (Argument, Statement and Reasoning Mechanism)

and a set of relations holding between them. An argument

applies a reasoning mechanism (such as rules, methods, or

processes) to conclude a conclusion-statement from a set of

premise-statements. Intentional arguments are the

arguments corresponding to intentions ([8], [9]). Yet,

intentional arguments are supported/attacked by both:

intentional and non-intentional arguments. With respect to

ontology matching, an intentional argument represents a

correspondence while information used to support/attack

such correspondence is represented by a non-intentional

argument. Yet, the existence of a correspondence may

support/attack the existence of another correspondence.

The Model layer defines the entities and their relations

for a specific domain (e.g. ontology matching) according to

a community’s perception. The resulting model is further

instantiated at the Instance-pool layer. The relation is

established between two argument types (e.g. ())

when supports or attacks . Through it is also

determined the types of statements that are admissible as

premises of an argument. Additionally, arguments,

statements and reasoning mechanisms can be structured

through the , and relations respectively (vaguely

similar to the subclass/superclass relation).

The Instance-Pool layer corresponds to the instantiation

of a particular model layer for a given scenario (e.g. agents

negotiating the alignment to be established between their

ontologies). A statement instance is said to be in conflict

with another statement instance when states

something that implies or suggests that is not true. The

statement conflict relation is asymmetric (in Figure 1

conflicts with too). The support and attack relationships

(and respectively) between argument instances

are automatically inferred exploiting (i) the relations

defined at the model layer and (ii) the existing premise

relations and the statements conflicts at this level.

An EAF model may reuse and further extend the

argumentation conceptualizations of several existing EAF

models. Inclusion of an EAF into another EAF is governed

by a set of modularization constraints ensuring that no

information of included EAF is lost.

3. Ontology matching’ EAF instantiation

This section describes the developed process for the

EAF Instantiation phase (introduced in [1]) concerning the

ontology matching field. Yet, the developed process is not

committed to any particular EAF model for the ontology

matching domain.

Figure 1. The three EAF modeling layers

Argument

Statement ReasoningMechanismIntentionalArgument

HA

R, Rsup, Ratt

HM

HS

concludes

applies

M
e

ta
-M

o
d

e
l
L

a
y
e

r

A B C D Eapplies

concludes

concludes

M
o

d
e

l
L

a
y
e

r

A1 C2B1

In
s
ta

n
c
e

-P
o

o
l

L
a

y
e

r

ty
p

e
O

f

ty
p

e
o

f

B2

ty
p

e
o

f

conflictWith

ty
p

e
o

f

concludes

D1

concludes

ty
p

e
o

f

premise

 conflictWith

R

applies

C1

ty
p

e
o

f

concludes

premise

E1

ty
p

e
o

f

applies

applies
applies

F

F1

ty
p

e
o

f

Despite all the existing (conceptual and practical)

differences between matching algorithms (matchers), all of

them have as output a set of correspondences. Each

correspondence (or match) is a 4-uple: ()

where and are the source and target ontology entities

respectively, is a relation (e.g. equivalence, more

specific) and is a confidence value, typically in the [0-1]

range. Correspondences and matchers generating them are

the units of information that are used to generate argument

instances.

Contrary to arguments, EAF do not establish any

structure for statements. In that sense, we have defined a

matching statement as 3-uple () where is a

correspondence, is a univocal matcher identification and

 * + stating if is in favor () or against () .

Each statement instance has an EAF-model statement

type which depends on two dimensions:

 the match’s content of the statement-instance, namely:

o the type of the related entities. Typically, an

ontology entity is classified as (i) concept or class

(C), (ii) property or relation and (iii) instance (I). A

property entity is further sub-classified either as

object-property (OP) or as data-property (DP);

o the relation holding between them (e.g. equivalence,

synonym, broader, narrower);

 the matcher generating the match.

Agents may interpret the same correspondence

differently. For example, a correspondence stating that an

equivalence relation holds between concepts and may

be interpreted as:

 the equivalence relation holds between the labels of

concept and concept , if the proposing matcher

only exploits (i.e. compares) the entities’ labels to

propose such match;

 the internal structure of both concepts is equivalent, if

the proposing matcher only exploits and compares the

internal structure elements of each concept.

Despite these two possible interpretations, many others can

be done.

The position of a matcher about a correspondence (i.e.

for or against) is determined by the degree of confidence

(i.e.) that the matcher has on that correspondence. So, a

matcher is in favor of a correspondence if its

confidence value on is equal or greater than a given

threshold value (i.e.). Similarly, is against if

its confidence value on is below than another threshold

value (i.e.), otherwise (i.e.) is

neither in favor nor against and therefore is ignored.

