
Introducing inference-driven OWL ABox enrichment

Alda Canito
School of Engineering

Polytechnic of Porto

Rua Dr. António Bernardino de
Almeida, 431

4200-072 Porto
alrfc@isep.ipp.pt

Paulo Maio
School of Engineering

Polytechnic of Porto

Rua Dr. António Bernardino de
Almeida, 431

4200-072 Porto

pam@isep.ipp.pt

Nuno Silva
School of Engineering

Polytechnic of Porto

Rua Dr. António Bernardino de
Almeida, 431

4200-072 Porto

nps@isep.ipp.pt

ABSTRACT
Publically available text-based documents (e.g. news, meeting
transcripts) are a very important source of knowledge for
organizations and individuals. These documents refer domain
entities such as persons, places, professional positions, decisions,
actions, etc. Querying these documents (instead of browsing,
searching and finding) is a very relevant task for any person in
general, and particularly for professionals dealing with intensive
knowledge tasks. Querying text-based documents’ data, however,
is not supported by common technology. For that, such
documents’ content has to be explicitly and formally captured into
knowledge base facts. Making use of automatic NLP processes for
capturing such facts is a common approach, but their relatively
low precision and recall give rise to data quality problems.
Further, facts existing in the documents are often insufficient to
answer complex queries and, therefore, it is often necessary to
enrich the captured facts with facts from third-party repositories
(e.g. public LOD, private IS databases). This paper describes the
adopted process to identify what data is currently missing from
the knowledge base repository and which is desirable to collect
from external repositories. The proposed process aims to foster
and is driven by OWL DL inference-based instance (ABox)
classification, which is supported by the constraints of the TBox.

Keywords
Knowledge Base, Ontology, TBox, ABox, Enrichment, Inference,
OWL

1. INTRODUCTION
Publically available text-based documents (e.g. news, meeting
transcripts) are a very important source of knowledge for
organizations and individuals. Querying the content of these
documents is not technologically supported, compelling the user
to search, browse and integrate information by him/herself. This is
a time-consuming, tedious, error-prone, unrepeatable and
unconfident process.

In the context of the World Search project [1], a system that is
able to address semantically rich and complex queries over the
content of unstructured or semi-structured documents has been
created [2]. Presently, a repository (further also referred as
knowledge base) meeting the Linked Open Data (LOD) principles
[3] and the query building and execution applications are
available and functional. However, the ability to populate the
repository with facts from unstructured and semi-structured
documents is still an open issue. Therefore, the population of
important relationships between documents and ontological
instances (e.g. persons, places, professional positions, decisions,
actions) mainly relies in the user.

Initially, to address this open issue, a common approach in
literature has been taken: making use of automatic NLP processes
for capturing and explicitly and formally “semantizing” the
documents’ content. While the utility of the automatic NLP
processes is evident, the relatively low precision and recall of
these processes referred in [4], [5] was observed, which give rise
to data quality problems, including duplicates, incoherencies,
inconsistencies and incompleteness. Thus, to avoid (or at least to
minimize) those data quality problems, the facts generated by the
NLP process are conveniently analyzed and processed manually
before being integrated into the repository. Additionally, it was
perceived that the NLP’ acquired data is often insufficient for the
purpose of applying a reasoner [6] (or a classifier) to infer new
facts from the already known data (ABox) together with the
terminological component (TBox) of the repository.

Later, in order to (i) automatize the aforementioned user-based
process and (ii) to address the incompleteness of the data, an
iterative and incremental process called Ontology-driven Data
Cleansing and Enrichment (ODCE) was devised [7]. The ODCE
process is triggered by the NLP process generated data and driven
by the semantically rich OWL DL [8] TBox (created by domain
experts) underlying the repository. It combines tasks such as (a)
data cleaning, (b) ontology population and (c) enrichment for
inference purposes. A brief description of the overall process is
provided in section 2.

This paper focuses on the enrichment task of the ODCE process.
The enrichment task seeks on third-parties repositories the
missing data that will promote inference (namely classification of
instances). Our approach suggests adopting the OWL DL
ontological constraints (e.g. equivalent class, intersection, union,
complement, disjoint) as driving vectors of the enrichment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

iiWAS2013, 2-4 December, 2013, Vienna, Austria.
Copyright 2013 ACM 978-1-4503-2113-6/13/12 …$15.00.

process. I.e. the process will seek for the data that promotes the
inference of specific ontological constraints. However, different
ontological constraints require different enrichment processes.
There are two kinds of enrichment processes: simple and
composed. A simple process respects a simple and unique
ontological constraint (e.g. some/all values from, has value, has
self) for deciding what data is necessary and how to provide it.
Composed processes reflect the OWL composed constructs of
intersection, union and complement. Again, the characteristics of
these ontological constructs motivate different decisions and
enrichment processes. In particular, they rely on the simple
enrichment processes and in other composed processes, thus
giving rise to a recursive enrichment process.

Different enrichment processes have different demands in terms
of data resources, reasoning needs, time, etc. Instead of
recursively populating all the missing data, it is suggested
enriching the repository in a controlled way by considering the
efforts and resources necessary to provide it. The proposed
approach suggests defining enrichment decision strategies to
acquire the data, considering the following dimensions: (i) the
available and required data, (ii) the characteristics of the
ontological constraints and (iii) the characteristics of the data
sources.

The remaining of the paper is organized as follows. Section 2
presents the overall ODCE process. Section 3 describes in detail
the repository enrichment process and proposes a software
development framework. Section 4 presents a real-world example
making use of the proposed software development framework.
Our proposal is compared to other works in section 5. Finally,
section 6 summarizes the contributions and points out next
research steps.

2. THE ODCE PROCESS
This section briefly describes the Ontology-driven Data Cleansing
and Enrichment (ODCE) process, on which the proposed
enrichment strategies are applied.

