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ABSTRACT 
Publically available text-based documents (e.g. news, meeting 
transcripts) are a very important source of knowledge for 
organizations and individuals. These documents refer domain 
entities such as persons, places, professional positions, decisions, 
actions, etc. Querying these documents (instead of browsing, 
searching and finding) is a very relevant task for any person in 
general, and particularly for professionals dealing with intensive 
knowledge tasks. Querying text-based documents’ data, however, 
is not supported by common technology. For that, such 
documents’ content has to be explicitly and formally captured into 
knowledge base facts. Making use of automatic NLP processes for 
capturing such facts is a common approach, but their relatively 
low precision and recall give rise to data quality problems. 
Further, facts existing in the documents are often insufficient to 
answer complex queries and, therefore, it is often necessary to 
enrich the captured facts with facts from third-party repositories 
(e.g. public LOD, private IS databases). This paper describes the 
adopted process to identify what data is currently missing from 
the knowledge base repository and which is desirable to collect 
from external repositories. The proposed process aims to foster 
and is driven by OWL DL inference-based instance (ABox) 
classification, which is supported by the constraints of the TBox.  
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1. INTRODUCTION 
Publically available text-based documents (e.g. news, meeting 
transcripts) are a very important source of knowledge for 
organizations and individuals. Querying the content of these 
documents is not technologically supported, compelling the user 
to search, browse and integrate information by him/herself. This is 
a time-consuming, tedious, error-prone, unrepeatable and 
unconfident process. 

In the context of the World Search project [1], a system that is 
able to address semantically rich and complex queries over the 
content of unstructured or semi-structured documents has been 
created [2]. Presently, a repository (further also referred as 
knowledge base) meeting the Linked Open Data (LOD) principles 
[3] and the query building and execution applications are 
available and functional. However, the ability to populate the 
repository with facts from unstructured and semi-structured 
documents is still an open issue. Therefore, the population of 
important relationships between documents and ontological 
instances (e.g. persons, places, professional positions, decisions, 
actions) mainly relies in the user.  

Initially, to address this open issue, a common approach in 
literature has been taken: making use of automatic NLP processes 
for capturing and explicitly and formally “semantizing” the 
documents’ content. While the utility of the automatic NLP 
processes is evident, the relatively low precision and recall of 
these processes referred in [4], [5] was observed, which give rise 
to data quality problems, including duplicates, incoherencies, 
inconsistencies and incompleteness. Thus, to avoid (or at least to 
minimize) those data quality problems, the facts generated by the 
NLP process are conveniently analyzed and processed manually 
before being integrated into the repository. Additionally, it was 
perceived that the NLP’ acquired data is often insufficient for the 
purpose of applying a reasoner [6] (or a classifier) to infer new 
facts from the already known data (ABox) together with the 
terminological component (TBox) of the repository. 

Later, in order to (i) automatize the aforementioned user-based 
process and (ii) to address the incompleteness of the data, an 
iterative and incremental process called Ontology-driven Data 
Cleansing and Enrichment (ODCE) was devised [7]. The ODCE 
process is triggered by the NLP process generated data and driven 
by the semantically rich OWL DL [8] TBox (created by domain 
experts) underlying the repository. It combines tasks such as (a) 
data cleaning, (b) ontology population and (c) enrichment for 
inference purposes. A brief description of the overall process is 
provided in section 2. 

This paper focuses on the enrichment task of the ODCE process. 
The enrichment task seeks on third-parties repositories the 
missing data that will promote inference (namely classification of 
instances). Our approach suggests adopting the OWL DL 
ontological constraints (e.g. equivalent class, intersection, union, 
complement, disjoint) as driving vectors of the enrichment 
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process. I.e. the process will seek for the data that promotes the 
inference of specific ontological constraints. However, different 
ontological constraints require different enrichment processes. 
There are two kinds of enrichment processes: simple and 
composed. A simple process respects a simple and unique 
ontological constraint (e.g. some/all values from, has value, has 
self) for deciding what data is necessary and how to provide it. 
Composed processes reflect the OWL composed constructs of 
intersection, union and complement. Again, the characteristics of 
these ontological constructs motivate different decisions and 
enrichment processes. In particular, they rely on the simple 
enrichment processes and in other composed processes, thus 
giving rise to a recursive enrichment process. 

Different enrichment processes have different demands in terms 
of data resources, reasoning needs, time, etc. Instead of 
recursively populating all the missing data, it is suggested 
enriching the repository in a controlled way by considering the 
efforts and resources necessary to provide it. The proposed 
approach suggests defining enrichment decision strategies to 
acquire the data, considering the following dimensions: (i) the 
available and required data, (ii) the characteristics of the 
ontological constraints and (iii) the characteristics of the data 
sources. 

The remaining of the paper is organized as follows. Section 2 
presents the overall ODCE process. Section 3 describes in detail 
the repository enrichment process and proposes a software 
development framework. Section 4 presents a real-world example 
making use of the proposed software development framework. 
Our proposal is compared to other works in section 5. Finally, 
section 6 summarizes the contributions and points out next 
research steps. 

2. THE ODCE PROCESS 
This section briefly describes the Ontology-driven Data Cleansing 
and Enrichment (ODCE) process, on which the proposed 
enrichment strategies are applied.  

