
Multi-classification Document Manager

A rich ontology-based approach for Semantic Desktop

Paulo Maio, Nuno Silva, Ricardo Brandão, Jorge Vasconcelos, and Fábio

Loureiro

Abstract We propose a lightweight technological system for managing user’s

documents according to multiple classification dimensions. The core of the pro-

posal is the application of ALC-expressive ontologies for capturing the multi-

property-based classification of documents. The ontology is then responsible for

representing (i) the properties that serve for the document classification (e.g. au-

thors, subjects, types), and (ii) the classes of documents specified based on the

properties’ values of the documents. Once the ontology is populated with data

captured from the documents via parsers/analyzers, an inference engine logically

classify documents according to the classes.

1 Introduction

A large amount of our information, both in the professional and private domains, is
stored in the form of files on our personal computers. These are manipulated by the
so called file managers (also known as file browsers and navigators) or specific ap-
plications. From the user perspective, current file systems are based on two princi-
ples. First, documents are classified according to a single hierarchy: the subdirecto-
ry structure. Second, each document is given a single fixed name that is the way
users indicate the document to access.

Furthermore, the physical dimension of the documents (e.g. location, serializa-
tion) is abstracted by applications (e.g. email client), but preventing or complicat-
ing the relation between documents. For example, an email message is related to a
specific presentation document in the file system.

Instead, users require an integrated logical view of the documents regardless of
their physical location, serialization or manipulating application, which current file-
system model and file managers are inadequate to fully satisfy. The so called Se-
mantic Desktop applications [1, 2] emerged in this context, providing an integrated
view of several sources and types of document regardless of their physical dimen-

Paulo Maio, Nuno Silva, Ricardo Brandão, Jorge Vasconcelos and Fábio Loureiro

{pam,nps,jrmjb,1060479,1070987}@isep.ipp.pt

GECAD and Department of Informatics, School of Engineering – Polytechnic of Porto

Porto, Portugal

2

sion, but instead considering their content and logical dimensions, thus treating
every document as first order citizen. Yet, semantic desktop applications still lack
the following features:

 Multi-classification of documents, both formally and informally according to

the documents’ meta-data, and not only by its physical location in the hierarchy

(e.g. the music documents would be listed in the music folder independently of

where the file is physically located, but instead dependent on their content);

 Browse documents by multiple paths, i.e. not the (single) physical subdirectory

hierarchy but instead several hierarchies representing different classification

dimension which turns to be a graph (e.g., a music document would be accessi-

ble directly not only by its type but also by its subject);

 Search for documents according to their content, classification, location, etc.,

and maintain the search constantly updated as a new class of documents (e.g.

all documents whose subject is “DEIT” and created after July 2010).

Summarizing, we envisage a system application that allows the management of
document such the users do not need to deal with the physical dimension of the
document, nor being limited to the single classification provided by the file system.

We propose a lightweight technological system for managing the user’s docu-
ments according to multiple classification dimensions. The core of the proposal is
the application of description logics [3] ALC-expressive ontologies [4] for captur-
ing the multi-property-based classification of documents. The ontology is then re-
sponsible for representing (i) the properties that serve for the document classifica-
tion (e.g. authors, subjects, types), and (ii) the classes of documents specified based
on the properties’ values of the documents. Once the ontology is populated with da-
ta captured from the documents via parsers/analyzers, an inference engine logically
classify documents according to the classes’ conditions.

The following section further characterizes the problem and the context. The
section 3 introduces and describes the proposed system architecture. The section 4
details the process of applying ontologies and inference engines in the system for
capturing rules and classify documents. The section 5 presents the experiments and
evaluation of the proposed system. Finally the section 6 discusses the evaluation re-
sults and in the light of that suggests some directions for future work.

2 Context

Current mainstream file systems are externally exposed as a single hierarchical
structure of directories (folders) and files. Besides the physical location, files and
folders are annotated with meta-data related to the physical dimension (e.g. creation
date, author, access rights). Recent file managers (e.g. Windows Explorer) are able
to read application specific meta-data from files and allow its manipulation (Fig. 1).
Yet, file managers are unable to:

 Multi-classify files (or documents) and access files accordingly;

 Search for files and save the query as an always update folder;

3

 Manage files and specific applications document (email, contacts, appoint-

ments, bookmarks) as first-order citizens, thus preventing their association with

files.