The ODCE process consists in eight steps (or tasks) combined in a
iterative and incremental manner, as depicted in Figure 1.This is
triggered through a NLP process (not represented in Figure 1)
whose output is a knowledge base (𝐾𝐵!"#). In this context, a
knowledge base (KB) is a tuple in the form of 𝐾𝐵: 𝑇,𝐴 , where
T (TBox) is the terminological/intensional information, and A
(ABox) is the assertional/concrete situation/extensional
information. While this is a common definition of a Description
Logics (DL) knowledge base, the distinction between TBox and
ABox is not always possible or evident. The KB presented in
section 3.1 contains an example of such difficulty: the individual
𝑏𝑙𝑢𝑒 (ABox) is used in defining the class 𝐵𝑙𝑢𝑒𝐶𝑎𝑟 (TBox).

The purpose of the ODCE process is to integrate and enrich
𝐾𝐵!"# = 𝑇!"#,𝐴!"# in a proper, consistent and automatic way,
into the 𝐾𝐵!"# = 𝑇!"# ,𝐴!"# . 𝑇!"# covers the same domain
knowledge of 𝑇!"# but it is semantically enhanced by domain
experts by including necessary and sufficient conditions in
addition to the necessary conditions already present in 𝑇!"#.

The first step (NLP Cleansing) ensures that 𝐾𝐵!"# is consistent
and ready for integration. For that, it applies a set of data
cleansing operations to detect and to correct inaccurate
information, namely to avoid duplicated facts and/or entities. The
result of this step is a minimal, clean and consistent set of facts
(𝐾𝐵!"") to be integrated into the 𝐾𝐵!"# knowledge base.

Figure 1. The ODCE process.

The second step (Identity Resolution) [9] consists in identifying
univocally the entities mentioned in 𝐾𝐵!"" according to the ones
existing in 𝐾𝐵!"#. Thus, this task is accomplished by verifying
that for each entity 𝑒 ∈ 𝐾𝐵!"", an entity 𝑒! ∈ 𝐾𝐵!"# exists such
that 𝑒 and 𝑒′ are considered by a given identity function as
referring to the same real/domain entity. In such cases, all
references to 𝑒 into 𝐾𝐵!"" are replaced by 𝑒′ giving raise to
𝐾𝐵!""! .

The third step (Data Merging) consists in taking several source
knowledge bases (namely 𝐾𝐵!""!) containing previously collected
and prepared information with the unique purpose of being
integrated (or merged) into the target knowledge base (𝐾𝐵!"#).
Therefore, it entails that a transparent data transformation process
occurs between each (possible) pair of source and target
knowledge bases. In this particular, a (declarative) alignment
between the ontologies describing the source and target
knowledge bases is required. The result of the data-merging task
may leave the 𝐾𝐵!"# knowledge base temporarily inconsistent. It
is responsibility of the next steps to resolve such inconsistencies.

The fourth step (Consistency Resolution Decision) checks if the
𝐾𝐵!"# knowledge base has inconsistencies resulting from the
execution of the previous steps. Considering a knowledge base in
OWL DL, inconsistencies can be analyzed and identified by
means of a reasoner such as Pellet [6].

Based on (i) the (in) existence of inconsistencies and (ii) on the
kind of inconsistencies found, it decides either:

1: NLP Cleansing

2: Identity Resolution

3: Data Merging

6: Enrichment Evaluation
(Strategy)

7: External Data Collecting

5: Consistency
Resolution

yes

no

KBNLP

KBADD

KBEND

KB’END

EKBN
ADD

EKB...
ADD

EKB1
ADD

EKBN

EKB...

EKB1

Desirable
Data

KB’ADD

4: Consistency Resolution
Decision (Strategy)

8: Consistency
Resolution

yesno

• To resolve the inconsistencies found and, therefore, the
ODCE process flows to step five before executing the
enrichment task;

• To proceed immediately to the enrichment task (step 6) since
the inconsistencies found are not considered as causing
undesirable effects (e.g. malfunctioning, incompleteness) on
such task.

Furthermore, this decision takes into consideration other issues
such as the performance of the overall process, the requirements
of the enrichment process, the interdependencies between the
ODCE process and the running application (e.g. answering
complex questions) that rely on the knowledge base.

Yet, it is important noticing that, independently of the decision
made at this point, the ODCE process ensures that at the end the
knowledge base is consistent. This is achieved because the last
step of the process corresponds to a mandatory consistency
resolution task.

The sixth step (Enrichment Evaluation) evaluates the need to
enrich the 𝐾𝐵!"# knowledge base with new (missing)
information that would foster the further (re) classification of the
instances (ABox). These new facts are to be collected from
available external knowledge bases (e.g. DBPedia) and added to
the 𝐾𝐵!"#. As proposed further in section 3, the driving vector of
this task is the terminological component (TBox) of 𝐾𝐵!"# and
the underlying semantics of the OWL DL constructs (e.g.
equivalent class, intersection, union, and complement).

Consequently, this step identifies the desirable information that is
lacking in 𝐾𝐵!"#. It is worth to bear in mind that the desirable
information may resolve some inconsistencies generated by the
third step but may also raise other inconsistencies. Additionally,
this step also instructs the ODCE process either:

• To proceed to the External Data Collecting step if it has been
verified the need to enrich/collect information from the
external knowledge bases;

• To proceed to the last step (Consistency Resolution) of the
ODCE process.

The seventh step (external Data Collecting) extracts/collects from
a set of external knowledge bases the information specified
previously as desirable. The result is a set of knowledge bases
(one for each external knowledge base used) containing the
information to be further integrated in the 𝐾𝐵!"#.

At the end of this step, the process proceeds again to the Data
Merging step in order to merge the collected data into the 𝐾𝐵!"#.
After the collected data is merged new enrichment requirements
may appear. As that, a new iteration of the process starts. The
process has as much iterations as necessary as decided in the sixth
step (Enrichment Evaluation).

At the end of the process and in order to ensure that the 𝐾𝐵!"# is
consistent, the last step is the mandatory Consistency Resolution
task. This task consists in identifying and resolving the
inconsistencies caused by the added (or modified) facts on the
𝐾𝐵!"# knowledge base by the Data Merging task.