The ODCE process consists in eight steps (or tasks) combined in a 
iterative and incremental manner, as depicted in Figure 1.This is 
triggered through a NLP process (not represented in Figure 1) 
whose output is a knowledge base (𝐾𝐵!"#). In this context, a 
knowledge base (KB) is a tuple in the form of 𝐾𝐵: 𝑇,𝐴 , where 
T (TBox) is the terminological/intensional information, and A 
(ABox) is the assertional/concrete situation/extensional 
information. While this is a common definition of a Description 
Logics (DL) knowledge base, the distinction between TBox and 
ABox is not always possible or evident. The KB presented in 
section 3.1 contains an example of such difficulty: the individual 
𝑏𝑙𝑢𝑒 (ABox) is used in defining the class 𝐵𝑙𝑢𝑒𝐶𝑎𝑟 (TBox). 

The purpose of the ODCE process is to integrate and enrich 
𝐾𝐵!"# = 𝑇!"#,𝐴!"#  in a proper, consistent and automatic way, 
into the 𝐾𝐵!"# = 𝑇!"# ,𝐴!"# . 𝑇!"# covers the same domain 
knowledge of 𝑇!"# but it is semantically enhanced by domain 
experts by including necessary and sufficient conditions in 
addition to the necessary conditions already present in 𝑇!"#. 

The first step (NLP Cleansing) ensures that 𝐾𝐵!"# is consistent 
and ready for integration. For that, it applies a set of data 
cleansing operations to detect and to correct inaccurate 
information, namely to avoid duplicated facts and/or entities. The 
result of this step is a minimal, clean and consistent set of facts 
(𝐾𝐵!"") to be integrated into the 𝐾𝐵!"# knowledge base.  

 

Figure 1. The ODCE process. 

The second step (Identity Resolution) [9] consists in identifying 
univocally the entities mentioned in 𝐾𝐵!"" according to the ones 
existing in 𝐾𝐵!"#. Thus, this task is accomplished by verifying 
that for each entity 𝑒 ∈ 𝐾𝐵!"", an entity 𝑒! ∈ 𝐾𝐵!"# exists such 
that 𝑒 and 𝑒′ are considered by a given identity function as 
referring to the same real/domain entity. In such cases, all 
references to 𝑒 into 𝐾𝐵!"" are replaced by 𝑒′ giving raise to 
𝐾𝐵!""! . 

The third step (Data Merging) consists in taking several source 
knowledge bases (namely 𝐾𝐵!""! ) containing previously collected 
and prepared information with the unique purpose of being 
integrated (or merged) into the target knowledge base (𝐾𝐵!"#). 
Therefore, it entails that a transparent data transformation process 
occurs between each (possible) pair of source and target 
knowledge bases. In this particular, a (declarative) alignment 
between the ontologies describing the source and target 
knowledge bases is required. The result of the data-merging task 
may leave the 𝐾𝐵!"# knowledge base temporarily inconsistent. It 
is responsibility of the next steps to resolve such inconsistencies.  

The fourth step (Consistency Resolution Decision) checks if the 
𝐾𝐵!"# knowledge base has inconsistencies resulting from the 
execution of the previous steps. Considering a knowledge base in 
OWL DL, inconsistencies can be analyzed and identified by 
means of a reasoner such as Pellet [6]. 

Based on (i) the (in) existence of inconsistencies and (ii) on the 
kind of inconsistencies found, it decides either:  
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• To resolve the inconsistencies found and, therefore, the 
ODCE process flows to step five before executing the 
enrichment task;  

• To proceed immediately to the enrichment task (step 6) since 
the inconsistencies found are not considered as causing 
undesirable effects (e.g. malfunctioning, incompleteness) on 
such task. 

Furthermore, this decision takes into consideration other issues 
such as the performance of the overall process, the requirements 
of the enrichment process, the interdependencies between the 
ODCE process and the running application (e.g. answering 
complex questions) that rely on the knowledge base. 

Yet, it is important noticing that, independently of the decision 
made at this point, the ODCE process ensures that at the end the 
knowledge base is consistent. This is achieved because the last 
step of the process corresponds to a mandatory consistency 
resolution task. 

The sixth step (Enrichment Evaluation) evaluates the need to 
enrich the 𝐾𝐵!"# knowledge base with new (missing) 
information that would foster the further (re) classification of the 
instances (ABox). These new facts are to be collected from 
available external knowledge bases (e.g. DBPedia) and added to 
the 𝐾𝐵!"#. As proposed further in section 3, the driving vector of 
this task is the terminological component (TBox) of 𝐾𝐵!"# and 
the underlying semantics of the OWL DL constructs (e.g. 
equivalent class, intersection, union, and complement).  

Consequently, this step identifies the desirable information that is 
lacking in 𝐾𝐵!"#. It is worth to bear in mind that the desirable 
information may resolve some inconsistencies generated by the 
third step but may also raise other inconsistencies. Additionally, 
this step also instructs the ODCE process either: 

• To proceed to the External Data Collecting step if it has been 
verified the need to enrich/collect information from the 
external knowledge bases;  

• To proceed to the last step (Consistency Resolution) of the 
ODCE process. 