Fig. 1 Snapshot of the properties dialog box of Windows Explorer

Most of the file systems encompass the concept of logical link between folders
and files. In most of the file systems, a link (shortcut in Windows OS) is a physical
file whose content is a reference to another physical file. Consequently, there is no
logical classification of the referred physical file, but instead a physical specifica-
tion of the classification. From the user perspective this process is neither intuitive
nor easy (to create but especially to maintain). This considerably differs from the
hyperlink concept popularized in the Web page, where the link is in fact a part of a
document. This small difference causes an enormous difference in terms of usabil-
ity and implementation (i.e. it is not necessary to have a physical file as a hyperlink
to another file/document).

When a web page is created online (i.e. when it is requested), the content (e.g.
links to other documents) not only depends on the available document but also on
the user request. Based on this observation, the envisaged document manager has to
provide similar features in respect to the search and classification of documents, i.e.
(i) allow searching the repository based on several parameters (the user request),
and (ii) classify the documents (available documents/data) according to the query
(the user request).

3 Architecture

The proposed system architecture is depicted in Fig. 2. The core components are
described next:

 the source repositories, which contain the documents to manage;

 a set of analyzers, that are responsible for reading the sources, distinguish indi-

vidual documents and extract respective meta-data. These analyzers depend on

the type of the source repositories. E.g. an analyzer for NTFS is different from

an analyzer for Ext2 or from an email client content analyzer;

 the internal repository, is where the document meta-data and classification rules

are stored for internal use;

4

Interface

Business Logic Layer

Data Access Layer

Ontology

Classifier

Ontology Abstraction

OWLAPI JENAAPI

Analyzer 1 Analyzer 2

Desktop UI

.OWL/.RDF:

Document Sources

EMailFS

Browser

History+Bookmarks

Data Repository

Web UI Web Service
SPARQL

end-point

SPARQL Engine
Query to Class

Conversion

Meta-data to

Schema

Conversion

Fig. 2 System architecture

 the ontologies (i) model schema respecting the meta-data generated by the ana-

lyzers and (ii) capture the classification rules and queries. Hence, ontologies

depend on the analyzers capabilities to extract meta-data from source reposito-

ries and form the classification and queries initiatives. The role of ontologies is

further described in section 4;

 the classification engine (classifier) is a generic, off the shelf inference engine,

responsible for the actual document classification. The schema and classifica-

tion rules from the ontologies are applied by the classifier for classifying the

documents according to their meta-data;

 the system interface provides the mechanisms for different entities to use the

system. It should provide ways to (i) query, (ii) change classification rules and

(iii) update documents meta-data. Not only the human user is considered in the

process (desktop/web application and SPARQL) but also other systems

(through web services and SPARQL).

4 Classification

This section describes the details of the document multi-classification feature. This
feature includes three processes: (i) define the classification rules, (ii) convert the
user defined queries into classification rules, (iii) the actual document classifica-
tion. As introduced in previous section, these processes are founded in two core
components: ontologies and classifier. In this particular case, the classification pro-
cess will be responsible for:

5

 Retrieving all documents for a given specific class(ification);

 Realization of documents, i.e. determine the classes documents belongs to;

 Determining whether documents statically, user-based classified do not violate

descriptions and axioms described by the classification rules.

The classification process will allow two other non-functional requirements:

 Check the satisfiability of a class(ification), i.e. determines whether a document

can exist that would be classified as such. Checking satisfiability permits de-

termine whether the rule generated (either by the user or by the “Query to

Rule”) is valid;

 Determines the subsumption of class(ification), i.e., determines whether

class(ification) A is more general than class(ification) C. This allows defining

hierarchical relation between defined classes.

Ontologies will be used by the classifier in runtime for classify the documents.
Ontologies are characterized according to several dimensions [5] including the di-
mension of the community using it and the size and dynamics of the domain. In this
context though, the formalism and expressivity level, which implies the reasoning
complexity, are the main dimensions to consider. While ontology technology is
around for many years, development boosted with the advent of the semantic web
[6] in the last decade, giving rise to technology appropriate in this context.