Steps regarding the enrichment tasks (six and seven respectively)
are the most relevant and innovative ones in our proposal and the
focus of this paper. Thus, they will be described in depth in the
following section. The interested reader can find detailed
description of the ODCE process in [7].

3. THE ENRICHMENT PROCESS
The enrichment process has two sub-tasks: (i) deciding what are
the worth-to-collect missing facts and (ii) collecting the missing
facts. The enrichment process is driven by the Description Logics
inference process upon the KB. I.e. the goal is to enrich the KB in
a way that promotes inference of new facts. The inference is
performed by a description logic reasoner (or classifier) through
the terminological level and the assertional level.

Assuming the knowledge bases are terminologically described
(TBox) by means of OWL DL [8] ontologies, it is important to
determine what and how the OWL constructs influence the
inference process. Those constructs are identified and a restricted
set of expressions is defined according to our needs in section 3.1.
Next, in section 3.2, those expressions are exploited to
systematize the actions to collect the missing facts. Section 3.3
discusses the dimensions that are considered in deciding whether
to execute or not the collecting of the missing/desirable facts.
Section 3.4 describes the software development framework
designed accordingly.

3.1 Expressions Promoting Inference
There are two kinds of possible ABox inferences relevant for this
process:

• type inference (instance checking) is the process that checks
if an assertion 𝐶 𝑎 is true for every model ℐ of an ABox
𝐴 and a TBox 𝑇. I.e. determines if an individual 𝑎 is of type
𝐶 in every model ℐ;

• relationship inference (relationship checking) is the process
that checks if an assertion 𝑅 𝑎, 𝑏 is true for any model ℐ of
a ABox 𝐴 and a TBox 𝑇. I.e. determines if an individual 𝑎 is
𝑅-related with individual 𝑏 in every model ℐ.

It worth noticing that the relationship checking in OWL DL
occurs in a restrictive context of TBox constraints and individuals.
For example, considering the following knowledge base (in DL
syntax):

𝐶𝑎𝑟 ⊑ ∃ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟.𝐶𝑜𝑙𝑜𝑢𝑟

𝐵𝑙𝑢𝑒𝐶𝑎𝑟 ≡ 𝐶𝑎𝑟 ⊓ ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟: 𝑏𝑙𝑢𝑒

𝐶𝑜𝑙𝑜𝑢𝑟 ⊑ 𝑇ℎ𝑖𝑛𝑔

𝑏𝑙𝑢𝑒:𝐶𝑜𝑙𝑜𝑢𝑟

𝑐𝑎𝑟1:𝐵𝑙𝑢𝑒𝐶𝑎𝑟

a DL reasoner will infer the following relationship:

ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟 𝑐𝑎𝑟1, 𝑏𝑙𝑢𝑒

The relationship inference is possible because of the type of the
individual (𝑐𝑎𝑟1), which is either set statically (as in the above
example) or determined by the inference. Thus, as the relationship
inference depends on the type inference, the remaining of the
paper will focus the efforts on the type inference only.

The OWL construct that allows type inference is the
EquivalentClasses, which is represented in Backus Normal Form
(BNF) notation as:

EquivalentClasses :=
'EquivalentClasses' '(' ClassExpression ClassExpression
{ ClassExpression } ')'

This would be represented in DL syntax as:

𝐶𝑙𝑎𝑠𝑠𝐸𝑥𝑝𝑟1 ≡ 𝐶𝑙𝑎𝑠𝑠𝐸𝑥𝑝𝑟2 ≡ ⋯ ≡ 𝐶𝑙𝑎𝑠𝑠𝐸𝑥𝑝𝑟𝑁

EquivalentClasses may thus be seen as a combination of two or
more ClassExpression, which in turn is defined as follows:

ClassExpression :=
Class | ObjectIntersectionOf | ObjectUnionOf |
ObjectComplementOf | ObjectOneOf |
ObjectSomeValuesFrom | ObjectAllValuesFrom |
ObjectHasValue | ObjectHasSelf | ObjectMinCardinality
| ObjectMaxCardinality | ObjectExactCardinality |
DataSomeValuesFrom | DataAllValuesFrom |
DataHasValue | DataMinCardinality |
DataMaxCardinality | DataExactCardinality

Description Logics makes two important assumptions:

• Not Unique Name Assumption (not-UNA), states that
different names does not imply distinct entities. This is the
opposite of UNA (typical assumption in database
applications) in the sense that if two entities have different
names then they are considered distinct entities. Weak UNA
is a new approach that means that if two individuals are not
inferred to be the same, then they will be assumed to be
distinct [10]. This UNA variant is not yet supported by the
DL reasoners, thus preventing its adoption in this work.
Because the goal is to collect individuals from different
third-party KB, we will force the adoption of UNA at the
ABox level by explicitly stating “owl:differentFrom”
relationships between individuals unless the identity
resolution step states otherwise;

• Open World Assumption (OWA), states that something is
false only if it explicitly stated. This is the opposite of Closed
World Assumption (CWA) in the sense that if something is
not known it is considered false. Unlike UNA, DL reasoners
follow invariably OWA and there is no workaround.
Consequently, we will follow OWA.

Considering the open world assumption (OWA), not all class
expression combinations promote type inference. For example,
while the class expression ObjectAllValuesFrom is significant for
subsumption classification and consistency checking, it does not
facilitate type inference. I.e. it is not possible to conclude that an
individual has a certain relationship only with individuals of a
specific class, as assuming open world, unknown relationships
with individual of other classes may exist that deny that
constraint.