The seventh step (external Data Collecting) extracts/collects from 
a set of external knowledge bases the information specified 
previously as desirable. The result is a set of knowledge bases 
(one for each external knowledge base used) containing the 
information to be further integrated in the 𝐾𝐵!"#.  

At the end of this step, the process proceeds again to the Data 
Merging step in order to merge the collected data into the 𝐾𝐵!"#. 
After the collected data is merged new enrichment requirements 
may appear. As that, a new iteration of the process starts. The 
process has as much iterations as necessary as decided in the sixth 
step (Enrichment Evaluation). 

At the end of the process and in order to ensure that the 𝐾𝐵!"# is 
consistent, the last step is the mandatory Consistency Resolution 
task. This task consists in identifying and resolving the 
inconsistencies caused by the added (or modified) facts on the 
𝐾𝐵!"# knowledge base by the Data Merging task. 

Steps regarding the enrichment tasks (six and seven respectively) 
are the most relevant and innovative ones in our proposal and the 
focus of this paper. Thus, they will be described in depth in the 
following section. The interested reader can find detailed 
description of the ODCE process in [7]. 

3. THE ENRICHMENT PROCESS 
The enrichment process has two sub-tasks: (i) deciding what are 
the worth-to-collect missing facts and (ii) collecting the missing 
facts. The enrichment process is driven by the Description Logics 
inference process upon the KB. I.e. the goal is to enrich the KB in 
a way that promotes inference of new facts. The inference is 
performed by a description logic reasoner (or classifier) through 
the terminological level and the assertional level. 

Assuming the knowledge bases are terminologically described 
(TBox) by means of OWL DL [8] ontologies,  it is important to 
determine what and how the OWL constructs influence the 
inference process. Those constructs are identified and a restricted 
set of expressions is defined according to our needs in section 3.1. 
Next, in section 3.2, those expressions are exploited to 
systematize the actions to collect the missing facts. Section 3.3 
discusses the dimensions that are considered in deciding whether 
to execute or not the collecting of the missing/desirable facts. 
Section 3.4 describes the software development framework 
designed accordingly. 

3.1 Expressions Promoting Inference 
There are two kinds of possible ABox inferences relevant for this 
process: 

• type inference (instance checking) is the process that checks 
if an assertion 𝐶 𝑎  is true for every model ℐ of an ABox 
𝐴  and a TBox 𝑇. I.e. determines if an individual 𝑎 is of type 
𝐶 in every model ℐ; 

• relationship inference (relationship checking) is the process 
that checks if an assertion 𝑅 𝑎, 𝑏  is true for any model ℐ of 
a ABox 𝐴 and a TBox 𝑇. I.e. determines if an individual 𝑎 is 
𝑅-related with individual 𝑏 in every model ℐ. 

It worth noticing that the relationship checking in OWL DL 
occurs in a restrictive context of TBox constraints and individuals. 
For example, considering the following knowledge base (in DL 
syntax): 

𝐶𝑎𝑟 ⊑ ∃ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟.𝐶𝑜𝑙𝑜𝑢𝑟 

𝐵𝑙𝑢𝑒𝐶𝑎𝑟 ≡ 𝐶𝑎𝑟 ⊓ ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟: 𝑏𝑙𝑢𝑒 

𝐶𝑜𝑙𝑜𝑢𝑟 ⊑ 𝑇ℎ𝑖𝑛𝑔 

𝑏𝑙𝑢𝑒:𝐶𝑜𝑙𝑜𝑢𝑟 

𝑐𝑎𝑟1:𝐵𝑙𝑢𝑒𝐶𝑎𝑟 

a DL reasoner will infer the following relationship: 

ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟 𝑐𝑎𝑟1, 𝑏𝑙𝑢𝑒  

The relationship inference is possible because of the type of the 
individual (𝑐𝑎𝑟1), which is either set statically (as in the above 
example) or determined by the inference. Thus, as the relationship 
inference depends on the type inference, the remaining of the 
paper will focus the efforts on the type inference only. 

The OWL construct that allows type inference is the 
EquivalentClasses, which is represented in Backus Normal Form 
(BNF) notation as: 

EquivalentClasses := 
'EquivalentClasses' '(' ClassExpression ClassExpression 
{ ClassExpression } ')' 

This would be represented in DL syntax as: 

𝐶𝑙𝑎𝑠𝑠𝐸𝑥𝑝𝑟1 ≡ 𝐶𝑙𝑎𝑠𝑠𝐸𝑥𝑝𝑟2 ≡ ⋯ ≡ 𝐶𝑙𝑎𝑠𝑠𝐸𝑥𝑝𝑟𝑁 



EquivalentClasses may thus be seen as a combination of two or 
more ClassExpression, which in turn is defined as follows: 

ClassExpression := 
Class | ObjectIntersectionOf | ObjectUnionOf | 
ObjectComplementOf | ObjectOneOf | 
ObjectSomeValuesFrom | ObjectAllValuesFrom | 
ObjectHasValue | ObjectHasSelf | ObjectMinCardinality 
| ObjectMaxCardinality | ObjectExactCardinality | 
DataSomeValuesFrom | DataAllValuesFrom | 
DataHasValue | DataMinCardinality | 
DataMaxCardinality | DataExactCardinality 

