
S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 163–180, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Three-Layer Argumentation Framework

Paulo Maio and Nuno Silva

GECAD – School of Engineering – Polytechnic of Porto
Rua Dr. Bernardino de Almeida 431, 4200-072 Porto, Portugal

{pam,nps}@isep.ipp.pt

Abstract. Argumentation frameworks which are abstract are suitable for the
study of independent properties of any specific aspect (e.g. arguments sceptical
and credulous admissible) that are relevant for any argumentation context.
However, its direct adoption on specific application contexts requires dealing
with questions such as the argument structure, the argument categories, the
conditions under which an attack/support is established between arguments, etc.
This paper presents a generic argumentation framework which comprehends a
conceptualization layer to capture the expressivity and semantics of the
argumentation data employed in a specific context and simplifies its adoption
by applications. The conceptualization layer together with the defined argument
structure is exploited to automatically derive the attack and support
relationships between arguments.

Keywords: Argumentation Frameworks, Argument Instantiation, Argument
Schemes, Bipolar Argumentation, Agents, MAS.

1 Introduction

A crucial problem on BDI agents as described by Wooldridge [1] concerns what
should be the agent beliefs and how those beliefs are used (i) to form new intentions,
or (ii) to redraw/revise current intentions. On this matter, contributions of the
argumentation research field may be exploited internally by BDI agents since
argumentation can be used either for reasoning about what to believe (i.e. theoretical
reasoning) and/or for deciding what to do (i.e. practical reasoning). Despite existing
differences between both, according to [2], from a standpoint of first-personal
reflection, a set of considerations for and against a particular conclusion are drawn on
both. Yet, agents in multi-agent systems (MAS) may apply argumentation externally
during interactions between agents, i.e. agents’ dialogues (cf. [3] for details). Within
this context, argumentation is seen as an activity where each participant tries to
increase (or decrease) the acceptability of a given standpoint for the other participants
by presenting arguments. Therefore, argumentation is foreseen as an adequate
modeling formalism to reduce the gap between models governing the internal and
external agent behavior.

In which concerns to argumentation, there is an abundance of relevant literature in
argumentation and argumentation systems. With regards to argumentation modeling

164 P. Maio and N. Silva

formalisms, the abstract argumentation frameworks such as the AF [4], the BAF [5]
and the VAF [6] are suitable to represent many different situations without being
committed to any domain of application. Due to their abstract nature they are also
suitable for the study of independent properties of any specific aspect (e.g. arguments
sceptical and credulous admissible) that are relevant for any argumentation context
that can be captured and formalized accordingly. On the other hand, this abstract
nature represents an expressiveness limitation to the direct adoption of specific
application contexts [7, 8]. To overcome this limitation, argumentation systems
usually adopt an abstract argumentation framework and extend it in order to get a less
abstract formalism, dealing in particular with (i) the construction of arguments and
their structure, (ii) the conditions under which argument-relations (i.e. attack and/or
support) are established, (iii) categories of arguments, etc. Nevertheless, abstract
argumentation frameworks do not provide any machinery facilitating and governing
how applications should extend or instantiate the framework. As a result, a significant
gap between abstract argumentation frameworks and applications exist.

Regarding arguments acceptability, argumentation systems (e.g. the Prakken
version of ASPIC [8]) use the abstract level as an abstraction of the overall system to
make logical inferences. That is, systems start with a knowledge base, which is used
to instantiate the adopted argumentation framework and then apply a given abstract
argumentation semantics such as the ones described in [7] to select the conclusions of
the associated sets of arguments. However, as studied in [8] and [9], in light of the
arguments’ content it is still possible that sets of arguments selected by an abstract
argumentation criterion yield to inconsistent conclusions.

This paper proposes a less abstract argumentation framework whose purpose is to
reduce existing gaps between abstract argumentation frameworks and applications,
namely which concerns with the arguments’ instantiation. For that, the proposed
framework (i) adopts a general and intuitive argument structure, (ii) includes a
conceptual layer for the specification of the semantics of argumentation data applied
in a specific domain of application (e.g. e-commerce, legal reasoning and decision
making) and (iii) defines a novel conceptual relation between argument-schemes
called arguments affectation. In addition, the proposed framework exploits the
conceptual information and the defined argument structure to automatically derive the
attack and support relationships between arguments. Despite the arguments’
acceptability issue is not directly addressed in this paper, applications still profiting
from the inherent suitability of abstract argumentation frameworks on the study of
independent properties, since information represented according to the proposed
argumentation framework is easily transformed (or converted) to BAF [5]. Despite
having these new features, the proposed argumentation framework remains general,
but less abstract than AF [4], BAF [5] and VAF [6].

The rest of the paper is organized as follows. The next section introduces
background concepts about abstract argumentation frameworks. Section 3 presents
the proposed argumentation framework. Next, in section 4, an example is provided to
illustrate the application of the proposed argumentation framework. Section 5
complements the proposed argumentation framework with a process to automatically
derive the attack and support relationships between arguments. Section 6 compares
and discusses the proposed framework with the related work. Finally, Section 7 draws
conclusions and discusses future work.