All the ClassExpression combinations promoting type inference
were analyzed and identified. These combinations are a sub-set of
all possible ClassExpression combinations and are referred to as
ClassExpressionTypeA (CETA). The meaningful interpretation of
EquivalentClasses for type inference is referred to
EquivalentClasses4Inference and is defined as follows:

EquivalentClasses4Inference :=
‘EquivalentClasses’ ‘(‘ Class CETA { CETA } ‘)’

CETA := CEAnd | CEOr | CEPositive | CEComplement

CEAnd := 'ObjectIntersectionOf' '(' CETA CETA { CETA } ')'

CEOr := 'ObjectUnionOf' '(' CETA CETA { CETA } ')'

Positive class expressions (CEPositive) are the class expressions
which promote inference when the facts are true. I.e. it is possible
to find facts that prove the class expressions (axioms):

• An instance 𝑖 has some values of a type 𝐶 related through
property 𝑝 if at least one 𝑝 𝑖, 𝑖′ : 𝑖! ∈ 𝐶 is found;

• An instance 𝑖 has a value 𝑣 related through property 𝑝 if
𝑝(𝑖, 𝑣) is found;

• An instance 𝑖 is related through property 𝑝 to itself (has self)
if 𝑝(𝑖, 𝑖) is found;

• An instance 𝑖 has a minimum 𝒏 relationships 𝑝 if
𝑝 𝑖, 𝑖′ ≥ 𝑛 are found;

• An instance 𝑖 is of type 𝐶, if 𝐶(𝑖) is found. Notice that if
𝐶(𝑖) and 𝐷(𝑖) are found and 𝐶 disjoint 𝐷, a consistency issue
exists.

Hence, positive class expressions are defined as follows:

CEPositive :=
Class | ObjectSomeValuesFrom | ObjectHasValue |
ObjectHasSelf | ObjectOneOf | ObjectMinCardinality |
DataSomeValuesFrom | DataMinCardinality

On the other hand, the complement class expression has a
different content, and it is composed by a single class expression
of a different type, referred as ClassExpressionTypeB (CETB).

CEComplement := ‘ObjectComplementOf’ ‘(‘ CETB ‘)’

CETB := CEAnd | CEOr | CEComplement | CENegative

In this context, the negative class expressions (CENegative) are
useful because they allow complement-based inference by
determining false facts, namelly:

• An instance 𝑖 does not have all values of a property 𝑝 of type
𝐶 if at least one 𝑝 𝑖, 𝑖′ : 𝑖! ∈ 𝐷 is found and 𝐶 and 𝐷 are
disjoint;

• An instance 𝑖 does not have exactly n relationships 𝑝 if at
least 𝑝 𝑖, 𝑖′ > 𝑛 are found;

• An instance 𝑖 does not have at maximum n relationships 𝑝 if
at least 𝑝 𝑖, 𝑖′ > 𝑛 are found;

• An instance 𝑖 is not of type 𝐶 if it is found 𝐷(i) such that 𝐶
is disjoint of 𝐷. Notice that if 𝐶(𝑖) and 𝐷(𝑖) are found and 𝐶
is disjoint of 𝐷, a consistency issue exists.

Negative class expressions are therefore defined as follows:

CENegative :=
Class | ObjectMaxCardinality | ObjectAllValuesFrom |
ObjectExactCardinality | DataMaxCardinality |
DataAllValuesFrom | DataExactCardinality

Yet, the constructs mentioned in the above CEPositive and
CENegative definitions are also analyzed and their interpretations
are constrained to identify the meaningful inference class
expressions of each one. As a result, each construct may only
“accept” CETA instead of ClassExpression. For example, the
construct ObjectSomeValuesFrom that is originally defined as

ObjectSomeValuesFrom := 'ObjectSomeValuesFrom' '('
ObjectPropertyExpression ClassExpression ')'

is interpreted as its definition comprehending CETA instead of
ClassExpression, such that:

ObjectSomeValuesFrom := 'ObjectSomeValuesFrom' '('
ObjectPropertyExpression CETA ')'

For brevity reasons, the remainder (re) interpretations of
constructs mentioned in CEPositive and CENegative are omitted.

Figure 2 depicts an UML class diagram representing the BNF
expressions capturing the class expressions useful for inference
(Object and Datatype restrictions are not distinguished).

Figure 2. UML class diagram of equivalent class expression

for inference.

3.2 Collecting Desirable Data
Considering that the goal is to enrich every instance (say 𝑖) added
to the KB with facts that allow/promote inference of new facts,
each class expression drives the efforts for searching/collecting
the necessary facts related to that expression. Here, it is important
to distinguish between:
• Composed class expressions, which are those related to the

OWL Propositional Connectives (i.e. Intersection, Union and
Complement), which in their canonical form have two or
more composed class expression or simple class expression;

• Simple class expressions, related to CETA and CETB, are
those that in their canonical form have a non-composed class
expression, i.e. an indivisible class expression.

Accordingly, the collecting task of each single class expression
depends on which construct it relies on, as systematized in Table 1
(again, Object and Datatype restrictions are not distinguished).

Table 1. OWL constructs and respective collecting actions

OWL class expressions Collecting action

𝐶𝑙𝑎𝑠𝑠
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖,𝐶𝑙𝑎𝑠𝑠 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐}

𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖,𝐶𝑙𝑎𝑠𝑠,𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠)

𝑆𝑜𝑚𝑒𝑉𝑎𝑙𝑢𝑒𝑠𝐹𝑟𝑜𝑚 𝑝 𝐶 𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖, 𝑝,𝐶)

𝐴𝑙𝑙𝑉𝑎𝑙𝑢𝑒𝑠𝐹𝑟𝑜𝑚 𝑝 𝐶 𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖, 𝑝,𝐶,𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠)

𝐻𝑎𝑠𝑉𝑎𝑙𝑢𝑒 𝑝 𝑗 𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖, 𝑝, 𝑗)

𝐻𝑎𝑠𝑆𝑒𝑙𝑓 𝑝 𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑖, 𝑝, 𝑖)

𝑂𝑛𝑒𝑂𝑓 𝑝 𝑒𝑛𝑢𝑚 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑂𝑛𝑒(𝑖, 𝑝, 𝑒𝑛𝑢𝑚)

𝑀𝑖𝑛𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑝 𝑦 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡(𝑖, 𝑝, 𝑦)