Description Logics makes two important assumptions: 

• Not Unique Name Assumption (not-UNA), states that 
different names does not imply distinct entities. This is the 
opposite of UNA (typical assumption in database 
applications) in the sense that if two entities have different 
names then they are considered distinct entities. Weak UNA 
is a new approach that means that if two individuals are not 
inferred to be the same, then they will be assumed to be 
distinct [10]. This UNA variant is not yet supported by the 
DL reasoners, thus preventing its adoption in this work. 
Because the goal is to collect individuals from different 
third-party KB, we will force the adoption of UNA at the 
ABox level by explicitly stating “owl:differentFrom” 
relationships between individuals unless the identity 
resolution step states otherwise; 

• Open World Assumption (OWA), states that something is 
false only if it explicitly stated. This is the opposite of Closed 
World Assumption (CWA) in the sense that if something is 
not known it is considered false. Unlike UNA, DL reasoners 
follow invariably OWA and there is no workaround. 
Consequently, we will follow OWA. 

Considering the open world assumption (OWA), not all class 
expression combinations promote type inference. For example, 
while the class expression ObjectAllValuesFrom is significant for 
subsumption classification and consistency checking, it does not 
facilitate type inference. I.e. it is not possible to conclude that an 
individual has a certain relationship only with individuals of a 
specific class, as assuming open world, unknown relationships 
with individual of other classes may exist that deny that 
constraint. 

All the ClassExpression combinations promoting type inference 
were analyzed and identified. These combinations are a sub-set of 
all possible ClassExpression combinations and are referred to as 
ClassExpressionTypeA (CETA). The meaningful interpretation of 
EquivalentClasses for type inference is referred to 
EquivalentClasses4Inference and is defined as follows:  

EquivalentClasses4Inference := 
‘EquivalentClasses’ ‘(‘ Class CETA { CETA } ‘)’ 

CETA := CEAnd | CEOr | CEPositive | CEComplement   

CEAnd := 'ObjectIntersectionOf' '(' CETA CETA { CETA } ')' 

CEOr := 'ObjectUnionOf' '(' CETA CETA { CETA } ')' 

Positive class expressions (CEPositive) are the class expressions 
which promote inference when the facts are true. I.e. it is possible 
to find facts that prove the class expressions (axioms): 

• An instance 𝑖 has some values of a type 𝐶 related through 
property 𝑝 if at least one 𝑝 𝑖, 𝑖′ : 𝑖! ∈ 𝐶 is found; 

• An instance 𝑖 has a value 𝑣 related through property 𝑝 if 
𝑝(𝑖, 𝑣) is found; 

• An instance 𝑖 is related through property 𝑝 to itself (has self) 
if 𝑝(𝑖, 𝑖) is found; 

• An instance 𝑖 has a minimum 𝒏 relationships 𝑝 if 
𝑝 𝑖, 𝑖′ ≥ 𝑛 are found; 

• An instance 𝑖 is of type 𝐶, if 𝐶(𝑖) is found. Notice that if 
𝐶(𝑖) and 𝐷(𝑖) are found and 𝐶 disjoint 𝐷, a consistency issue 
exists.  

Hence, positive class expressions are defined as follows: 

CEPositive := 
Class | ObjectSomeValuesFrom  | ObjectHasValue | 
ObjectHasSelf | ObjectOneOf | ObjectMinCardinality | 
DataSomeValuesFrom | DataMinCardinality 

On the other hand, the complement class expression has a 
different content, and it is composed by a single class expression 
of a different type, referred as ClassExpressionTypeB (CETB). 

CEComplement := ‘ObjectComplementOf’ ‘(‘ CETB ‘)’ 

CETB := CEAnd | CEOr | CEComplement | CENegative 

In this context, the negative class expressions (CENegative) are 
useful because they allow complement-based inference by 
determining false facts, namelly: 

• An instance 𝑖 does not have all values of a property 𝑝 of type 
𝐶 if at least one 𝑝 𝑖, 𝑖′ : 𝑖! ∈ 𝐷 is found and 𝐶 and 𝐷 are 
disjoint; 

• An instance 𝑖 does not have exactly n relationships 𝑝 if at 
least 𝑝 𝑖, 𝑖′ > 𝑛 are found; 

• An instance 𝑖 does not have at maximum n relationships 𝑝 if 
at least 𝑝 𝑖, 𝑖′ > 𝑛 are found; 

• An instance 𝑖 is not of type 𝐶 if it is found 𝐷(i) such that 𝐶 
is disjoint of 𝐷. Notice that if 𝐶(𝑖) and 𝐷(𝑖) are found and 𝐶 
is disjoint of 𝐷, a consistency issue exists. 

Negative class expressions are therefore defined as follows: 

CENegative := 
Class | ObjectMaxCardinality | ObjectAllValuesFrom  |  
ObjectExactCardinality  | DataMaxCardinality | 
DataAllValuesFrom | DataExactCardinality 

Yet, the constructs mentioned in the above CEPositive and 
CENegative definitions are also analyzed and their interpretations 
are constrained to identify the meaningful inference class 
expressions of each one. As a result, each construct may only 
“accept” CETA instead of ClassExpression. For example, the 
construct ObjectSomeValuesFrom that is originally defined as  

ObjectSomeValuesFrom := 'ObjectSomeValuesFrom' '(' 
ObjectPropertyExpression ClassExpression ')' 

is interpreted as its definition comprehending CETA instead of 
ClassExpression, such that: 

ObjectSomeValuesFrom := 'ObjectSomeValuesFrom' '(' 
ObjectPropertyExpression CETA ')' 

For brevity reasons, the remainder (re) interpretations of 
constructs mentioned in CEPositive and CENegative are omitted. 