 A Three-Layer Argumentation Framework 165

2 Abstract Argumentation Frameworks

This section briefly describes the main concepts of the most referenced abstract
argumentation frameworks found in the literature: the Argumentation Framework
proposed by Dung (AF) [4], the Value Argumentation Framework (VAF) [6] and the
Bipolar Argumentation Framework (BAF) [5].

As proposed by Dung [4], the AF core entities are Argument, and a binary relation
between arguments () as depicted in Fig. 1a. The relation is known as the
attack relation. An AF can be defined as a tuple , where is a set of
arguments and is a relation on such that .

An AF instance may be represented by a directed graph whose nodes are
arguments and edges represent the attack relation. For any two arguments, say and

, such that , , one says that attacks iif , .

Fig. 1. The main concepts of abstract argumentation frameworks

In Dung’s work attacks always succeed (i.e. it defeats the attacked arguments).
Yet, one says that an argument is attacked by a set of arguments such that
if contains at least one argument attacking . Grounded on that, the following
notions were defined:

• An argument is acceptable with respect to a set of arguments , i.e. , , iif : , : , ;
• A set of arguments if conflict-free iif , : , , ;
• A conflict-free set of arguments is admissible iif : , ;
• A set of arguments is a preferred extension iif it is maximal (with respect to set

inclusion) admissible set of .

A preferred extension represents a consistent position within an AF instance, which is
defensible against all attacks and cannot be further extended without introducing a
conflict. Yet, multiple preferred extensions can exist in an AF instance due to the
presence of cycles of even length in the graph. Given that, one considers that (i) an
argument is sceptical admissible if it belongs to any preferred extension and (ii) an
argument is credulous admissible if it belongs to at least one preferred extension.

While it is reasonable that attacks always succeed when dealing with deductive
arguments, in domains where arguments lack this coercive force, arguments provide

166 P. Maio and N. Silva

reasons which may be more or less persuasive and their persuasiveness may vary
according to their audience. Accordingly, it is necessary to distinguish between
attacks and successful attacks (i.e. defeats) prescribing different strengths to
arguments on the basis of the values they promote and/or their motivation in order to
accommodate the different interests and preferences of an audience. With that
purpose, the VAF [6] extended the AF [4] with (i) the concept of Value and (ii) the
function promotes relating an Argument with a single Value (depicted in Fig. 1b).
Therefore, a VAF can be defined as 4-uple , , , where
and means the same as in the , a non-empty set of values and the function : to map elements from to elements of . Consequently, an
audience for a VAF instance corresponds to a binary preference relation
which is transitive, irreflexive and asymmetric. If a pair , means that value

 is preferred to in the audience . An attack between two arguments (i.e. ,) where promotes a value and promotes a value succeeds
(i.e. defeats) iif the adopted audience prefers to otherwise the attack fails.
As a result, previous notions (i.e. acceptable, admissible, conflict-free and preferred
extension) were redefined accordingly (cf. [6] for details). Notice that for the same
audience multiple preferred extensions are possible and different audiences may also
lead to a unique preferred extension. In this way, different agents (each one
represented by one audience) can have different perspectives (i.e. preferred
extensions) over the same arguments.

The AF and the VAF assume that an argument supports an argument if
attacks and therefore defeats an argument that attacks argument . Thus, these
frameworks only explicitly represent the negative interaction (i.e. attack), while the
positive interaction (i.e. defense/support) of an argument to another argument is
implicitly represented by the attack of to . Since support and attack are related
notions, this modeling approach adopts a parsimonious strategy, which is neither a
complete nor a correct modeling of argumentation [10]. Conversely, the BAF [5]
assumes the attack relation is independent of the support relation and both have a
diametrically opposed nature and represent repellent forces. As a result, BAF [5]
extended the AF [4] with the support relation () in order to be explicitly
represented (depicted in Fig. 1c). Thus, a BAF can be defined as a 3-uple , , where and means the same as in the and is a binary
relation on such that . Given that, for any two arguments, say and

, such that , , one says that supports iif , .
Consequently, the notions of acceptable and conflict-free arguments as well as the
notion of a preferred extension were redefined accordingly (cf. [5] for details).

For all of these frameworks, an argument is anything that may attack/support or be
attacked/supported by another argument. The absence of an argument structure and
semantics enables the study of independent properties of any specific aspect that are
relevant for any argumentation context that can be captured and formalized
accordingly. On the other hand, this emphasizes the limited semantics for direct
adoption in specific application contexts [7, 8]. Indeed, a given application context
requires a less abstract formalism to deal with (i) the construction of arguments and
their structure, (ii) the conditions for an argument attack/support another, (iii)
categories of arguments, etc.