𝑀𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑝 𝑦 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡(𝑖, 𝑝, 𝑦 + 1)

𝐸𝑥𝑎𝑐𝑡𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑝 𝑦 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡(𝑖, 𝑝, 𝑦 + 1)

Each enrichment action returns a (possibly empty) set of facts
(𝐹𝑎𝑐𝑡𝑠) and a boolean value (𝑏𝑆𝑢𝑐𝑐) indicating the success or
failure of the data search process (as represented in the first row of
the table, but omitted in the subsequent rows):

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖,𝐶𝑙𝑎𝑠𝑠 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns a fact in the
form 𝐶𝑙𝑎𝑠𝑠 𝑖 proving that instance 𝑖 is of type 𝐶𝑙𝑎𝑠𝑠.
Further, it will return true if the facts are enough to prove so
or false otherwise;

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖,𝐶𝑙𝑎𝑠𝑠,𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns
facts 𝐶′ 𝑖 such that 𝐶! ∈ 𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠, proving that i is
not of type 𝐶𝑙𝑎𝑠𝑠;

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, 𝑝,𝐶 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns the facts in the
form 𝑝 𝑖, 𝑗 such that 𝑗 ∈ 𝐶, proving that instance 𝑖 has 𝑝-
relationships with entities of type 𝐶;

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, 𝑝,𝐶,𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns
the facts in the form 𝑝 𝑖, 𝑗 such that 𝑗 ∈ 𝐶! and 𝐶! ∈
𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝐶𝑙𝑎𝑠𝑠 proving that 𝑖 has 𝑝-relationships with
instances that are not of type C ;

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, 𝑝, 𝑗 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns the facts in the
form 𝑝 𝑖, 𝑗 , proving that proving that i is 𝑝-related with 𝑗,
whose type is irrelevant;

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, 𝑝, 𝑖 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns the fact 𝑝 𝑖, 𝑖 ,
proving that 𝑖 is 𝑝-related to itself;

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑂𝑛𝑒 𝑖, 𝑝, 𝑠𝑒𝑡 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns the fact
𝑝 𝑖, 𝑗 , proving that 𝑖 is 𝑝-related to 𝑗 ∈ 𝑠𝑒𝑡;

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡 𝑖, 𝑝, 𝑦 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns at least 𝑦
facts in the form 𝑝 𝑖, 𝑗 , proving that 𝑖 is 𝑝-relate to at least 𝑦
other instances;

• 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐴𝑡𝐿𝑒𝑎𝑠𝑡 𝑖, 𝑝, 𝑦 + 1 → {𝐹𝑎𝑐𝑡𝑠, 𝑏𝑆𝑢𝑐𝑐} returns at
least 𝑦 + 1 facts in the form 𝑝 𝑖, 𝑗 , proving that 𝑖 is 𝑝-relate
to at least 𝑦 + 1 other instances.

On the other hand, the collecting task of composed class
expressions results from the “combination” of the results of two or
more class expressions. For example, the equivalent expression:

𝐵𝑙𝑢𝑒𝐶𝑎𝑟 ≡ 𝐶𝑎𝑟 ⊓ ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟: 𝑏𝑙𝑢𝑒

is composed by a CEAnd, which in turn is composed by a Class
and HasValue constructs, which will require a 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖,𝐶𝑎𝑟 and
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑖, ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟, 𝑏𝑙𝑢𝑒 collecting actions respectively. The
CEAnd collecting action will return true if the collecting action of
all the included constructs return true, and false otherwise. Table 2
systematizes the collecting actions for the OWL propositional
connectives. This collecting task is further referred to as
Composed Class Expression Collecting.

Table 2. OWL Propositional Connectives and respective
collecting actions

OWL Propositional
Connectives

Collecting action

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑓 𝐶!…𝐶! 𝑎𝑛𝑑 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶! … 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶!

𝑈𝑛𝑖𝑜𝑛𝑂𝑓 𝐶!…𝐶! 𝑜𝑟 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶! … 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶!

𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑓 𝐶 𝑛𝑜𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶

In particular, the 𝑛𝑜𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶 action will return true if the
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝐶 action returns false. Of course that only the collecting
actions related to CETB are admissible in this context:
Intersection, Union, Complement, All Values From, Exact
Cardinality, Max Cardinality and Class (Disjoint).

Equivalent
Class

Class
Expression

CETA CETB

ComplementUnion IntersectionPositive CE Negative CE

Min
Cardinality

Max
Cardinality

Exact
Cardinality

Some
Values From

All Values
From

Has Self

One Of

Class

2..n

2..n

10..1
0..1

Has Value

3.3 Enrichment Decision Strategies
The effort for carrying each of these actions is different depending
on several dimensions and, in particular, the following ones:

• Internal criteria: the type and characteristics of the OWL
constructs;

• Data sources criteria: the characteristics and number of the
data sources involved;

• Context criteria: the relative importance given to a specific
inferred fact in a specific domain/application.

The goal is to analyze and systematize these dimensions into a
strategy-based decision framework for automatically adoption
during enrichment.

3.3.1 Internal criteria
This type of criteria varies according to the previous distinction
between single class expressions and composed ones. With
respect to the simple class expressions one may consider, for
example, (i) the cost of the collecting actions, (ii) the number of
disjoint classes, (iii) the deepness of disjoint classes. Concerning
the composed class expressions one may consider (i) the tree
deepness (e.g. is less than y), (ii) the total number of class
expressions, (iii) the minimum number of class expressions that
will run the collecting action.

It is worth to notice that the enrichment of composed class
expressions depends not only on the characteristics of itself, but
also on the characteristics of its included class expressions. For
example, the intersection class expression obliges that all the
included class expressions are executed, while the union class
expression requires only one to be successfully executed. The
complement class expression is composed by a simple class
expression but its characteristics and dimensions are very similar
to those of intersection and union.