Figure 2 depicts an UML class diagram representing the BNF 
expressions capturing the class expressions useful for inference 
(Object and Datatype restrictions are not distinguished).  



 
Figure 2. UML class diagram of equivalent class expression 

for inference. 

3.2 Collecting Desirable Data 
Considering that the goal is to enrich every instance (say 𝑖) added 
to the KB with facts that allow/promote inference of new facts, 
each class expression drives the efforts for searching/collecting 
the necessary facts related to that expression. Here, it is important 
to distinguish between: 
• Composed class expressions, which are those related to the 

OWL Propositional Connectives (i.e. Intersection, Union and 
Complement), which in their canonical form have two or 
more composed class expression or simple class expression; 

• Simple class expressions, related to CETA and CETB, are 
those that in their canonical form have a non-composed class 
expression, i.e. an indivisible class expression. 

Accordingly, the collecting task of each single class expression 
depends on which construct it relies on, as systematized in Table 1 
(again, Object and Datatype restrictions are not distinguished). 

Table 1. OWL constructs and respective collecting actions 

OWL class expressions Collecting action 

𝐶𝑙𝑎𝑠𝑠 
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖,𝐶𝑙𝑎𝑠𝑠 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} 

𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖,𝐶𝑙𝑎𝑠𝑠,𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠) 

𝑆𝑜𝑚𝑒𝑉𝑎𝑙𝑢𝑒𝑠𝐹𝑟𝑜𝑚 𝑝  𝐶  𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖, 𝑝,𝐶) 

𝐴𝑙𝑙𝑉𝑎𝑙𝑢𝑒𝑠𝐹𝑟𝑜𝑚 𝑝  𝐶  𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖, 𝑝,𝐶,𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠) 

𝐻𝑎𝑠𝑉𝑎𝑙𝑢𝑒 𝑝  𝑗  𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖, 𝑝, 𝑗) 

𝐻𝑎𝑠𝑆𝑒𝑙𝑓 𝑝  𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖, 𝑝, 𝑖) 

𝑂𝑛𝑒𝑂𝑓 𝑝  𝑒𝑛𝑢𝑚  𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑂𝑛𝑒(𝑖, 𝑝, 𝑒𝑛𝑢𝑚) 

𝑀𝑖𝑛𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑝  𝑦  𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡(𝑖, 𝑝, 𝑦) 

𝑀𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑝  𝑦  𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡(𝑖, 𝑝, 𝑦 + 1) 

𝐸𝑥𝑎𝑐𝑡𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑝  𝑦  𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡(𝑖, 𝑝, 𝑦 + 1) 

Each enrichment action returns a (possibly empty) set of facts 
(𝐹𝑎𝑐𝑡𝑠) and a boolean value (𝑏𝑆𝑢𝑐𝑐) indicating the success or 
failure of the data search process (as represented in the first row of 
the table, but omitted in the subsequent rows): 

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖,𝐶𝑙𝑎𝑠𝑠 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns a fact in the 
form 𝐶𝑙𝑎𝑠𝑠 𝑖  proving that instance 𝑖 is of type 𝐶𝑙𝑎𝑠𝑠. 
Further, it will return true if the facts are enough to prove so 
or false otherwise; 

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖,𝐶𝑙𝑎𝑠𝑠,𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns 
facts 𝐶′ 𝑖  such that 𝐶! ∈ 𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠, proving that i is 
not of type 𝐶𝑙𝑎𝑠𝑠; 

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, 𝑝,𝐶 →    {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns the facts in the 
form 𝑝 𝑖, 𝑗  such that 𝑗 ∈ 𝐶, proving that instance 𝑖 has 𝑝-
relationships with entities of type 𝐶; 

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, 𝑝,𝐶,𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns 
the facts in the form 𝑝 𝑖, 𝑗  such that 𝑗 ∈ 𝐶! and 𝐶! ∈
𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠 proving that 𝑖 has 𝑝-relationships with 
instances that are not of type C ; 

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, 𝑝, 𝑗 →    {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns the facts in the 
form 𝑝 𝑖, 𝑗 , proving that proving that i is 𝑝-related with 𝑗, 
whose type is irrelevant; 

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, 𝑝, 𝑖 →    {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns the fact 𝑝 𝑖, 𝑖 , 
proving that 𝑖 is 𝑝-related to itself; 

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑂𝑛𝑒 𝑖, 𝑝, 𝑠𝑒𝑡 →    {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns the fact 
𝑝 𝑖, 𝑗 , proving that 𝑖 is 𝑝-related to 𝑗 ∈ 𝑠𝑒𝑡; 

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡 𝑖, 𝑝, 𝑦 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns at least 𝑦 
facts in the form 𝑝 𝑖, 𝑗 , proving that 𝑖 is 𝑝-relate to at least 𝑦 
other instances; 

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡 𝑖, 𝑝, 𝑦 + 1 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns at 
least 𝑦 + 1 facts in the form 𝑝 𝑖, 𝑗 , proving that 𝑖 is 𝑝-relate 
to at least 𝑦 + 1 other instances. 