 A Three-Layer Argumentation Framework 167

3 Three-Layer Argumentation Framework

This section presents the proposed argumentation framework, which is denominated
as Three-Layer Argumentation Framework (TLAF). First, we give an informal
overview of the framework main concepts and their relations. Further, the framework
is formally defined.

3.1 Informal Overview

Unlike the abstract argumentation frameworks described, the TLAF features three
modeling layers as depicted in Fig. 2 (the line ending with a hollow triangle means
specialization/generalization).

Fig. 2. The three modeling layers of the proposed argumentation framework

Despite existing differences, the TLAF Meta-Model Layer and the TLAF Instance
Layer have the same purpose as those of AF [4], BAF [5] and VAF [6] layers with the
same name. The TLAF Model Layer intends to capture the semantics of
argumentation data (e.g. argument types/schemes) applied in a specific domain of
application (e.g. e-commerce, legal reasoning and decision making) and the relations
existing between them. In that sense, the model layer is important for the purpose of
enabling knowledge sharing and reuse between agents. In this context, a model is a
specification used for making model commitments. Practically, a model commitment
is an agreement to use a vocabulary in a way that is consistent (but not complete) with
respect to the theory specified by a model [11, 12]. Agents then commit to models and
models are designed so that the knowledge can be shared among these agents.
Accordingly, the content of this layer directly depends on (i) the domain of
application to be captured and (ii) the perception one (e.g. a community of agents) has
about that domain. Due to this, we adopt the vocabulary of (i) argument (or

Argument

Statement ReasoningMechanismIntentionalArgument

R, Rsup, Ratt

conflictWith

concludes

applies

A B C D Eapplies

concludes

concludes

a1 c2b1 b2

conflictWith concludes

d1

concludes

premise

R

applies

c1

concludes

premise

e1applies

applies
applies

F

f1

168 P. Maio and N. Silva

statement)-instance as an instance of an (ii) argument (or statement)-type defined at
the Model Layer. Similarly, we adopt the vocabulary of (i) relation between types,
and (ii) relationship between instances.

In TLAF, the meta-model layer defines an argument which is made of three parts:
(i) a set of premise-statements, (ii) a conclusion-statement and (iii) an inference from
premises to the conclusion enabled by a reasoning mechanism. This argument
structure is very intuitive and corresponds to the minimal definition presented by
Walton in [13]. For that, the meta-model layer defines the notion of Argument,
Statement and Reasoning Mechanism, and a set of relations between these concepts.
Following the notion of the BDI model [14, 15], an IntentionalArgument is the type of
argument whose content corresponds to an intention. Domain data and its meaning are
captured by the notion of Statement. This mandatorily includes the domain intentions,
but also the desires and beliefs. The distinction between arguments and statements
allows the application of the same domain data (i.e. statement) in and by different
means to arguments. Also the same statement can be concluded by different
arguments, and serve as the premise of several arguments. The notion of Reasoning
Mechanism captures the rules, methods, or processes applied by arguments.

At the model layer, an argument-type (or argument scheme) is characterized by the
statement-type it concludes, the applied class of reasoning mechanism (e.g.
Deductive, Inductive, Heuristic) and the set of affectation relations (i.e.) it has. The

 relation is a conceptual abstraction of the attack (i.e.) and support (i.e.)
relationships. The purpose of is to define at the conceptual level that argument-
instances of an argument-type may affect (either positively or negatively) instances of
another argument-type. For example, according to the model layer of Fig. 2, ,

 means instances of argument-type may attack or may support instances of
argument-type depending on the instances content. On the other hand, if ,
it means that instances of argument-type cannot (in any circumstance)
attack/support instances of argument-type . Yet, the relation is also used to
determine the types of statements that are admissible as premises of an argument-
instance. So, an argument-instance of type can only have as premises statements of
type iif is concluded by an argument-type and affects (i.e. ,). For
example, considering again the model layer of Fig. 2, instances of argument-type
can only have as premises statements of type because is affected by argument-
type only.

At the instance layer, an argument-instance applies a concrete reasoning
mechanism to conclude a conclusion-statement-instance from a set of premise-
statement-instances. The relation conflictWith is established between two statement-
instances only. A statement-instance is said to be in conflict with another
statement-instance when states something that implies or suggests that is not
true or do not holds. The conflictWith relation is asymmetric (in Fig. 2 conflicts
with too). In this case, for example, may represent the statement “Peter is an
expert on PCs.” and may represent the statement “Peter is not an expert on PCs”.
While the and relations are established between argument-instances as in
BAF [5], these relationships are automatically inferred in TLAF exploiting (i) the
argument statements (i.e. conclusion and premises), (ii) the existing conflicts between
statement-instances and (iii) based on the relations defined at the model layer

 A Three-Layer Argumentation Framework 169

(cf. section 5 for details). It is worth noticing that all instances existing in the instance
layer must have an existing type in the model layer and according to the type
characterization.

3.2 Formal Definition

The TLAF is formally described as follows.

Definition 1 (TLAF). A TLAF structure is a singleton , where is the
set of entities of a TLAF.