The semantic web ontology language (OWL) [7] proposes several dialects de-
pending on the required expressivity and reasoning complexity. OWL DL is a dia-
lect that adopts Description Logics principles, namely, high expressivity while
maintaining decidability. Decidability is a fundamental requirement because it is
necessary to classify documents in finite time: its reasoning complexity is NEx-
pTime-complete. It is our conviction that ALC-expressive ontologies are sufficient
for capturing the required rules of the envisaged scenarios. Being a less expressive
than SHOIN, the system can also benefit from its smaller reasoning complexity (i.e.
ExpTime-complete), which is more adequate for online user-oriented systems.

In order to capture the document classification rules it is necessary to define
modeling principles that fit the requirements. Ontology design patterns are com-
monly used for many different modeling problem types [8]. For the problem in
hands, we have decided to adopt the ontology design patterns called “definable
class” and “primitive class”.

Definition 1 (Primitive class). AC (A is a subset of C). I.e. A is an atomic
class that is a subclass of the complex class C. This defines the necessary condi-
tions (defined in C) of class A. Consequently, the instances of a primitive class
must be explicitly defined as such.

Definition 2 (Definable class). A≡C, (A is equivalent to C), where A is an
atomic class (concept in DL terminology) and C is a complex class. The ≡ symbol
determines that any instance that satisfies the right-side defined conditions is an in-
stance of class A.

A complex class is defined in term of the Attribute Language with Comple-
ments (ALC) whose constructs are: ⊥, A, ¬C, C∧D, C∨D, ∃R.C, ∀R.C, where:

 ⊥ is the empty set or an inconsistency;

 A is a class name (atomic class);

6

 C and D are complex classes;

 R.C, R is a role whose range is of type C.

Next is presented an example of an ALC-expressive ontology for the document
multi-classification domain:

1. MusicDoc ≡ Doc ∧ ∃hasType.(MP3∨WMA)

2. MyDoc ≡ Doc ∧ ∃hasAuthor.(ME)

3. Doc ∃hasType.Type ∧ ∃hasAuthor.Person

4. Person ≡ ME ∨ ELVIS

5. ME ∧ ELVIS≡⊥

6. Type ≡ MP3 ∨ WMA ∨ HTM

7. MP3∧WMA≡⊥;MP3∧HTM≡⊥;WMA∧HTM≡⊥

The first class (classification rule) defines MusicDoc class(ification) as a defin-
able class that encompasses all the Docs whose extension is either MP3 or WMA.
The second class defines MyDocs as all Docs whose author is ME. Third class de-
fines Doc as anything that as type and an author. The fourth and fifth lines define a
set partition for Person and lines six and seven define a set partition for Type.

Consider now the following individuals and property value definition according
to the previous ontology:

1. d1Doc, hasAuthor(d1,ME), hasType(d1,MP3)

2. d2Doc, hasAuthor(d2,ELVIS), hasType(d2,MP3)

Through the classification process, the classifier would infer the following:

1. d1MusicDoc, d1MyDoc

2. d2MusicDoc

3. MusicDoc≡{d1,d2}

4. MyDoc≡{d1}

5 Experiments

The experiments envisage evaluating the proposal and determine (i) how intuitive
the multi-classification of documents is and (ii) how satisfactory the query to clas-
sification conversion is. For that we fully developed the data access and the busi-
ness layers as described, and developed the desktop UI (Fig. 3a) and the web UI
(Fig. 3b) of the interface layer. The desktop UI application combines the hierar-
chical physical structure of the source repositories, with the user defined classifica-
tions. The web UI application instead, abandoned the hierarchical view and pre-
sented the user defined classes of documents only. We prepared the experiments in
three laptop computers with documents from the file system and email messages.

The experiments ran for three groups of 3 persons with 3 different levels of pro-
ficiency (Basic, Medium and High-level proficiency using file managers). None of
the users was previously familiar with the documents or the application. Addition-
ally, we defined three tasks. In task 1 the user is required to search for the docu-

7

ments for a specific project (subject). The expected result is a set of files and email
messages. In task 2 the user is required to define a new folder BlueBerry whose
documents’ colour is Blue and smell like berries. It was expected that the user cre-
ates a primitive class whose necessary conditions correspond the specified charac-
teristics. In task 3 the user is required to search for blue documents. It was expected
the user creates a definable class BlueDocs subsumed by the BlueBerry class.