On the other hand, the collecting task of composed class 
expressions results from the “combination” of the results of two or 
more class expressions. For example, the equivalent expression: 

𝐵𝑙𝑢𝑒𝐶𝑎𝑟 ≡ 𝐶𝑎𝑟 ⊓ ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟: 𝑏𝑙𝑢𝑒 

is composed by a CEAnd, which in turn is composed by a Class 
and HasValue constructs, which will require a 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖,𝐶𝑎𝑟  and 
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟, 𝑏𝑙𝑢𝑒  collecting actions respectively. The 
CEAnd collecting action will return true if the collecting action of 
all the included constructs return true, and false otherwise. Table 2 
systematizes the collecting actions for the OWL propositional 
connectives. This collecting task is further referred to as 
Composed Class Expression Collecting. 

Table 2. OWL Propositional Connectives and respective 
collecting actions 

OWL Propositional 
Connectives 

Collecting action 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑓 𝐶!…𝐶!  𝑎𝑛𝑑 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶! … 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶!  

𝑈𝑛𝑖𝑜𝑛𝑂𝑓 𝐶!…𝐶!  𝑜𝑟 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶! … 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶!  

𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑓 𝐶  𝑛𝑜𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶  

 

In particular, the 𝑛𝑜𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶  action will return true if the 
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶  action returns false. Of course that only the collecting 
actions related to CETB are admissible in this context: 
Intersection, Union, Complement, All Values From, Exact 
Cardinality, Max Cardinality and Class (Disjoint). 

Equivalent 
Class

Class 
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3.3 Enrichment Decision Strategies 
The effort for carrying each of these actions is different depending 
on several dimensions and, in particular, the following ones:  

• Internal criteria: the type and characteristics of the OWL 
constructs;  

• Data sources criteria: the characteristics and number of the 
data sources involved; 

• Context criteria: the relative importance given to a specific 
inferred fact in a specific domain/application. 

The goal is to analyze and systematize these dimensions into a 
strategy-based decision framework for automatically adoption 
during enrichment. 

3.3.1 Internal criteria 
This type of criteria varies according to the previous distinction 
between single class expressions and composed ones. With 
respect to the simple class expressions one may consider, for 
example, (i) the cost of the collecting actions, (ii) the number of 
disjoint classes, (iii) the deepness of disjoint classes. Concerning 
the composed class expressions one may consider (i) the tree 
deepness (e.g. is less than y), (ii) the total number of class 
expressions, (iii) the minimum number of class expressions that 
will run the collecting action. 

It is worth to notice that the enrichment of composed class 
expressions depends not only on the characteristics of itself, but 
also on the characteristics of its included class expressions. For 
example, the intersection class expression obliges that all the 
included class expressions are executed, while the union class 
expression requires only one to be successfully executed. The 
complement class expression is composed by a simple class 
expression but its characteristics and dimensions are very similar 
to those of intersection and union. 

3.3.2 Data sources criteria 
Regarding the second dimension, this type of criteria may take 
into consideration (i) the number of data sources required (e.g. 
more/less than y), (ii) the number of data sources available (e.g. 
more/less than x), (iii) the accessibility of the data source (e.g. 
public and/or/xor private), (iv) the precision and/or recall of each 
data source, (v) the cost of access/reading the data source (e.g. 
traffic). 

3.3.3 Context criteria 
Regarding the third dimension, this type of criteria may consider 
the pragmatics (business pertinence) of classifying an instance as 
being of a given type or, in turn, simply opt to not run the 
collecting action for (i) a concrete entity (e.g. Student) or (ii) a 
concrete kind of class expression (e.g. intersection). 

3.4 Software Development Framework 
To facilitate and drive the development of the enrichment process, 
the team designed a software development framework that 
captures the concepts and the approach described above. For that, 
the team have resorted to the well-known software design pattern 
Strategy [11]. The resulting design is captured in the UML class 
diagram depicted in Figure 3 and described next. 

Every ontological construct (e.g. Some Values From) has an 
enrichment interface counterpart (e.g. Some Values From 
Enrichment) derived from the CE Enrichment interface. This 
interface defines several methods for accessing its configuration 
(i.e. gets) and two important methods: 

• willRun(), that decides whether the enrichment process will 
run or not. This method relies on a specific enrichment 
decision strategy (CE Enrich Decision), that in turn makes 
use of the defined criteria parameters; 

• run(), which executes the collecting action that eventually 
leads to new facts. 

 
Figure 3. Class diagram depicting the enrichment actions and 

enrichment decision strategies. 

The CE Enrich Decision strategy has a method that takes the 
enrichment process and, based on the available data (ABox), 
terminological constraints (TBox), and criteria parameters, 
decides whether to execute or not execute the enrichment attempt. 
This design has been successfully applied in the World Search 
system and in the ODCE process in particular. 