3.3.2 Data sources criteria
Regarding the second dimension, this type of criteria may take
into consideration (i) the number of data sources required (e.g.
more/less than y), (ii) the number of data sources available (e.g.
more/less than x), (iii) the accessibility of the data source (e.g.
public and/or/xor private), (iv) the precision and/or recall of each
data source, (v) the cost of access/reading the data source (e.g.
traffic).

3.3.3 Context criteria
Regarding the third dimension, this type of criteria may consider
the pragmatics (business pertinence) of classifying an instance as
being of a given type or, in turn, simply opt to not run the
collecting action for (i) a concrete entity (e.g. Student) or (ii) a
concrete kind of class expression (e.g. intersection).

3.4 Software Development Framework
To facilitate and drive the development of the enrichment process,
the team designed a software development framework that
captures the concepts and the approach described above. For that,
the team have resorted to the well-known software design pattern
Strategy [11]. The resulting design is captured in the UML class
diagram depicted in Figure 3 and described next.

Every ontological construct (e.g. Some Values From) has an
enrichment interface counterpart (e.g. Some Values From
Enrichment) derived from the CE Enrichment interface. This
interface defines several methods for accessing its configuration
(i.e. gets) and two important methods:

• willRun(), that decides whether the enrichment process will
run or not. This method relies on a specific enrichment
decision strategy (CE Enrich Decision), that in turn makes
use of the defined criteria parameters;

• run(), which executes the collecting action that eventually
leads to new facts.

Figure 3. Class diagram depicting the enrichment actions and

enrichment decision strategies.

The CE Enrich Decision strategy has a method that takes the
enrichment process and, based on the available data (ABox),
terminological constraints (TBox), and criteria parameters,
decides whether to execute or not execute the enrichment attempt.
This design has been successfully applied in the World Search
system and in the ODCE process in particular.

4. A WALK-THROUGH EXAMPLE
To facilitate the understanding of the enrichment process and of
the composed nature of the strategies, a short, yet real-world
scenario from the World Search project is presented. This scenario
considers the need to populate 𝐾𝐵!"# from Portuguese news and
municipal meetings transcripts.

Consider a knowledge base described by the TBox defined
partially through the following axioms in DL syntax and
graphically depicted in Figure 4.

1. 𝑃𝑒𝑟𝑠𝑜𝑛 ⊑ ∃ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
2. 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑓𝑓𝑖𝑐𝑒 ⊑ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

 3. 𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒 ⊑ 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑓𝑓𝑖𝑐𝑒

 4. 𝑃𝑟𝑖𝑚𝑒𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒 ⊑ 𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒

 5. 𝐸𝑢𝑟𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ⊑ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

allowedEntities()
deniedEntities()
willRun()
getNumberOfDSAvailable()
getNumberDSRequired()
getDSRecall()
getDSPrecision()
getEstimatedInternalCost()
getEstimatedDSCost()
getAccessibility()
run()

active:bool

CE Enrichment

CETA
Enrichment

CETB
Enrichment

Positive
Enrichment

Union
Enrichment

Intersection
Enrichment

Complement
Enrichment

Negative CE
Enrichment

Min Cardinality
Enrichment

Max Cardinality
Enrichment

Exact Cardinality

Some Values From
Enrichment

All Values From

Has Value
Enrichment

Has Self
Enrichment

Type Enrichment

Union Enrich
Decision Intersection

Enrich Decision

Min Cardinality
Enrich Decision

Some Values From
Enrich Decision

Has Value Enrich
Decision

Has Self Enrich
Decision

Data Source

1..n

Exact Cardinality
Enrich Decision

All Values From
Enrich Decision

Type Enrich
Decision

decideIfRun(CEEnrichment):bool

CE Enrich Decision

Positive Enrich
Decision

Negative Enrich
Decision

Max Cardinality
Enrich Decision

Complement
Enrich Decision

Instance

ClassExpression

6. 𝑃𝑎𝑟𝑡𝑦 ⊑ ∃ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟.𝑃𝑒𝑟𝑠𝑜𝑛

 7. 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓 ≡ ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟!

 8. 𝑃𝑎𝑟𝑡𝑦 ⊑ ∃𝑖𝑠𝐿𝑒𝑎𝑑𝑖𝑛𝑔.𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡

 9. ∃𝑟𝑢𝑙𝑒𝑠.⊤ ⊑ 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡

 10. ⊤ ⊑ ∀𝑟𝑢𝑙𝑒𝑠. 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

Figure 4. TBox’s classes and their relations (partial)

Further, consider the following definitions of equivalent classes:

11. 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 ≡ 𝑃𝑎𝑟𝑡𝑦 ⊓ ∃𝑖𝑠𝐿𝑒𝑎𝑑𝑖𝑛𝑔.𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡

 12. 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 ≡ 𝑃𝑎𝑟𝑡𝑦 ⊓
 ∃ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟. (∃ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑃𝑟𝑖𝑚𝑒𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒)

 13. 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑓𝑓𝑖𝑐𝑒

 14. 𝐸𝑢𝑟𝑜𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 ≡ 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 ⊓
 ∃𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓. (∃𝑟𝑢𝑙𝑒𝑠.𝐸𝑢𝑟𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)

 Now, consider that from the earlier tasks of the ODCE process
(i.e. tasks 1 to 5) the following ABox assertions were integrated in
the knowledge base:

15. 𝑃𝑎𝑟𝑡𝑦(𝑝𝑠)

 16. 𝑃𝑒𝑟𝑠𝑜𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠)

 Based on this knowledge base, the enrichment evaluation task of
the ODCE process focus on the (newly) integrated instances to
identify which is the desirable data. As that:

• The instance 𝑃𝑎𝑟𝑡𝑦(𝑝𝑠) serves as motivation for acquiring
the facts needed by the equivalent class expression associated
to the 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 class, as it partially fills its constraints;

• The instance 𝑃𝑒𝑟𝑠𝑜𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠) serves as motivation
for acquiring the facts needed by the equivalent class
expression associated to the 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 class, as it partially
fills its constraints. Further, because the equivalent class
expression associated to 𝐸𝑢𝑟𝑜𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 class
depends on 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 class, it is evaluated for decision too.