A TLAF represents a self-contained unit of structured information. Elements in a
TLAF are called argumentation entities.

Definition 2 (TLAF Model Layer). A model layer associated with a TLAF is a 6-
tuple , , , , , where:

─ is a set of argument-types;
─ is the sub-set of argument-types whose instances claim corresponds to an

intention ([14, 15]);
─ is the a set of statement-types;
─ is the set of reasoning mechanisms;
─ establishes a reflexive relation between two argument-types called

arguments’ affectation. If a pair , then argument-instances of type
may affect (positively or negatively) argument-instances of type ;

─ is a function that assigns to every argument-type (i) the concluded statement-type
and (ii) the reasoning mechanism applied, such as : where:

─ function : ;
─ function : .

Each TLAF has a model layer associated with it. Information captured within the
model layer plays an important role by conducting and governing the instantiation
process of the framework by an application, namely which concerns the construction
and semantics of instances and existing relations between them. In that sense, the
model layer can also be used to validate the TLAF Instance Layer.

Notice that argument-types do not define their statement-types used as premises.
Instead, these are derived from the relation established between arguments.

Definition 3 (TLAF Instance Layer). An instance layer associated with a TLAF is a
6-tuple , , , , Σ, where:

─ , is a set of instances;
─ function : 2 relates an argument-type with a set of instances.

Consequently, the set of all argument instances is defined according to equation
1 (see below). Furthermore, we define the inverse function as : ;

─ function : 2 relates a statement-type with a set of instances.
Consequently, the set of all statement instances is defined according to equation
1. Furthermore, we define the inverse function as : ;

170 P. Maio and N. Silva

─ function : 2 relates a reasoning mechanism with a set of instances.
Consequently, the set of all reasoning mechanism instances is defined
according to equation 1. Furthermore, we define the inverse function as : ;

─ function Σ: 2 , defines for every argument-instance (i) the
statement-instance concluded, (ii) the reasoning mechanism instance used to infer
the conclusion and (iii) the set of statement-instances used as premises, where:

─ function : , defines the statement-instance that plays the role of
conclusion on an argument-instance. Indeed, an argument-instance has only
one statement-instance as conclusion while a statement-instance is concluded
by at least one argument-instance;

─ function : , defines the reasoning mechanism instance that is
used by an argument-instance.

─ function : 2 , defines the statement-instances used as premises
on an argument-instance. Moreover, statement-instances used as premises are
also concluded by other arguments;

─ function : 2 , defines the statement-instances that are in conflict
with a statement-instance.

: , : , : 1

As the reader might have noticed, the instance layer definition is concerned with the
generation of argument-instances, statement-instances and their inter-relationships (Σ
and). Despite the fact that this is a domain dependent process, it profits
from the subjacent TLAF model, namely due to the rules complementing the ,

 (see next definition) and (see section 5), that have the ability to
conduct and simplify the process.

Definition 4 (TLAF Interpretation). An interpretation of a TLAF is a structure ∆ , , , , where:

─ Δ is the domain set;

─ : 2 is an argument interpretation function that maps each argument-type
to a subset of the domain set;

─ : 2 is a statement interpretation function that maps each statement-type to
a subset of the domain set;

─ : 2 is a reasoning mechanism interpretation function that maps each
reasoning mechanism to a subset of the domain set;

─ : Δ is an instance interpretation function that maps each instance to a single
element in the domain set;

An interpretation is a model of TLAF if it satisfies the following properties:

─ , : ;
─ , : ;
─ , : ;

 A Three-Layer Argumentation Framework 171

─ :
─ , : ;
─ , , : , : ,
─ , : ;
─ , : ;
─ , : .

Definition 5 (Argument Properties). An argument-type and all its argument-
instances (i.e. :) are said to be:

─ intentional if ;
─ non-intentional if ;
─ defeasible if : , ;
─ indefeasible if : , .

Arguments may be used with two purposes: (i) to represent and communicate
intentions (i.e. intentional arguments) and (ii) to provide considerations (i.e. beliefs,
desires) for and against those intentions (i.e. non-intentional arguments). Thus, an
intentional argument may be affected by several non-intentional arguments.
Additionally, to capture dependency between intentions, intentional arguments may
be also affected (directly or indirectly) by other intentional arguments. A defeasible
argument is affected by other (sub-) arguments (i.e. the ones concluding its premises
or the ones undermining those premises) while an indefeasible argument can only be
affected by its negation since it cannot have premises. Given that, in a TLAF Model
Layer, intentional arguments should be always defeasible. On the contrary, non-
intentional arguments can be both defeasible and indefeasible.

4 A Walk-through Example

This section provides an example whose purpose is to show the application of TLAF.
For that, we decide on a common and simple scenario such as buying digital cameras.
First, for the scenario in hands a possible TLAF model is introduced and discussed.
Next, a short and somewhat contrived dialogue is used to demonstrate how the TLAF
model guides the instantiation process of TLAF.