4. A WALK-THROUGH EXAMPLE 
To facilitate the understanding of the enrichment process and of 
the composed nature of the strategies, a short, yet real-world 
scenario from the World Search project is presented. This scenario 
considers the need to populate 𝐾𝐵!"# from Portuguese news and 
municipal meetings transcripts.  

Consider a knowledge base described by the TBox defined 
partially through the following axioms in DL syntax and 
graphically depicted in Figure 4. 

1. 𝑃𝑒𝑟𝑠𝑜𝑛 ⊑ ∃ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
2. 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑓𝑓𝑖𝑐𝑒 ⊑ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

 3. 𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒 ⊑ 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑓𝑓𝑖𝑐𝑒 

 4. 𝑃𝑟𝑖𝑚𝑒𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒 ⊑ 𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒 

 5. 𝐸𝑢𝑟𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ⊑ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 
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6. 𝑃𝑎𝑟𝑡𝑦 ⊑ ∃ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟.𝑃𝑒𝑟𝑠𝑜𝑛 

 7. 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓 ≡ ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟! 

 8. 𝑃𝑎𝑟𝑡𝑦 ⊑ ∃𝑖𝑠𝐿𝑒𝑎𝑑𝑖𝑛𝑔.𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 

 9. ∃𝑟𝑢𝑙𝑒𝑠.⊤ ⊑ 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 

 10. ⊤ ⊑ ∀𝑟𝑢𝑙𝑒𝑠. 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

 

 
Figure 4. TBox’s classes and their relations (partial) 

Further, consider the following definitions of equivalent classes: 

11. 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 ≡ 𝑃𝑎𝑟𝑡𝑦 ⊓ ∃𝑖𝑠𝐿𝑒𝑎𝑑𝑖𝑛𝑔.𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 

 12. 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 ≡ 𝑃𝑎𝑟𝑡𝑦 ⊓  
        ∃ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟. (∃ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑃𝑟𝑖𝑚𝑒𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒) 

 13. 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑓𝑓𝑖𝑐𝑒 

 14. 𝐸𝑢𝑟𝑜𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 ≡ 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 ⊓  
                                                                        ∃𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓. (∃𝑟𝑢𝑙𝑒𝑠.𝐸𝑢𝑟𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) 

 Now, consider that from the earlier tasks of the ODCE process 
(i.e. tasks 1 to 5) the following ABox assertions were integrated in 
the knowledge base: 

15. 𝑃𝑎𝑟𝑡𝑦(𝑝𝑠) 

 16. 𝑃𝑒𝑟𝑠𝑜𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠) 

 Based on this knowledge base, the enrichment evaluation task of 
the ODCE process focus on the (newly) integrated instances to 
identify which is the desirable data. As that: 

• The instance 𝑃𝑎𝑟𝑡𝑦(𝑝𝑠) serves as motivation for acquiring 
the facts needed by the equivalent class expression associated 
to the 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 class, as it partially fills its constraints; 

• The instance 𝑃𝑒𝑟𝑠𝑜𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠) serves as motivation 
for acquiring the facts needed by the equivalent class 
expression associated to the 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 class, as it partially 
fills its constraints. Further, because the equivalent class 
expression associated to 𝐸𝑢𝑟𝑜𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 class 
depends on 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 class, it is evaluated for decision too. 

These constraints and the tree of constraints for each equivalent 
class are depicted in Figure 5. Also, consider the annotations in 
Figure 5 as the enrichment decision criteria of each class 
expression. For example, the intersection class expression 
enrichment labeled as “intersection enrichment 1” is constrained 
(i) to a maximum of one level deep (i.e. maxdeep:1) and (ii) to a 
maximum of two class expressions (i.e. max 2 CE). 

 
Figure 5. SDF’s perspective of the example’s enrichment data 
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Due to these constraints and the KB’s content, only the 
𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 equivalent class enrichment process will be executed. 
Notice that the other enrichment processes are not executed 
because (i) the resolution tree exceeds the specified maximum 
deep constraint value or (ii) it is known a priori that no external 
data sources can provide the intended information (e.g. isLeading 
relationships) since no alignments exist for that relation (between 
the World Search knowledge base and the external data sources). 

Execution of the 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 equivalent class enrichment process 
will tentatively enrich the instance 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠 with the facts 
that permit the inference of the equivalent class. This corresponds 
to execute: 

𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠, ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑓𝑓𝑖𝑐𝑒  

Consider now that the querying, cleansing and integration tasks of 
the ODCE process (i.e. tasks 7, 3 and 4 respectively) updates the 
knowledge base with the following new assertions: 

17. ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠,𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟122)  

 18. ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠, 𝑝𝑟𝑖𝑚𝑒_𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟232)  

 19. 𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒(𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟122)  

 20. 𝑃𝑟𝑖𝑚𝑒𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒(𝑝𝑟𝑖𝑚𝑒_𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟232)  

 As a result, a reasoner will be able to infer the axiom: 

21. 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠) 
Once this assertion is added to the KB, new enrichment attempts 
are made for every equivalent class definition (not depicted in 
Figure 5). Considering the current content of the KB, both the 
𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 and the 𝐸𝑢𝑟𝑜𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 equivalent 
classes are re-evaluated (𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 has no further data that 
motivates its enrichment). 