Fig. 3 Application screenshots: A) Desktop UI and B) Web UI

Table 1 depicts a summary of the experiments. Columns A reflect the success

accomplishing the task (either y or n). Colunms C reflect the user perception of

the complexity of the task. Columns S reflect the user facility understanding the

task results. Colunms C and S are valued in the range 1-4. The evaluation results

of the Web UI are depicted in shaded cells whereas Desktop UI results are depict-

ed in clear cells.

Table 1 Summary of experiments

U P
Task 1 Task 2 Task 3

A C S A C S A C S

1 B Y Y 2 2 3 3 Y Y 2 2 3 3 Y Y 2 2 1 3

2 B N Y 3 2 1 2 Y Y 4 2 3 3 Y Y 4 4 1 3

3 B Y Y 3 1 2 3 Y Y 3 2 3 4 Y Y 3 2 1 4

4 M Y Y 1 1 4 4 Y Y 1 1 4 4 Y Y 1 1 2 4

5 M Y Y 1 1 4 4 Y Y 2 1 4 4 Y Y 2 1 2 4

6 M Y Y 2 2 4 4 Y Y 2 2 4 4 Y Y 2 1 2 4

7 H Y Y 1 1 4 4 Y Y 1 1 4 4 Y Y 1 1 3 4

8 H Y Y 1 1 4 4 Y Y 2 1 4 4 Y Y 1 1 3 4

9 H Y Y 1 1 4 4 Y Y 1 1 4 4 Y Y 1 1 4 2

6 Conclusions

Considering the evaluation results, we conclude that:

 The users are able to understand the concept of multi-classification;

8

 The users accomplish simple classification of documents based on their charac-

teristics;

 The more the users are proficient with file managers and understand the hierar-

chical concept, the more they are able to understand and deal with multi-

classification;

 The users do not like or do not understand subsumption relations between de-

fined classes. This is clear from the comparison of satisfaction columns on task

3. Because on the Web UI app the subsumption relation was not represented,

users understood and were satisfied with results. Instead, in Desktop UI appli-

cation, they did not understand the result. The exception is user 9 that under-

stood the subsumption relation and did not liked the fact that it was not repre-

sented in the Web UI app.

Accordingly, it is necessary to research more on the need for representing sub-
sumption relation between user defined classes as it might be a factor contributing
for misunderstandings. Also, because multi-classification conceptually gives rise to
a graph, it would be interesting to analyze the effect of such representation on the
user.

Acknowledgments

This work is partially supported by the Portuguese MCT-FCT project COALESCE

(PTDC/EIA/74417/2006).

References

1. Papailiou, N., Christidis, C., Apostolou, D., Mentzas, G., Gudjonsdottir, R.: Personal and

Group Knowledge Management with the Social Semantic Desktop. Proc. Collaboration and

the Knowledge Economy: Issues, Applications and Case Studies. (2008).

2. Decker, S., Park, J., Quan, D., Sauerman, L.: The Semantic Desktop - Next Generation In-

formation Management & Collaboration Infrastructure. Proceedings of Semantic Desktop

Workshop at the ISWC, Galway, Ireland. (2005).

3. Baader, F.: The description logic handbook: theory, implementation, and applications. Cam-

bridge University Press (2003).

4. Description Logic Complexity Navigator, http://www.cs.man.ac.uk/~ezolin/dl/.

5. Hepp, M., De Leenheer, P., de Moor, A.: Ontology management: semantic web, semantic

web services, and business applications. Springer-Verlag New York Inc (2007).

6. Lee, T.B., Hendler, J., Lassila, O.: The Semantic Web. Scientific American. 284, 34-43

(2001).

7. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference,

http://www.w3.org/TR/owl-ref/.

8. Ontology Design Patterns . org (ODP) - Odp,

http://ontologydesignpatterns.org/wiki/Main_Page.