4.1 A TLAF Model

Consider the partial TLAF model layer graphically depicted in Fig. 31, where the
rectangles denote non-intentional argument types, the rectangles with rounded corners
denote intentional argument-types and the oriented arrows denote an -relation
between two argument types.

1 Instead of a formal definition, we present a partial graphical view of the model layer because

we consider it to be more informative to the reader.

172 P. Maio and N. Silva

The intention of buying a camera is captured by the argument-type BuyCamera
which is affected by considerations about (i) the Requirement to buy a camera, (ii) the
general trend of received Reviews, (iii) the general perspective about the cameras’
Features and (iv) the PriceRelation (i.e. expensive vs. cheap). The PriceRelation
grounds on considerations about the CurrentPrice and the PastPrice. The Requirement
is affected by two types of considerations: (i) HobbyReq (i.e. a hobby requirement) or
(ii) a JobReq (i.e. job requirement). Reviews are affected by each individual opinion (i)
of friends (FriendsReview) and (ii) of experts (ExpertReview). The latter requires that
the reviewer is considered an expert (PersonExpert). The Features are affected by
considerations about the Zoom which is made based on the DigitalZoom and
OpticalZoom. Additionally, for the sake of brevity, consider that each of these
arguments concludes a statement-type with a similar name (e.g. argument OpticalZoom
concludes OpticalZoomStmt) and applies a heuristic or presumptive reasoning
mechanism. Notice that the provided conceptualization do not intends to be neither
complete nor the most accurate approach for the scenario in hands.

Fig. 3. A partial view over a TLAF model layer for buying cameras

This TLAF model has several indefeasible argument-types (e.g. PersonExpert,
CurrentPrice, PastPrice) and several defeasible argument-types (e.g. Reviews,
Requirement, PriceRelation). Regarding the former ones, agents are only able to
agree or disagree with the conclusions of those argument-instances. For example, an
agent can agree or disagree with other agent on the fact that someone is expert on
digital cameras but it cannot argue about the information behind such position (i.e.
belief). On the contrary, agents are able to argue about the information behind the
conclusions of defeasible arguments. For example, an agent that does not agree about
the general trend of reviews about a given digital camera presented by another agent
is able to present a set of individual reviews (provided by friends and/or experts)
supporting its position, which may lead the other agent to change its initial position.

Since a TLAF model captures the perception, the understanding and the rationality
that someone (e.g. an agent or a community of agents) has on a given moment about a
domain of application, it may evolve over time. For example, this model may evolve in
order to allow agents to argue about the fact of someone to be or not to be an expert.

 A Three-Layer Argumentation Framework 173

The information used for that purpose (e.g. the person’s skills) should be conceptual
analyzed and captured on the TLAF model. The resulting statement and argument types
must be connected with the already existing argument types through -relations.

4.2 Instantiating a TLAF Model

Consider the following dialogue takes place between husband (H) and wife (W). In
the light of previous TLAF model, the relevant statements (i.e. domain data) uttered
by both are marked as (with 0).

H. I am looking forward to buy camera X ().
W. Why? We don’t need it ().
H. That is not true (). I need a camera to perform the task that Sam assigned to me
(). Besides that, the camera received several good reviews on a website ().
W. Susan and Mary bought that camera and they told me that they regret their option
(and).
H. Oh, come on Honey. Peter Noble is an expert on the matter () and he says great
things about the camera ().
W. How much it costs? Is it expensive?
H. No! Currently, there is a great opportunity in the city mall (). It only costs
100€€ (). Last week, the price was 150€€ ().
W. That camera is a discontinued product.
H. I don’t care about that.
W. I am reading in this magazine that it lacks some minimal features () such as
zoom ().
H. Nonsense! Camera X has a digital zoom of “80x” ();
W. Yeah! But, the optical zoom is only of “4x” ().

It is worth noting that: (i) the information stating camera X is a discontinued product
did not give raise any statement because it was not envisioned in the TLAF model
layer being used; and (ii) despite Susan and Mary have the same opinion, two
statements (i.e. and) were identified such that each statement corresponds to
the opinion of a single person (i.e. Susan and Mary respectively), which is consistent
with the semantics of the underlying TLAF model.

Even though this is a short dialogue, it already may be difficult to keep track of all
information used and how it is inter-related in the form of argument-instances. As the
result of an instantiation process, consider the arguments, the statements and the
relationships between arguments and statements presented in Table 1.

To make evident how the information captured in a TLAF model can be exploit
during the instantiation process, let us roughly describe the one adopted here. It
consists of three distinct and complementary steps. First step, each statement
identified in the dialogue gives raise to one argument-instance concluding that
statement. Second step, because the premises of argument-instances are not always
explicit in the dialogue, the instantiation process infers the premises through the
information captured in the model layer. Thus, it sets as premise-statements of an
argument-instance of type the statement-instances concluded by argument-
instances whose types affect and that show to support the idea concluded by . For
example, is set as premise of argument of type BuyCamera because is

174 P. Maio and N. Silva

concluded by of type Reviews and , and the idea
underlying somehow contributes for the idea expressed by the conclusion of
which is . Third, conflicts between statement-instances are established based on
two conditions:

─ two statement instances are in mutual conflict if both statement-instances are of the
same type but they express contradictory ideas (e.g. and); or

─ a statement-instance is in conflict with a statement-instance if both are
concluded by two distinct argument-types (say and respectively) and
affects (i.e. ,) and the idea expressed by suggest that is not true
or do not holds (e.g. and).