Typically, instead of a single value to and common

to all matchers, it is settled one value to and by

matcher. When a matcher does not propose any

correspondence about a given pair of ontology entities,

there are two mutually exclusive alternatives: (i) consider

that matcher is against any correspondence relating those

entities or (ii) consider that matcher have no opinion about

that and therefore is neither for nor against any

correspondence relating those entities. Moreover, matchers

are classified based on the internal algorithm applied to

generate correspondences. Such classification relates to one

possible reasoning mechanisms of an argument. Notice

that, a matcher may apply different algorithms to discover

different types of correspondences (e.g. based on the

relation holding between entities or based on the entities

type). As a result, a semantic interpretation of matchers and

correspondences must be done by a domain expert (or third

party approaches) in order to define a mapping function

that provides the required information to create statements

and arguments. An abstract mapping function is depicted in

Table 1. Formally, a mapping function is defined as

 where is a statement type and

 a reasoning method of the EAF model.

Table 1. Abstract mapping function

Matcher
Match Content Stat.

Type

Reasoning

Method

 any 0.90 0.70

C C

any

 0.85 0.60 DP DP

OP OP

=

0.75 0.50
syn.

Since a mapping function represents the knowledge and

perception that a particular agent has on the ontology

matching domain, it might differ between agents. Notice

that, each agent may use a distinct set of matchers to

instantiate the EAF model. Yet, two agents using the same

matcher may have a distinct interpretation.

Consider that is the set of data/information collected

by an agent from the environment such that is a pair

() where is a correspondence and is the

identification of the matcher/agent from where was

collected. Also consider that (i) for an argument type the

function () returns all argument instances of type ,

(ii) for a statement type the function () returns all

statement instances of type , (iii) for an argument instance

 the function () returns the statement instance

concluded by and (iv) as the set of all statement types

defined in the EAF model. Given that, an EAF model for

the ontology matching domain is instantiated as follows.

First, through the mapping interpretation function,

every collected element give rise to (i) a statement instance

 of type whose content is () according to the

defined matching statement structure, (ii) a reasoning

method instance of type representing the algorithm

used by and (iii) an argument instance concluding

applying (see Algorithm 1).

Since no argument type is specified, is classified as

 (the root type). Therefore, in the next step all

argument instances are reclassified to a more specific type,

by means of an automatic process relying on the EAF

model information only. For example, a rule-based process

whose rules capture the following sentence: set argument

type to any argument instance whose conclusion-

statement is of type and the reasoning method used is of

type . Notice that, according to the EAF meta-model an

argument type defines the type of statement it concludes

and its reasoning mechanism.

Algorithm 1 Generating statements and arguments

Require: The EAF model to instantiate, a mapping

interpretation function and a set of collected data

Ensure: a set of arguments, statements and reasoning

methods

1: for all do

2: ()

3: () ()
4: ()

5: ()

6: ()
7: end for

Yet, since just a few ontology matching algorithms are

able to justify why a given correspondence is suggested

(e.g. [10]), argument instances are initially set with no

statements as premise. To overcome such issue, the

premises of argument instances are defined by exploring

the -ships between argument types defined in the EAF

model: a statement-instance is premise of an argument

instance if:

 the statement concluded by (say) satisfies a given

condition (i.e. ()) (cf. bellow for

details),

 both have the same position (i.e.) and

 is concluded by an argument instance whose type

(say) is related with the argument type of (say)

through (i.e. ()).

Algorithm 2 captures these rules.

Algorithm 2 Setting argument premises

Require: An EAF model instantiated with argument and

statement instances

Ensure: Establishes the premises of the argument instances

1: for all () do

2: for all () do

3: () ()
4: for all () do

5: () ()

6: if () and ()

7: Add as premise of

8: end if

9: end for

10: end for

11: end for

Typically, the function () checks if both

statements are about the same correspondence (i.e.

). However, depending on the type of statements being

verified such condition may be different. For example,

consider the following statements:

 () and ();

 () and ();

such that states that an equivalence relation holds

between concepts and while states that the super-

concepts of concepts and respectively are similar.

In that sense, may be set as premise of an argument

concluding if is a super-concept of and is a

super-concept of . Similar conditions may exist based on

others ontological notions such as sub-concepts, siblings,

domain and range. This kind of conditions usually permits

that conclusions of intentional arguments are used as

premises of arguments promoting others intentions.

At last, it established the existing conflicts between

statements in order to further derive all existing support and

attack relationships between argument instances. Therefore,

a statement-instance is in conflict with a statement

instance if at least one of the following conditions holds

(see Algorithm 3):

 both statement instances have the same statement type

and is about the same correspondence that (i.e.

) but their positions are contradictory (i.e.

);

 is concluded by an argument of type and is

concluded by an argument of type and is related

with through (i.e. ()) and both statements

satisfies a given condition (i.e. ()) but

their positions are contradictory (i.e.).