These constraints and the tree of constraints for each equivalent
class are depicted in Figure 5. Also, consider the annotations in
Figure 5 as the enrichment decision criteria of each class
expression. For example, the intersection class expression
enrichment labeled as “intersection enrichment 1” is constrained
(i) to a maximum of one level deep (i.e. maxdeep:1) and (ii) to a
maximum of two class expressions (i.e. max 2 CE).

Figure 5. SDF’s perspective of the example’s enrichment data

Person

Party

Government MinisterOffice

RullingParty

PoliticalOffice

Position

Politician

Euro
Government
Politician

EuroLocation

Location

rules

isLeading

hasP
osition

Prime-
MinisterOffice

memberOf

hasMember

Instances of
ClassExpression

Enrichment

Instances of
ClassExpression

Instances of
ClassExpression

Enrichment Decision

intersection
(Politician)

intersection
enrichment decision

1
intersection

enrichment 1

max 2 CE
max deep: 1

some values from
(hasPosition)

some values from
enrichment 3

DS: DS2
max deepness: 1

some values from
enrichment decision

2

intersection
(EuroGovPolitician)

intersection
enrichment decision

1

intersection
enrichment 1

max 2 CE
max deep: 1

intersection
(Politician)

some values from
(hasPosition)

some values from
(isMember)

some values from
enrichment decision

2

intersection
enrichment 1

max 2 CE
max deep: 1

some values from
enrichment 3

DS: DS2
max deepness: 1

some values from
enrichment 3

DS: DS1
max deepness: 1

some values from
(rules)

some values from
enrichment 5

DS: DS4
max deepness: 1

some values from
enrichment decision

3

Person(jose_socrates)

Person(jose_socrates)

intersection
(RullingParty)

intersection
enrichment decision

1
intersection

enrichment 1

max 2 CE
max deep: 1

some values from
(isLeading)

some values from
enrichment2

DS: (unknown)
max deepness: 2

some values from
enrichment decision

2

Party(ps)

intersection
(RullingParty)

intersection
enrichment decision

1
intersection

enrichment 1

max 2 CE
max deep: 1

some values from
(hasMember)

some values from
enrichment 3

DS: DS1
max deepness: 1

Party(ps)

some values from
(hasPosition)

some values from
enrichment decision

2

some values from
enrichment 3

DS: DS2
max deepness: 1

Due to these constraints and the KB’s content, only the
𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 equivalent class enrichment process will be executed.
Notice that the other enrichment processes are not executed
because (i) the resolution tree exceeds the specified maximum
deep constraint value or (ii) it is known a priori that no external
data sources can provide the intended information (e.g. isLeading
relationships) since no alignments exist for that relation (between
the World Search knowledge base and the external data sources).

Execution of the 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 equivalent class enrichment process
will tentatively enrich the instance 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠 with the facts
that permit the inference of the equivalent class. This corresponds
to execute:

𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠, ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑓𝑓𝑖𝑐𝑒

Consider now that the querying, cleansing and integration tasks of
the ODCE process (i.e. tasks 7, 3 and 4 respectively) updates the
knowledge base with the following new assertions:

17. ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠,𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟122)

 18. ℎ𝑎𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠, 𝑝𝑟𝑖𝑚𝑒_𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟232)

 19. 𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒(𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟122)

 20. 𝑃𝑟𝑖𝑚𝑒𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒(𝑝𝑟𝑖𝑚𝑒_𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟232)

 As a result, a reasoner will be able to infer the axiom:

21. 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠)
Once this assertion is added to the KB, new enrichment attempts
are made for every equivalent class definition (not depicted in
Figure 5). Considering the current content of the KB, both the
𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 and the 𝐸𝑢𝑟𝑜𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 equivalent
classes are re-evaluated (𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 has no further data that
motivates its enrichment).

The re-evaluation of the 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦 strategy considers that the
KB contains one instance of 𝑃𝑒𝑟𝑠𝑜𝑛 that holds the position of
𝑃𝑟𝑖𝑚𝑒𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑂𝑓𝑓𝑖𝑐𝑒, which reduces the enrichment
requirement of the ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟 expression to one level (instead
of the previous two levels), and thus, since no constraints are now
violated, it decides to executed the enrichment process.

For this case, the enrichment process will collect information
about 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠 affiliation to the ‘ps’ party.

𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠, 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓, 𝑝𝑠

Considering that this search effort is well succeeded, a new axiom
is added to the KB:

22. 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓(𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠, 𝑝𝑠)

 which in turn triggers the inference of:

23. ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟(𝑝𝑠, 𝑗𝑜𝑠𝑒_𝑠𝑜𝑐𝑟𝑎𝑡𝑒𝑠)

 24. 𝑅𝑢𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑦(𝑝𝑠)

 The same rationale is valid and applicable for the
𝐸𝑢𝑟𝑜𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛 class.

As demonstrated by the example, the proposed enrichment
process is iterative and incremental, relying (i) on the intensional
information (ABox), (ii) the terminological constraints (TBox),
(iii) the enrichment criteria and (iv) the decision making specified
by means of strategies.

5. RELATED WORK
Ontology enrichment is commonly used to describe the process of
parsing documents to extract schemas and facts. Some

approaches, like the system described in [12] aim to extract and
expand an ontology using several sources of structured and
unstructured data (e.g. web documents, databases) using NLP.
This system addresses the problem of heterogeneity of data and
attempts to solve it by providing a framework, extracting
ontologies from a set of data. Much like our proposal, querying
other data sources further enhances the enrichment process.
However, while it is TBox-driven, unlike our work, it is focused
on expanding the number of addressed concepts.

While the work described is similar to ABox abduction [13], they
differ in the sense that ABox abduction tries to explain already
existing facts, while the enrichment process tries to go from
already existing facts to new (inferred) facts.

The system described in [14] extracts instances from various
sources through a domain-independent TBox-driven approach.
Like our system, the TBox drives the population process,
determining which data to extract. However, unlike our system, it
makes no use of the existing instances and, therefore, it does not
attempt to fill potential gaps in the existing data.