Table 1. Instances of arguments and statements constructed and their relationships

Argument Premise
Statements

Conclusion-Statement
ID Type Statement conflictWith

 BuyCamera , ,
 Requirement ,
 Requirement
 JobReq
 Reviews
 FriendReview
 FriendReview
 PersonExpert
 ExpertReview
 PriceRelation ,
 CurrentPrice
 PastPrice
 Features
 Zoom
 DigitalZoom
 OpticalZoom

It is envisaged that each scenario of application may require an instantiation
process able to deal with its own particularities. However, it is our conviction that
most of those processes may take advantage of the -relations in a very similar way
to the described process.

Once the instantiation process ends, support and attack relationships between
argument-instances are inferred automatically. This is the subject of next section.

5 Deriving Arguments Relationships

According to the formal definitions introduced in section 3.2, the and
relationships between argument-instances of an are not explicitly defined.
Instead, these relationships are derived based on two distinct kinds of information:

─ extensional information (existing at the instance layer):

─ the premises and conclusions of the argument-instances;
─ the conflicts between statement-instances, and;

 A Three-Layer Argumentation Framework 175

─ conceptual information (existing at the model layer), namely the relations
defined between argument-types.

5.1 Deriving Support Relationships

A support relationship between two argument-instances (say and) is established
(i.e. ,) when the argument-type of (say) affects the argument-type of

 (say), i.e. , , and either (i) the conclusion of is a premise of or (ii)
both argument-instances have the same conclusion. The following rules (graphically
depicted in Fig. 4) capture the conditions required to establish support relationships
between argument-instances:

R1. , , , : , , , (Fig. 4a);
R2. , , , : , , , (Fig. 4b).

Fig. 4. Conditions to derive a support relationship between two argument-instances

Notice that two argument-instances might achieve the same conclusion starting
from a different set of premises and/or reasoning mechanisms. In those circumstances,
a support relation between argument-instances exists if there is a relation between
both (depicted in Fig. 4b). For a mutual support, two relationships are required: one
from to (i.e. ,) and another one from to (i.e. ,).

5.2 Deriving Attack Relationships

An attack relationship between two argument-instances (say and) is established
(i.e. ,) when the argument-type of (say) affects the argument-type of

 (say), i.e. , , and either (i) the conclusion of is in conflict with any
premise of or (ii) the conclusion of is in conflict with the conclusion of . The
following rules (graphically depicted in Fig. 5) capture the conditions required to
establish attack relationships between argument-instances:

176 P. Maio and N. Silva

Fig. 5. Conditions to derive an attack relationship between two argument-instances

R3. , , , , : , , , (Fig. 5a);
R4. , , , : , , , (Fig. 5b).

According to the rule/scenario depicted in Fig. 5b, one cannot say that argument
also attacks argument because the conflict relation between statements is
asymmetric. However, that would happen iif statement is also in conflict with
statement (i.e.) and a relationship between and (i.e. ,) exists too.

5.3 Exploiting the Derivation Process

The application process used to identify and establish conflicts between statement-
instances may exploit the knowledge embedded in rules R3 and R4 to reduce and
drive the search/combination space between statements. Indeed, it is worth
establishing a conflict relationship between two statement-instances (say and)
iif their statement-types (say and respectively) satisfy at least one of the following
conditions:

─ There is an argument-type (say) concluding that affects any other argument-
type (say), i.e. , , where statement-instances of type can be used as
premises of argument-instances of type ;

─ There is an argument-type (say) concluding that affects any other argument-
type (say), i.e. , , where is concluded by .

Notice that, these conditions can be verified using the information captured at the
model layer only. On the other hand, if a conflict relationship is established between
two statement-instances and none of these conditions apply then it has no impact on
derived attack relationships between arguments.

Regarding the argument-instances of the example introduced in section 4, these
four rules would derive the support and attack relationships graphically depicted in
Fig. 6.

M
et

a-
M

od
el

La

ye
r

M
od

el
 L

ay
er

In
st

an
ce

La

ye
r

 A Three-Layer Argumentation Framework 177

Fig. 6. Derived support and attack relationships between argument-instances of the example

6 Related Work

In this paper the advantages of having a conceptual model layer and the consequent
adoption of a structured argumentation are exploited to reduce the existing gap
between the most referenced abstract argumentation frameworks and its adoption by
applications, namely which concerns to the instantiation process. Regarding the
conceptual model only, to the best of our knowledge the most similar work existing in
literature is the Description Logic formalizations of the Argument Interchange Format
(AIF) [16] proposed by Iyad Rahwan in [17, 18]. In common to the AIF-based work,
the TLAF has mainly two aspects:

─ the adopted argument structure suggested by Walton [13]; and
─ the possibility of the TLAF model layer being represented by means of an OWL

ontology as the reader may confirm on [19].