Algorithm 3 Setting conflicts between statements

Require: An EAF model instantiated with argument and

statement instances

Ensure: Establishes set of conflicts between statements

1: for all s do

2: for all () do

3: for all () do
4: if () and () and ()

5: Set is in conflict with

6: end if

7: end for

8: end for

9: end for

10: for all () do

11: for all () do

12: () ()
13: for all () do

14: () ()

15: if () and ()

16: Set is in conflict with

17: end if

18: end for

19: end for

20: end for

4. Conclusions

This paper proposed that communicating agents adopt

the generic EAF-based negotiation process presented in [1]

to resolve existing conflicts about which correspondences

must be established between their ontologies. One of the

critical phases of that process is the instantiation and

classification of arguments. Arguments are domain

dependent and in the case of ontology alignment it is

suggested to exploit correspondences generated by third

party algorithms/agents. For that, we proposed the adoption

of a matching-to-statement mapping function, that provides

each agent with a private interpretation of matches and

matchers. Based on the mapping function, arguments and

statements are generated. Concerning the definition of

argument’ premises and the conflict relation between

statements the process relies on a very simple yet

configurable approach based on a condition function. At

the end of the instantiation phase the support and attack

relations holding between arguments are automatically

established through the EAF features.

The proposed arguments generation process has two

main advantages when compared to the argument

generation process of related works (e.g. [4], [5]). First, it

makes possible through the condition function that the fact

of accepting/rejecting a given correspondence influences

positively or negatively the acceptance/rejection of others

correspondences. This is not possible on the other works.

Second, contrary to other works it is not mandatory that

two arguments concluding statements about the same

correspondence but with contradictory positions (i.e. in

favor/against) attack each other. For example, this permits

an argument concluding that two concepts have similar

labels does not attack an argument concluding that the

comments of the same two concepts are completely

different and vice-versa. Instead, according to an EAF

model, one may view the first argument as a reason to

support a third argument concluding that equivalence holds

between the two concepts and the second argument as a

reason to attack the third argument.

Experiences (not reported in this paper due lack of

space) performed on a set of commonly used ontology

alignment cases show that the EAF-based argumentation

process together with the match-statement-argument

generation process leads to a substantial improvement in

the quality of the alignment (in terms of precision and

recall) in comparison with the intersection of agents’

private alignments. Experiences also showed that after the

argumentation process runs agents remain with some

conflicts about correspondences. To resolve remaining

conflicts, the team will investigate the combination of the

proposed approach with the concession-based approach

presented in [11]. Another interesting research direction is

related with (i) the generalization of the specification

process of an EAF model for the ontology alignment

domain, (ii) measuring the impact of the EAF model used

by agents in the results of the overall argumentation

process and (iii) providing agents with the ability to learn

and improve their argumentation strategies based on their

past experiences.

ACKNOWLEDGMENTS

This work is partially supported by the Portuguese

MCTES-FCT project COALESCE

(PTDC/EIA/74417/2006).

5. References

[1] P. Maio, N. Silva, and J. Cardoso, “EAF-based

Negotiation Process,” in The 4th International

Workshop on Agent-based Complex Automated

Negotiation (ACAN) at AAMAS, 2011.

[2] FIPA, FIPA ACL Message Structure Specification.

2002.

[3] J. Euzenat and P. Shvaiko, Ontology Matching, 1st

ed., vol. 1, 1 vols. Heidelberg, Germany: Springer-

Verlag, 2007.

[4] L. Laera, I. Blacoe, V. Tamma, T. R. Payne, J.

Euzenat, and T. Bench-Capon, “Argumentation over

Ontology Correspondences in MAS,” in 6th

International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2007), p.

228, 2007.

[5] Paul Doran, T. Payne, V. Tamma, and Ignazio

Palmisano, “Deciding Agent Orientation on

Ontology Mappings,” in 9th International Semantic

Web Conference (ISWC), 2010.

[6] T. J. M. Bench-Capon, “Persuasion in Practical

Argument Using Value-based Argumentation

Frameworks,” J Logic Computation, vol. 13, no. 3,

pp. 429-448, Jun. 2003.

[7] P. Maio and N. Silva, Technical Report: The

Extensible Argumentation Framework. Porto,

Portugal: ISEP, 2011.

[8] M. Bratman, Intention, Plans and Practical Reason.

Cambridge, MA: Harvard University Press, 1987.

[9] M. Wooldridge, An Introduction to MultiAgent

Systems, 2nd ed. Wiley, 2009.

[10] P. Shvaiko, F. Giunchiglia, P. P. D. Silva, and D.

McGuinness, “Web Explanations for Semantic

Heterogeneity Discovery,” in Proc. 2nd European

Semantic Web Conference (ESWC), vol. 3532, p.

303―317, 2005.

[11] N. Silva, P. Maio, and J. Rocha, “An approach to

ontology mapping negotiation,” in Workshop on

Integrating Ontologies of the Third International

Conference on Knowledge Capture, 2005.