The re-evaluation of the 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 strategy considers that the 
KB contains one instance of 𝑃𝑒𝑟𝑠𝑜𝑛 that holds the position of 
𝑃𝑟𝑖𝑚𝑒𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒, which reduces the enrichment 
requirement of the ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟 expression to one level (instead 
of the previous two levels), and thus, since no constraints are now 
violated, it decides to executed the enrichment process. 

For this case, the enrichment process will collect information 
about 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠 affiliation to the ‘ps’ party. 

𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠, 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓, 𝑝𝑠  

Considering that this search effort is well succeeded, a new axiom 
is added to the KB: 

22. 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠, 𝑝𝑠)  

 which in turn triggers the inference of: 

23. ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟(𝑝𝑠, 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠)  

 24. 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦(𝑝𝑠)  

 The same rationale is valid and applicable for the 
𝐸𝑢𝑟𝑜𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 class. 

As demonstrated by the example, the proposed enrichment 
process is iterative and incremental, relying (i) on the intensional 
information (ABox), (ii) the terminological constraints (TBox), 
(iii) the enrichment criteria and (iv) the decision making specified 
by means of strategies. 

5. RELATED WORK 
Ontology enrichment is commonly used to describe the process of 
parsing documents to extract schemas and facts. Some 

approaches, like the system described in [12] aim to extract and 
expand an ontology using several sources of structured and 
unstructured data (e.g. web documents, databases) using NLP. 
This system addresses the problem of heterogeneity of data and 
attempts to solve it by providing a framework, extracting 
ontologies from a set of data. Much like our proposal, querying 
other data sources further enhances the enrichment process. 
However, while it is TBox-driven, unlike our work, it is focused 
on expanding the number of addressed concepts. 

While the work described is similar to ABox abduction [13], they 
differ in the sense that ABox abduction tries to explain already 
existing facts, while the enrichment process tries to go from 
already existing facts to new (inferred) facts. 

The system described in [14] extracts instances from various 
sources through a domain-independent TBox-driven approach. 
Like our system, the TBox drives the population process, 
determining which data to extract. However, unlike our system, it 
makes no use of the existing instances and, therefore, it does not 
attempt to fill potential gaps in the existing data. 

In [15] the authors present a system whose goal is to mix 
traditional information retrieval queries and ontology-based 
queries. For that, documents are semantically annotated based on 
a very lightweight TBox through an NLP-oriented process. In this 
respect, this system corresponds to the NLP-based parsing step of 
our approach (that triggers the proposed ODCE process). 
Moreover, while our goal is to enrich the ABox in order to reason 
and infer new data enabling complex query answering, the 
aforementioned system intends to gather data as much and 
broader as possible to provide extended information. 

The work presented in [16] evaluates the types of change that can 
occur at the terminological level of the KB. Depending on the 
nature of such change the system chooses an appropriate strategy 
predicting other changes that may be necessary to maintain 
consistency. In our proposal, a similar strategy-based approach is 
used to drive the enrichment process of the ABox instead of the 
evolution of the TBox. 

6. CONCLUSION AND FUTURE WORK 
This paper presented a KB enrichment process characterized by: 

• NLP-triggered, in the sense that the data generated by the 
automatic NLP process will trigger and will be the 
motivation of the enrichment process; 

• OWL-based, because the enrichment process is controlled by 
the ontological constraints and the ontology constructs 
semantics of OWL DL, including the OWA; 

• Inference-driven, because the enrichment process aims to 
support and promote inference of new facts. 

This enrichment approach is contextualized first in the Ontology-
based Data Cleansing and Enrichment process, which in turn is 
part of the World Search project system aiming to support user 
performing complex queries upon LOD repositories. The designed 
software development framework has been successfully applied in 
this technological context. 

The proposed enrichment process grounds on and follows the 
semantics of the OWL DL language thus guarantying a wide 
understanding and acceptance semantics. Nevertheless, the 
characteristics related to the class expressions should be better and 
more carefully analyzed in respect to the identified and others 
criteria in order to specify concrete decision strategies that could 
be used out of the box or minimally customized. For example, one 



could use a conservative enrichment strategy (similar to that 
applied in the example), while other would prefer a more 
aggressive strategy (one that minimally constraints the enrichment 
execution). 

Further, the authors are aware that there are ontologies whose 
equivalent class expressions (and equivalent properties 
expressions) are not defined as description logics axioms, but as 
Horn clauses that respect the conditions of DL-Safe rules [17], i.e. 
rules that are specified using the TBox vocabulary defined in 
description logics, and that are applied to only named individuals 
in the KB. In this sense, the inference performed upon this type of 
rules can profit from an enrichment process similar to the one 
proposed here for equivalent class expressions. The team aims to 
address this subject in the near future. 

The contributions of the paper focused on the analysis of the 
enrichment actions and on the decision to whether execute or not 
them. On the other hand, the data source access was not 
addressed. In fact, for the moment every enrichment process is 
coded in the enrichment class instance as a SPARQL query (or 
other query language). This solution is not particularly flexible 
and adaptable to changes, both in terms of data sources and 
criteria. Hence, it would be important to address the process of 
generating data source accessors based on the ontology (TBox) 
alignments established between the target ontology and the source 
ontologies. 
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