However, although both works adopt the same argument structure they diverge on
their purpose and consequently on the modeling approach taken. While the main
purpose of the AIF-based work is to take advantage of the powerful reasoning
capabilities of OWL to automatically classify argument types (or argument schemes)
and argument instances, the TLAF purpose is to show the advantages that applications
have with respect to the argument instantiation process by adopting an argumentation
framework which comprehends a model layer to specify the types of arguments used
and how they affect each other. Consequently, the modeling approach taken by both
works diverge on several issues too. The most evident is that TLAF explicitly
distinguishes between argument-types and the reasoning mechanisms, while in the
AIF-based work the reasoning mechanisms are implicit in the name of the argument-
scheme. However, the most relevant difference concerns the way premises of
argument-types are defined. In the AIF-based work each argument-type defines
explicitly the set of statement-types it has as premises. On the contrary, in the TLAF
the set of admissible statement-types that an argument-type has as premises is inferred
through the -relations established between argument-types. This lets you constrain
that an argument-type only accepts a given statement-type as a premise when it is
concluded by a specific reasoning mechanism. Moreover, similarly to the Carneades
framework [20], in TLAF an argument has zero or more statements as premise.

178 P. Maio and N. Silva

On the contrary, in the AIF-based work an argument has at least one statement as
premise. Another difference between the AIF-based work and TLAF is the fact that in
the former an argument-instance can be classified into several types (one or more)
while in the latter an argument-instance is classified into one type only, which must
be the most specific/representative one of that instance. While the multi-classification
of argument-instances is useful for several tasks (e.g. querying of arguments), it raises
acceptability problems that are not completely understood yet.

In the general abstract framework for rule-based argumentation described by
Prakken [8] arguments apply either a strict or a defeasible rule over a set of axioms
(i.e. premises) to conclude another axiom, such that axioms are defined in a logical
language. In TLAF, these two kinds of rules may correspond to two kinds of
reasoning mechanisms and the concrete rules may correspond to instances of those
reasoning mechanisms. However, TLAF does not constraint rules to be classified only
in two types. Yet, the three types of attack relationship between argument-instances:
(i) rebutting, (ii) undercutting and (iii) undermining described in [8] are captured by
the TLAF rules to derive such relationship. Prakken work also describes arguments as
trees of inference rules such that an argument contains other sub-arguments
concluding intermediate conclusions and so on. TLAF comprehends such trees of
arguments at the model layer (through the -relation) and also at the instance layer
such that the root of the trees are intentional arguments. Still, since TLAF allows
capturing mutual dependency between two intentional arguments, one can think on
arguments as graphs rather than trees. Contrary to the Carneades framework [20],
where it is assumed that argument graphs contain no cycles, the argument graphs of
TLAF may contain cycles since no restriction exists at the model layer level.

Finally, as claimed by Prakken, other relevant work on structured argumentation,
such as DefLog [21], is a special case of its general framework [8]. In that sense, no
additional discussion with such work is provided.

7 Conclusions and Future Work

This paper describes the Three-Layer Argumentation Framework (TLAF) that reduces
the existing gap between the most referenced abstract argumentation frameworks and
its adoption by applications. The main novelty of the proposed argumentation
framework relies on its conceptualization layer (i.e. model layer), namely the
relation. This layer captures the structure and semantics of the argumentation data
employed in a specific context constraining and conducting the modeling process of
the argumentation specific scenario. Even though, for the same scenario very different
modeling approaches are possible.

Despite being generic, TLAF is mainly targeted to be adopted by autonomous
agents. In relation to that, the TLAF adopts and follows some terminology from the
BDI model, namely by distinguishing between intentional arguments and non-
intentional arguments. Based on the conceptual relations captured by the framework
and the defined argument structure, a clear and minimal set of conditions was
established for an argument-instance to attack/support another one. Given that, the
support and attack relations between argument-instances are automatically derived
according to the subjacent TLAF model. Despite the fact that the argument-instances
generation process, and the Σ and functions are fully domain dependent,
their definition profits from the established TLAF model.

 A Three-Layer Argumentation Framework 179

While not directly addressed in this paper, the TLAF has the following advantages:
(i) when generating statements it constrains the scope in which it is valuable to
establish a conflict relationship between statements (i.e.), and therefore
simplifies the automation of the process that discovers or instantiates the
relation, by reducing and driving the search/combination space between statements;
(ii) when generating arguments upon existing statements, it constraints the type of
conclusion and premises, and the reasoning mechanism associated with an argument-
instance, therefore simplifying the automation of the process that instantiates
arguments, that establishes the premises and conclusion relationships with statements
and establishes the and relationships between arguments.