In [15] the authors present a system whose goal is to mix
traditional information retrieval queries and ontology-based
queries. For that, documents are semantically annotated based on
a very lightweight TBox through an NLP-oriented process. In this
respect, this system corresponds to the NLP-based parsing step of
our approach (that triggers the proposed ODCE process).
Moreover, while our goal is to enrich the ABox in order to reason
and infer new data enabling complex query answering, the
aforementioned system intends to gather data as much and
broader as possible to provide extended information.

The work presented in [16] evaluates the types of change that can
occur at the terminological level of the KB. Depending on the
nature of such change the system chooses an appropriate strategy
predicting other changes that may be necessary to maintain
consistency. In our proposal, a similar strategy-based approach is
used to drive the enrichment process of the ABox instead of the
evolution of the TBox.

6. CONCLUSION AND FUTURE WORK
This paper presented a KB enrichment process characterized by:

• NLP-triggered, in the sense that the data generated by the
automatic NLP process will trigger and will be the
motivation of the enrichment process;

• OWL-based, because the enrichment process is controlled by
the ontological constraints and the ontology constructs
semantics of OWL DL, including the OWA;

• Inference-driven, because the enrichment process aims to
support and promote inference of new facts.

This enrichment approach is contextualized first in the Ontology-
based Data Cleansing and Enrichment process, which in turn is
part of the World Search project system aiming to support user
performing complex queries upon LOD repositories. The designed
software development framework has been successfully applied in
this technological context.

The proposed enrichment process grounds on and follows the
semantics of the OWL DL language thus guarantying a wide
understanding and acceptance semantics. Nevertheless, the
characteristics related to the class expressions should be better and
more carefully analyzed in respect to the identified and others
criteria in order to specify concrete decision strategies that could
be used out of the box or minimally customized. For example, one

could use a conservative enrichment strategy (similar to that
applied in the example), while other would prefer a more
aggressive strategy (one that minimally constraints the enrichment
execution).

Further, the authors are aware that there are ontologies whose
equivalent class expressions (and equivalent properties
expressions) are not defined as description logics axioms, but as
Horn clauses that respect the conditions of DL-Safe rules [17], i.e.
rules that are specified using the TBox vocabulary defined in
description logics, and that are applied to only named individuals
in the KB. In this sense, the inference performed upon this type of
rules can profit from an enrichment process similar to the one
proposed here for equivalent class expressions. The team aims to
address this subject in the near future.

The contributions of the paper focused on the analysis of the
enrichment actions and on the decision to whether execute or not
them. On the other hand, the data source access was not
addressed. In fact, for the moment every enrichment process is
coded in the enrichment class instance as a SPARQL query (or
other query language). This solution is not particularly flexible
and adaptable to changes, both in terms of data sources and
criteria. Hence, it would be important to address the process of
generating data source accessors based on the ontology (TBox)
alignments established between the target ontology and the source
ontologies.

7. ACKNOWLEDGMENT
This work is supported by FEDER Funds through the “Programa
Operacional Factores de Competitividade - COMPETE” program
and by National Funds through FCT “Fundação para a Ciência e
Tecnologia” under the projects: World Search (QREN11495) and
AEMOS (PTDC/EIA-EIA/104752/2008).

8. REFERENCES
[1] Canito A., Maio, P. and Silva, N. 2013. An Approach for

Populating and Enriching Ontology-based Repositories.
12th International Workshop on Web Semantics (WebS) at
DEXA (Prague, Czech Republic, Sept 2013).

[2] Brandão, R., Maio, P. and Silva, N. 2012. Enhancing LOD
Complex Query Building with Context. (Macau, China,
Dec. 2012).

[3] Elsenbroich, C., Kutz, O. and Sattler, U. 2006. A Case for
Abductive Reasoning over Ontologies. (2006).

[4] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1994.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional.

[5] Kiryakov, A., Popov, B., Terziev, I., Manov, D. and
Ognyanoff, D. 2004. Semantic annotation, indexing, and
retrieval. Web Semantics: Science, Services and Agents on
the World Wide Web. 2, 1 (Dec. 2004), 49–79.

[6] Linked Data - Design Issues: 2006.
http://www.w3.org/DesignIssues/LinkedData.html.

[7] McDowell, L.K. and Cafarella, M. 2008. Ontology-driven,
unsupervised instance population. Web Semantics: Science,
Services and Agents on the World Wide Web. 6, 3 (Sep.
2008), 218–236.

[8] Motik, B., Sattler, U. and Studer, R. 2005. Query
Answering for OWL-DL with rules. Web Semant. 3, 1 (Jul.
2005), 41–60.

[9] OWL 2 Web Ontology Language Structural Specification
and Functional-Style Syntax (Second Edition):
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/.
Accessed: 2013-02-26.

[10] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A. and Katz,
Y. 2007. Pellet: A practical owl-dl reasoner. Web
Semantics: science, services and agents on the World Wide
Web. 5, 2 (2007), 51–53.

[11] Song, F., Zacharewicz, G. and Chen, D. 2013. An
ontology-driven framework towards building enterprise
semantic information layer. Advanced Engineering
Informatics. 27, 1 (Jan. 2013), 38–50.

[12] Song, F., Zacharewicz, G. and Chen, D. 2013. An
ontology-driven framework towards building enterprise
semantic information layer. Advanced Engineering
Informatics. 27, 1 (Jan. 2013), 38–50.

[13] Stojanovic, L., Maedche, A., Motik, B. and Stojanovic, N.
2002. User-driven Ontology Evolution Management. 13th
International Conference on Knowledge Engineering and
Knowledge Management (Heidelberg, Oct. 2002),
197―212.

[14] Talburt, J.R. 2011. Entity resolution and information
quality. Morgan Kaufmann.

[15] World Search: 2010.
http://www.microsoft.com/portugal/mldc/worldsearch/en/.

[16] Computational Processing of the Portuguese Language -
6th International Workshop, PROPOR 2003.