Besides the new features provided by TLAF, it is generic enough to be adopted by
different domain applications. Moreover, a TLAF instance can be easily represented
in a more abstract formalism such BAF [5], where the set corresponds to the set of
arguments of BAF and the derived argument-instances relationships, i.e. and

, correspond to the BAF binary relations with the same name respectively. This is
especially relevant because TLAF does not impose any particular argument
evaluation process. Therefore, one can use this feature to apply an argument
evaluation process such as the ones proposed in [10, 22-24]. However, because none
of these processes is able to take advantage of the TLAF Model Layer we are working
to propose one as well. For that, we need to take into consideration the argumentation
abstract semantics described in literature as well the rationality postulates introduced
by Caminada and Amgoud [9] and Prakken [8].

The authors consider that no experiences would be relevant for the evaluation of
the proposed framework, as its application depends on the modeling approaches of the
domain, and less of the framework. This suggests the need for further development of
methods and methodologies for argument modeling.

In order to simplify the modeling process and profit from experience, for example,
in the software engineering and ontology development fields, the authors envisage the
need to provide modularity and extensibility modeling features to TLAF. These new
features potentially promote TLAF in the scope of heterogeneous, ill-specified,
emergent multi-agent systems as it provides the mechanisms to model private
argumentation models in respect (specializing) to other argumentation models, thus
inheriting a common model.

Acknowledgments. This work is partially supported by the Portuguese projects:
COALESCE (PTDC/EIA/74417/2006) of MCTES-FCT and World Search
(QREN11495) of FEDER. The authors would like to acknowledge Jorge Santos,
Maria João Viamonte, Jorge Coelho and Besik Dundua for their useful counsels and
Owen Gilson for his revisions of the document.

References

1. Wooldridge, M.: Reasoning about rational agents. The MIT press, Cambridge (2000)
2. Moran, R.: Authority and Estrangement: An Essay on Self-Knowledge. Princeton

University Press (2001)
3. Walton, D.N., Krabbe, E.C.W.: Commitment in dialogue. Suny Press (1995)

180 P. Maio and N. Silva

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357
(1995)

5. Cayrol, C., Lagasquie-Schiex, M.C.: On the Acceptability of Arguments in Bipolar
Argumentation Frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI),
vol. 3571, pp. 378–389. Springer, Heidelberg (2005)

6. Bench-Capon, T.J.M.: Persuasion in Practical Argument Using Value-based
Argumentation Frameworks. J. Logic Computation 13, 429–448 (2003)

7. Baroni, P., Giacomin, M.: Semantics of Abstract Argument Systems. In: Argumentation
in Artificial Intelligence, pp. 25–44 (2009)

8. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument & Computation 1, 93 (2010)

9. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial
Intelligence 171, 286–310 (2007)

10. Cayrol, C., Lagasquie-Schiex, M.C.: Gradual Valuation for Bipolar Argumentation
Frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 366–377.
Springer, Heidelberg (2005)

11. Gruber, T.R.: A translation approach to portable ontology specifications. Journal of
Knowledge Acquisition 5, 199–220 (1993)

12. Gruber, T.: What is an Ontology?,
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

13. Walton, D.N.: Fundamentals of critical argumentation. Cambridge Univ. Pr. (2006)
14. Bratman, M.: Intention, Plans and Practical Reason. Harvard University Press, Cambridge

(1987)
15. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley (2009)
16. Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M.,

Vreeswijk, G., Willmott, S.: Towards an Argument Interchange Format. The Knowledge
Engineering Review 21, 293–316 (2006)

17. Rahwan, I., Banihashemi, B.: Arguments in OWL: A Progress Report. In: Proceeding of
the 2008 Conference on Computational Models of Argument: Proceedings of COMMA
2008, pp. 297–310. IOS Press, Amsterdam (2008)

18. Rahwan, I., Banihashemi, B., Reed, C., Walton, D., Abdallah, S.: Representing and
classifying arguments on the semantic web. The Knowledge Engineering Review (2011)

19. Maio, P., Silva, N.: TLAF Meta-Model Layer as an Ontology,
http://www.dei.isep.ipp.pt/~pmaio/TLAF/
Ontology/TLAF_Ontology.owl

20. Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and burden of
proof. Artif. Intell. 171, 875–896 (2007)

21. Verheij, B.: DefLog: on the Logical Interpretation of Prima Facie Justified Assumptions.
Journal of Logic and Computation 13, 319–346 (2003)

22. Amgoud, L., Cayrol, C., Lagasquie-Schiex, M.C., Livet, P.: On bipolarity in
argumentation frameworks. Int. J. Intell. Syst. 23, 1062–1093 (2008)

23. Karacapilidis, N., Papadias, D.: Computer Supported Argumentation And Collaborative
Decision Making: The Hermes System. Information Systems 26, 259–277 (2001)

24. Verheij, B.: On the existence and multiplicity of extensions in dialectical argumentation,
cs/0207067 (2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

